×
18.05.2018
218.016.51f3

Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для определения концентрации агломератов несферических наноразмерных частиц в жидких средах. Сущность изобретения заключается в том, что используют измерительную ячейку в форме кольцевого канала переменного сечения для создания ускоренного потока, содержащую побудитель ламинарного течения и установленный в области сужения кольцевого канала акустический измеритель, с помощью которого в исходном образце жидкой среды измеряют акустические спектры затухания ультразвука при изотропной ориентации несферических наноразмерных частиц в покоящейся жидкой среде и при ориентации частиц вдоль потока жидкой среды, затем исходный образец очищают от агломератов и в очищенном образце жидкой среды измеряют акустические спектры затухания ультразвука при изотропной ориентации несферических наноразмерных частиц в покоящейся жидкой среде и при ориентации частиц вдоль потока жидкой среды, после этого на основе измеренных спектров вычисляют концентрацию агломератов несферических наноразмерных частиц. Технический результат: обеспечение возможности измерений концентрации агломератов несферических наночастиц в дисперсиях посредством измерений затухания ультразвука на наночастицах, ориентированных и неориентированных в потоке жидкой среды. 1 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к способам измерения концентрации путем контроля акустических параметров вещества методом акустической спектроскопии и предназначено для измерения концентрации агломератов несферических наноразмерных частиц в жидких средах (дисперсиях), в том числе - непрозрачных и концентрированных, таких как дисперсии углеродных материалов.

Для измерения концентрации агломератов применяется метод акустической спектроскопии в ускоряющемся потоке дисперсии несферических частиц. Метод акустической спектроскопии основан на явлении затухания (ослабления) ультразвукового сигнала на нанообъектах при его прохождении через исследуемый образец дисперсии. Акустический анализатор измеряет спектры затухания ультразвука в исходной и очищенной дисперсиях для двух состояний дисперсии, отличающихся ориентацией наночастиц, которые затем используются для расчета концентрации агломератов наночастиц дисперсной фазы.

Метод ускоряющегося потока предназначен для создания ориентации несферических наночастиц в потоке дисперсии, движущемся ускоренно по сужающемуся каналу. При изменении площади сечения в сужающемся канале возникает продольный градиент скорости потока, что приводит к возникновению некомпенсированных моментов сил вязкого трения, стремящихся развернуть частицы относительно направления потока.

Известны несколько способов измерения концентрации агломератов наноразмерных частиц и молекул в жидкости, среди которых большинство относится к способам измерения концентрации агломератов компонентов крови. В работе № US 3900290A [1] предлагается пропускать образец крови, подвергнутый воздействию коагулянта, через фильтрующую мембрану, при этом агломераты тромбоцитов размером более 20 мкм будут оставаться на мембране. Концентрация агломератов рассчитывается по времени, необходимому для блокирования потока через мембрану. Недостатком метода является применимость только к крупным агломератам размером порядка нескольких десятков микрон. Кроме того, при исследовании дисперсий вытянутых частиц с высоким аспектным отношением на мембране отфильтровываются как агломераты, так и большая доля отдельных первичных частиц, длина которых превышает средний размер пор, что приводит к значительному увеличению погрешности метода. В работах № US 3694161A [2] и № US 4788139A [3] предлагается усовершенствование традиционного метода изучения свертываемости крови, заключающееся в том, что образец крови распределяется по нескольким пробиркам с различной концентрацией коагулянта и антикоагулянта. После агломерации в течение 5 минут образец подвергается центрифугированию, и с помощью счетчика Коултера измеряется количество одиночных тромбоцитов, оставшихся в плазме крови. По измеренному значению рассчитывается концентрация агломератов. Недостатком способа является необходимость воздействия на исходный образец коагулянтами, в результате которого изменяется изначальная концентрация агломератов.

В патенте № FR 2837401 (A1) [4] описан способ измерения концентрации агломератов при помощи адсорбирования агломератов в поверхностном слое между исследуемой дисперсией и вторичной средой. Измеряется концентрация адсорбированных агломератов и рассчитывается исходная концентрация агломератов. Недостатком метода является зависимость эффективности адсорбции от физических и химических свойств материала частиц и их агломератов. Кроме того, измеряется величина суммарной концентрации агломератов и макромолекул (частиц), адсорбированных в поверхностном слое.

Известен ряд технических решений в виде устройств, предназначенных для ориентации несферических частиц в дисперсиях. В патентах США № US 5576617 [5] и № WO 9416308 [6] описывается способ выравнивания частиц в форме пластин путем приложения к дисперсии электрического поля. В патенте № US 20110076665 [7] аналогичный способ был применен для выстраивания нановолокон целлюлозы для последующей фабрикации микроволокон с повышенной прочностью. Недостатком технических решений, представленных в данных патентах, является невозможность пространственного совмещения камеры, в которой происходит выстраивание несферических частиц, с измерительным устройством, определяющим концентрацию их агломератов.

Наиболее близким аналогом является способ определения концентрации агломератов в крови, описанный в работе № US 5325295 A [8], согласно которому образец крови распределяется по нескольким измерительным ячейкам с разной концентрацией коагулянтов и антикоагулянтов. В каждой ячейке проводятся измерения оптической плотности с помощью спектрофотометра, по результатам которых определяется концентрация агрегатов в образце. Недостатком метода является неприменимость к непрозрачным и концентрированным образцам.

Прототипом изобретения является акустический анализатор, описанный в патенте № US 6109098 [9], содержащий акустический измеритель, располагаемый в измерительной ячейке, и вычислительный блок для обработки измеренных акустических спектров, позволяющий оценить массовую долю агломератов сферических частиц. Для обеспечения точности измерений измерительная ячейка дополнительно обеспечена терморегулятором и измерителем температуры и измерителем кислотности образцов дисперсий. Недостатком данного устройства, как и других известных акустических анализаторов, является неприменимость для определения концентрации агломератов несферических наночастиц в дисперсиях.

Технической задачей, решаемой в представленном изобретении, является обеспечение измерений концентрации агломератов несферических наночастиц в дисперсиях, в том числе - концентрированных и непрозрачных, посредством измерений затухания ультразвука на наночастицах, ориентированных и неориентированных в потоке жидкой среды.

Решение поставленной технической задачи достигается тем, что способ определения концентрации несферических наноразмерных частиц в жидких средах предполагает использование специальной измерительной ячейки в форме кольцевого канала переменного сечения, содержащей установленные в кольцевом канале акустический измеритель и побудитель ламинарного движения исследуемой жидкой среды, и отличается тем, что кольцевой канал дополнительно содержит участок плавного сужения сечения, в котором происходит ускорение входящей в него жидкой среды и ориентация несферических частиц вдоль направления потока жидкой среды и в котором установлен акустический измеритель, обеспечивающий измерения в двух состояниях потока жидкой среды: с ориентированными по потоку и неориентированными несферическими наночастицами.

Возможны дополнительные варианты способа измерения концентрации агломератов, в которых целесообразно чтобы:

- в устройстве измерения выполнялись в двух состояниях потока жидкой среды: с ориентированными по потоку и ориентированными перпендикулярно потоку несферическими наночастицами;

- в устройстве ориентация частиц происходила во вращающемся ламинарном потоке исследуемой жидкой среды.

При этом область ориентации наночастиц в движущемся потоке пространственно совмещена с областью измерений. Акустический измеритель обеспечивает получение спектров затухания ультразвука на несферических наночастицах при двух различных ориентациях в потоке жидкой среды. Спектры затухания ультразвука измеряются в исходной дисперсии и в дисперсии, очищенной от агломератов. Полученные данные достаточны для определения концентрации агломератов частиц посредством вычислений. Контроль полноты степени ориентации частиц в потоке производится посредством измерения вязкости измеряемой жидкой среды в потоке с помощью акустического измерителя.

Изобретение поясняется чертежами.

На фиг. 1 представлена общая схема акустического анализатора для определения размеров и электрокинетического потенциала несферических наноразмерных частиц в жидких средах. Цифрами обозначены: 1 - кольцевой канал, 2 - участок плавного сужения сечения, 3 - акустический измеритель, 4 - побудитель движения жидкой среды. ОО и GG - площади поперечного сечения канала кольцевого в основном участке и в области измерений на участке максимального сужения сечения, соответственно. H - длина участка сужения сечения, HG - длина области измерений в суженном сечении.

На фиг. 2 представлены результаты измерения спектров затухания ультразвука при изотропной ориентации нанотрубок в покоящейся исходной дисперсии (спектр обозначен символом "ο") и в потоке исходной дисперсии (спектр обозначен символом "⊥").

На фиг. 3 изображены результаты экспериментов в очищенной дисперсии при изотропной ориентации нанотрубок в покое (спектр обозначен символом "ο") и при максимальной ориентации частиц в потоке перпендикулярно направлению распространения волны ультразвука (спектр обозначен символом "⊥").

Каждый изображенный спектр является результатом усреднения по 5-ти измерениям, за вычетом фонового спектра затухания ультразвука в деионизованной воде.

Способ измерения концентрации агломератов несферических наноразмерных частиц реализуется с помощью схемы измерений, представленной на фиг. 1, следующим образом. Жидкая среда (дисперсия) с несферическими наночастицами для измерений заливается в измерительную ячейку 1 через устройство для залива. Дисперсия приводится в ламинарное движение в кольцевом канале со скоростью, достаточной для обеспечения ламинарного потока (для среды с вязкостью, близкой по значению к вязкости воды - со скоростью не более 1÷20 мм/с) с использованием побудителя движения 4. Для обеспечения достаточной точности и повторяемости измерений стабилизируется заданная температуры жидкой среды в канале с помощью термостата. В длинном участке кольцевого канала формируется стационарный ламинарный поток и происходит предварительная ориентация наночастиц перед входом в участок плавного сужения сечения 2.

Отношение сечений канала на участке сужения S0/SG длиной H устанавливается достаточно большим, чтобы обеспечить величину градиента продольной скорости на участке сужения не менее ∂νH/∂H=1÷10 с-1. При данном условии достигается максимальная ориентация несферических наночастиц вдоль направления потока дисперсии в участке 2 канала 1. Критерием достижения максимальной ориентации наночастиц является приближение измеренного значения продольной вязкости исследуемой дисперсии к предельному значению (относительная разность с предельным значением должна составлять не более 10%). Вязкость измеряется акустическим измерителем 3.

Акустические спектры затухания ультразвука в дисперсии несферических наночастиц измеряются на участке 2 в месте наибольшего сужения сечения кольцевого канала 1 с помощью акустического измерителя 3.

Измерения концентрации агломератов несферических наночастиц в дисперсиях производится следующим образом. Акустическим измерителем определяются амплитуды интенсивностей падающей Iin и прошедшей Iout через слой дисперсии толщиной D ультразвуковой волны с варьируемой частотой ν. На основе этих данных в вычислительном блоке производится расчет коэффициента затухания α ультразвука в дисперсии с наночастицами по формуле

Сначала акустическим измерителем проводятся измерения спектра затухания ультразвука в образце дисперсионной среды (в большинстве промышленных дисперсий дисперсионной средой является вода) в целях определения фонового спектра затухания Sw. Спектральная характеристика Sw определяется как интеграл по частотному диапазону νmaxmin от функции коэффициентов затухания αw(ν), рассчитанных по формуле (1)

Затем измерения коэффициентов затухания α(ν) проводятся для двух состояний исходной дисперсии с несферическими наночастицами: измеряется спектральная характеристика для изотропной ориентации наночастиц в покоящейся дисперсии и спектральная характеристика для движущейся в канале дисперсии с наночастицами, ориентированными вдоль потока перпендикулярно направлению измерительной УЗ волны. Каждая из величин и является разностью интеграла соответствующих измеренных коэффициентов затухания αΣ(ν) и фоновой спектральной характеристики Sw. В величину вносят вклад коэффициенты затухания αo(ν), обусловленные изотропно ориентированными одиночными частицами, и коэффициенты затухания αагл(ν), обусловленные агломератами частиц. В величину вносят вклад коэффициенты затухания α(ν), обусловленные одиночными частицами, которые теперь имеют ориентацию перпендикулярно ультразвуковой волне, и коэффициенты затухания αагл(ν), оставшиеся неизменными, поскольку квазисферические агломераты частиц не могут быть ориентированы в потоке дисперсии

Далее очищают исходную дисперсию от агломератов, имеющих квазисферическую форму, и, аналогично предыдущему этапу, измеряют коэффициенты затухания α(ν) для двух состояний очищенной дисперсии: рассчитывают спектральную характеристику So для изотропной ориентации наночастиц в покоящейся дисперсии и спектральную характеристику S для движущейся в канале дисперсии с несферическими наночастицами, ориентированными вдоль потока перпендикулярно направлению измерительной УЗ волны. Каждая из величин So и S является разностью интеграла соответствующих измеренных коэффициентов затухания α(ν) и фоновой спектральной характеристики Sw. После устранения агломератов из дисперсии величина So зависит только от коэффициентов затухания αo(ν), обусловленных изотропно ориентированными одиночными частицами, а величина S - только от коэффициентов затухания α(ν), обусловленных одиночными частицами, ориентированными перпендикулярно ультразвуковой волне.

Долю агломератов в дисперсной фазе определяют по отношению интегральной характеристики спектра, обусловленного агломератами, к характеристике спектра, обусловленного влиянием всей дисперсной фазы

для этого относительную разность уравнений (3) и (4) делят на относительную разность уравнений (5) и (6). После преобразований выражение для доли агломератов принимает вид

Окончательно, концентрация агломератов Cагл рассчитывается при умножении доли агломератов (8) на известное значение полной концентрации дисперсной фазы CΣ

Выражение A=1-S/So, стоящее в знаменателе формулы (9), является характеристикой исследуемого дисперсного материала в неагломерированном состоянии, независимой от концентрации дисперсной фазы. Указанная характеристика A может быть определена в ходе контрольных испытаний с образцами исследуемого дисперсного материала, очищенного от агломератов. Таким образом, величина A является калибровочной константой для данного материала и может быть использована в качестве табличной величины для последующих измерений концентрации агломератов.

Предложенное техническое решение обеспечивает получение данных о концентрации агломератов несферических наночастиц в жидких средах благодаря применению метода акустической спектроскопии для измерения акустических параметров дисперсии с ориентированными вдоль потока несферическими наночастицами.

Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах относится к способам измерения концентрации путем неразрушающего контроля и может быть использован для контроля степени ориентации и измерения концентрации агломератов в промышленных дисперсиях. В том числе устройство необходимо для контроля параметров технологических дисперсий углеродных нанотрубок и наностержней перед их применением для формирования электродов суперконденсаторов, Li-ионных батарей, автоэмиссионных катодов, композитных материалов с целью обеспечения однородной и упорядоченной структуры, определяющей высокие функциональных параметры изделий.

Активность биологических и фармакологических препаратов значительно зависит от степени их агломерации в суспензиях, которая, например, определяет способность биологически активных объектов к преодолению биологических барьеров, поэтому контроль концентрации агломератов необходим для определения активности биологических и фармакологических суспензий.

Таким образом, новый способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах позволяет оперативно рассчитывать концентрацию агломератов несферических наночастиц, находящихся непосредственно в жидких средах, в том числе концентрированных и непрозрачных.

Источники информации

1. Патент US 3900290 A - G01N 33/49, G01N 33/86, G01N 33/4905, 01N 33/49B. Method and apparatus for determining the degree of platelet aggregation in blood - Способ и анализатор для определения степени агрегации тромбоцитов.

2. Патент US 694161 A - G01N 33/86. Method for measuring platelet aggregation - Способ измерения агрегации тромбоцитов.

3. Патент US 4788139A A - G01N 33/86, C12Q 1/56. Platelet aggregation reagent, reagent container and method of determining platelet aggregation in EDTA-anticoagulated blood - Реагент для агрегации тромбоцитов, контейнер для реагента и метод определения агрегации тромбоцитов в EDTA-модифицированных образцах крови.

4. Патент FR 2837401 (A1) - B01D 15/00; B01D 15/08; С07K 1/14; C12N 15/09; C12N 15/10; C12Q 1/68; G01N 1/28; G01N 1/34; G01N 1/36; G01N 33/50; G01N 33/53; G01N 33/566. Selective concentration of macromolecules and aggregates, useful e.g. for concentrating nucleic acids before analysis, comprises selective adsorption in an interfacial layer - Селективное концентрирование макромолекул и агрегатов с помощью селективной адсорбции в поверхностном слое, в том числе для целей концентрирования нуклеиновых кислот перед проведением анализа.

5. Патент US 5576617 - G01N 15/10; G01N 15/02; G01N 15/12; G01N 27/06. Apparatus & method for measuring the average aspect ratio of non-spherical particles in a suspension - Прибор и метод для измерения среднего аспектного соотношения несферических частиц в суспензии.

6. Патент WO 9416308 - G01N 15/10; G01N 15/02; G01N 15/12; G01N 27/06. Aspect ratio measurement - Измерения аспектного соотношения.

7. Патент US 20110076665 - A01N 1/00; B32B 23/00; C08B 1/00; С12М 1/00; C12N 5/00; C40B 50/06. Electromagnetic controlled biofabrication for manufacturing of mimetic biocompatible materials - Электромагнитно контролируемое производство миметических биосовместимых материалов.

8. Патент US 5325295 A - G01N 15/00, G01N 21/82, G01N 2201/0446, G01N 2015/0084, G01N 2201/0407. Adaptation of microtiter plate technology to measurement of platelet aggregation - Адаптация технологии микротитрования для измерения агрегации тромбоцитов.

9. Патент US 86109098 - Particle size distribution and zeta potential using acoustic and electroacoustic spectroscopy - Определения размера частиц и дзета-потенциала с помощью акустической и электроакустической спектроскопии.


Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах
Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах
Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах
Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах
Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах
Источник поступления информации: Портал edrid.ru

Показаны записи 1-10 из 37.
27.08.2016
№216.015.4fff

Способ экспрессной оценки биосовместимости металлов и их сплавов по пилипенко п.н.

Изобретение относится к медицинской технике, точнее к технике лабораторных исследований, в частности к способам проведения анализа биосовместимости металлических материалов, изделий и имплантатов. А также изделий, полученных при отработке производственных технологий, включая различные способы...
Тип: Изобретение
Номер охранного документа: 0002595812
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.532b

Кристаллическая форма метилового эфира 3-(n-п-толилацетамидо)метил)-2,3,4,5-тетрагидробензо[f][1,4]оксазепин-4-карбоксамидо)тиофен-2-карбоновой кислоты, активный компонент, фармацевтическая композиция и лекарственное средство

Изобретение относится к кристаллической форме метилового эфира 3-(7-((N--толилацетамидо)метил)-2,3,4,5-тетрагидробензо[f][1,4]оксазепин-4-карбоксамидо)тиофен-2-карбоновой кислоты формулы 1, обладающего свойствами агониста рецепторов TGR5, а также активному компоненту, фармацевтическим...
Тип: Изобретение
Номер охранного документа: 0002594154
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.7fde

Способ изготовления устройства с субмикронным джозефсоновским π-контактом

Использование: для изготовления устройства с субмикронным джозефсоновским π-контактом. Сущность изобретения заключается в том, что способ изготовления устройства с субмикронным джозефсоновским π-контактом заключается в том, что в качестве слабой связи джозефсоновского перехода используют...
Тип: Изобретение
Номер охранного документа: 0002599904
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8ca5

Способ изготовления изделий типа клапанов

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении стержневых изделий типа клапан. Отрезанную от прутка заготовку устанавливают на матрицу в отверстие подвижной ступицы, размещенной в корпусе штампа. Первоначально между рабочими поверхностями матрицы...
Тип: Изобретение
Номер охранного документа: 0002604548
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.905f

Способ селективного получения фракции алканов, пригодной для бензинового и дизельного топлива

Изобретение относится к способу селективного получения фракции алканов, пригодной для бензинового и дизельного топлива. Способ характеризуется тем, что включает стадию, на которой одновременно проводят реакции декарбонилирования/декарбоксилирования и прямой гидродеоксигенации сырьевого...
Тип: Изобретение
Номер охранного документа: 0002603967
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a117

Устройство для определения направления на географический север

Изобретение относится к устройствам для навигации и ориентации в пространстве и может быть использовано для определения направления на географический север. Устройство для определения направления на географический север содержит молекулярно-электронный датчик угловых движений, установленный на...
Тип: Изобретение
Номер охранного документа: 0002606673
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a884

Способ деметаллизации тяжелого нефтяного сырья

Изобретение относится к нефтеперерабатывающей промышленности и, в частности, к процессам деасфальтизации и деметаллизации тяжелого нефтяного сырья с использованием сольвентных методов. Способ деметаллизации тяжелого нефтяного сырья заключается в смешивании исходного тяжелого нефтяного сырья с...
Тип: Изобретение
Номер охранного документа: 0002611416
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.abf4

Полупогружной ледокол

Изобретение относится к области судостроения и касается создания ледокольных судов, использующих для разрушения ледяного покрова подъемную архимедову и гидродинамическую силу. Предложен полупогружной ледокол, содержащий подводный корпус с ледоразрушающим устройством в виде трех таранов с...
Тип: Изобретение
Номер охранного документа: 0002612343
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.b624

Автономный источник энергоснабжения на основе ветросиловой установки

Предлагаемое изобретение относится к автономным энергетическим устройствам. Автономный источник энергоснабжения, включающий установленную на башне-опоре ветросиловую установку, механически связанную с электрогенератором и компрессором-бустером, связанным трубопроводом с резервуаром высокого...
Тип: Изобретение
Номер охранного документа: 0002614451
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.bd5c

Способ получения полимерных наночастиц низкосиалированного эритропоэтина с высокой степенью сорбции для лечения неврологических заболеваний

Изобретение относится к области фармакологии, химии полимеров и нанотехнологиям и может быть использовано для получения полимерных наночастиц низкосиалированного эритропоэтина с высокой степенью сорбции, перпективных для лечения неврологических заболеваний. Способ получения наночастиц...
Тип: Изобретение
Номер охранного документа: 0002616258
Дата охранного документа: 13.04.2017
Показаны записи 1-10 из 27.
20.11.2013
№216.012.81b4

Способ получения порошка диборида титана для материала смачиваемого катода алюминиевого электролизера

Изобретение относится к материалу смачиваемого анода алюминиевого электролизера. Порошок диборида титана получают при проведении карботермической реакции между мелкодисперсными порошковыми компонентами шихты из безводного диоксида титана, борного ангидрида или борной кислоты и углерода в виде...
Тип: Изобретение
Номер охранного документа: 0002498880
Дата охранного документа: 20.11.2013
20.05.2014
№216.012.c52d

Способ изготовления порошкового композита сu-cd/nb для электроконтактного применения

Изобретение относится к порошковой металлургии, в частности к получению металлокерамических электроконтактных материалов Cu-Cd/Nb. Из порошков меди и ниобия готовят шихту, проводят холодное прессование и спекание. Введение кадмия в заготовку осуществляют диффузионным насыщением путем ее...
Тип: Изобретение
Номер охранного документа: 0002516236
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cc25

Композиция для материала смачиваемого покрытия катода алюминиевого электролизера

Изобретение относится к композиции для материала смачиваемого покрытия катода алюминиевого электролизера для производства алюминия из криолит-глиноземных расплавов. В составе порошковой композиции для материала смачиваемого покрытия катода алюминиевого электролизера, содержащей функциональный...
Тип: Изобретение
Номер охранного документа: 0002518032
Дата охранного документа: 10.06.2014
10.05.2015
№216.013.497a

Способ измерения отклонений от плоскостности

Изобретение относится к технике проведения измерений и определения отклонений от плоскостности плоских поверхностей различной площади и протяженности, в частности поверочных, монтажных и разметочных плит, элементов технологического оборудования и устройств, требующих обеспечения плоскостности...
Тип: Изобретение
Номер охранного документа: 0002550317
Дата охранного документа: 10.05.2015
10.10.2015
№216.013.8133

Способ получения высокопористого носителя катализатора

Изобретение относится к способу получения высокопористого носителя катализатора. Данный способ включает пропитку ретикулированного пенополиуретана керамическим шликером, содержащим инертный наполнитель, включающий электрокорунд, дисперсный порошок оксида алюминия с добавками, и раствор...
Тип: Изобретение
Номер охранного документа: 0002564672
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8513

Фотолюминофорная смесь для изготовления фотолюминесцентной плёнки белых светодиодов

Изобретение относится к области электронной техники и техники освещения на основе полупроводниковых светоизлучающих диодов (СИД), а именно к фотолюминофорной смеси для приготовления фотолюминесцентной пленки белых светодиодов. Смесь содержит связующее, пластификатор, растворитель и порошок...
Тип: Изобретение
Номер охранного документа: 0002565670
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8b2b

Способ создания каталитического слоя на поверхности пористого носителя

Изобретение относится к способу создания каталитического слоя на поверхности пористого носителя. Данный способ включает нанесение наночастиц катализатора, содержащих оксид церия или гомогенный смешанный оксид церия и циркония, на внутреннюю поверхность пористого носителя из оксида алюминия...
Тип: Изобретение
Номер охранного документа: 0002567234
Дата охранного документа: 10.11.2015
25.08.2017
№217.015.b77a

Способ интуитивно копирующего управления одноковшовым экскаватором

Изобретение относится к области машиностроения, может быть использовано в ручных гидравлических системах управления подвижными наземными, авиационными и морскими объектами и предназначено для формирования посредством гидрораспределителей команд по четырем каналам управления для одноковшовых...
Тип: Изобретение
Номер охранного документа: 0002614866
Дата охранного документа: 30.03.2017
26.08.2017
№217.015.e0ea

Трубчатый элемент электрохимического устройства с тонкослойным твердооксидным электролитом (варианты) и способ его изготовления

Изобретение относится к высокотемпературным электрохимическим устройствам (ЭХУ) с твердым оксидным электролитом, таким как электрохимические генераторы или топливные элементы, кислородные насосы, электролизеры, конвертеры, а именно к конструкции трубчатого элемента с тонкослойным несущим...
Тип: Изобретение
Номер охранного документа: 0002625460
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e36c

Акустический анализатор для определения размеров и электрокинетического потенциала несферических наноразмерных частиц в жидких средах

Использование: для определения размеров и электрокинетического потенциала несферических наноразмерных частиц в жидких средах. Сущность изобретения заключается в том, что акустический анализатор содержит вычислительный блок и измерительную ячейку, в которой установлены акустический измеритель,...
Тип: Изобретение
Номер охранного документа: 0002626214
Дата охранного документа: 24.07.2017
+ добавить свой РИД