×
27.04.2019
219.017.3e00

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФЕКТОВ В ИЗДЕЛИИ МЕТОДОМ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-диагностическим технологиям. Способ включает нагрев изделия, его последующее охлаждение, измерение температуры изделия и определение темпа охлаждения для каждой элементарной площадки поверхности изделия. Охлаждение осуществляют рабочей средой, в качестве которой используют смесь газа и жидкости, измеряют расход жидкости, а наличие дефекта выявляют по отклонению от единицы отношения ΔV, определяемого для каждой элементарной площадки поверхности изделия. Технический результат - изобретение позволяет повысить точность определения дефектов в изделии и расширить функциональные возможности. 3 з.п. ф-лы, 2 ил.

Изобретение относится к контрольно-диагностическим технологиям, в частности к способам определения дефектов в изделии методом активного теплового неразрушающего контроля, и может найти применение в машиностроении, авиадвигателестроении и других областях техники при проверке характеристик и параметров изделия.

Известен способ определения внутренних дефектов в изделии методом активного теплового неразрушающего контроля, включающий нагрев изделия, его охлаждение, пропускание через его каналы рабочей среды с переменным расходом и с температурой, неравной средней температуре нагрева изделия, измерение поля температур во время пропускания рабочей среды через каналы, определение производной от темпа изменения температуры по расходу рабочей среды и сравнение полученных данных с эталонными данными, при этом по результатам сравнения делают вывод о пригодности изделия (см. патент RU №2219531, Кл. G 01 N 25/00, опубл. 20.12.2003).

Недостаток известного способа - низкая достоверность определения дефектов в изделии в связи с тем, что рассчитываемая по результатам эксперимента производная от темпа изменения температуры по расходу рабочей среды в значительной степени зависит от параметров потока, протекающего через внутренние каналы изделия и в меньшей степени от теплофизических параметров изделия. Кроме этого, способ имеет ограниченное применение, так как пригоден только для изделий со сквозными каналами, и кроме этого, не позволяет количественно оценить наличие дефектов и определить их координату в изделии.

Технический результат заявленного способа - повышение точности определения дефектов в изделии и расширение функциональных возможностей.

Указанный технический результат достигается тем, что в способе определения дефектов в изделии методом теплового неразрушающего контроля, включающем нагрев изделия, его последующее охлаждение, измерение температуры изделия и определение темпа охлаждения для каждой элементарной площадки поверхности изделия, согласно изобретению охлаждение осуществляют рабочей средой, в качестве которой используют смесь газа и жидкости, измеряют расход жидкости, а наличие дефекта выявляют по отклонению от единицы отношения ΔV, рассчитываемого для каждой элементарной площадки поверхности изделия по формуле:

где:

Gi=GvС;

Gv - расход жидкости для исследуемого изделия;

С - удельная теплота фазового перехода жидкости в газ;

х и y - текущие координаты элементарной площадки поверхности изделия, для которой производят расчет;

mi(x, y) - темп охлаждения, рассчитанный для каждой элементарной площадки поверхности изделия с координатами (х, y) для исследуемого изделия;

Gе=GтС;

Gт - расход жидкости для эталонного изделия;

me(x, y) - темп охлаждения, рассчитанный для каждой элементарной площадки поверхности изделия с координатами (х, y) для эталонного изделия.

Рабочую среду можно закручивать и охлаждение осуществлять закрученной рабочей средой, что позволяет равномерно распределить капли жидкости в газе и интенсифицировать отбор тепла от изделия на фазовый переход капель жидкости в газ.

Для упрощения операции закрутки рабочую среду можно закручивать шнеком.

Для повышения достоверности результатов измерение температуры изделия можно осуществлять неконтактным методом.

На фиг.1 схематично изображена установка для реализации способа;

на фиг.2 - распределение параметра ΔV по проекциям лопатки турбины со стороны спинки и со стороны корыта.

Реализация способа рассмотрена на примере выявления дефектов внутренних охлаждаемых каналов лопатки газотурбинного двигателя.

Установка содержит ресивер 1, соединенный трубопроводом с компрессором 2. Ресивер 1 по выходу соединен трубопроводом 3 с исследуемым изделием охлаждаемой лопаткой 4 турбины газотурбинного двигателя. В трубопроводе 3 расположены электромагнитный клапан 5, эжекторное устройство 6 для осуществления впрыска и распыления жидкости, например воды или дистиллированной воды, содержащее мерный бачок для жидкости, устройство 7 с мерным бачком для жидкости для закручивания двухфазного потока рабочей среды - смеси воды и газа, например воздуха, содержащее шнек, заключенный в корпус. На платформе 8 закреплена лопатка 4. Напротив лопатки 4 установлен тепловизор 9, с помощью которого осуществляют измерение температуры лопатки 4 неконтактным методом. Над лопаткой 4 расположено устройство для ее нагрева, например, содержащее промышленный фен 10 и защитную насадку 11, служащую для равномерного распределения подогретого воздуха и имеющую возможность перемещения (отвода) относительно лопатки 4 (на фиг.1 изображена защитная накладка в отведенном от лопатки 4 положении, т.е. после проведения нагрева лопатки 4). Устройство для нагрева лопатки через трубопровод 12 соединено с компрессором 13. Для управления работой установки и обработки получаемых данных используют компьютер 14. Датчик давления 15 используют для оценки текущего давления. Для измерения температуры газа в ресивере 1 используют датчики температуры (на чертеже не показаны).

Способ реализуется следующим образом.

Ресивер 1 объемом 50 литров заполняют воздухом температурой t0, равной в данном случае температуре окружающей среды, до давления 8 атмосфер. Определяют координаты каждой элементарной площадки с помощью компьютерной программы по расположению лопатки в поле зрения тепловизора 9. Лопатку 4 накрывают защитной насадкой 11 и нагревают воздухом, подаваемым от компрессора 13 через промышленный фен 10. Время нагрева устанавливается экспериментально и составляет для данного примера 110 секунд для нагрева лопатки 4 до средней по поверхности температуры 300°С. После проведения нагрева защитную насадку 11 отводят от лопатки 4, после чего включают тепловизор 9 для измерения температуры лопатки 4. В процессе остывания результаты измерений, проводимых с помощью тепловизора 9, передаются на компьютер 14, который в соответствии с программой производит вычисление температуры лопатки 4 в каждой элементарной площадке поверхности (пикселе). По достижению средней температуры 270-280°С открывают клапан 5, и происходит истечение воздуха из ресивера 1. В процессе истечения воздуха из мерного бачка объемом 0,1 л эжекторного устройства 6, заполненного дистиллированной водой на 1/3, осуществляется поступление воды в поток воздуха. Двухфазная смесь потока проходит через устройство 7, в котором поток закручивается, и попадает во внутренние каналы лопатки 4. Под воздействием центробежных сил капли воды попадают на стенки, а воздух и образовавшийся после испарения воды пар перемещаются к выходному сечению лопатки 4. При этом происходит интенсификация охлаждения изделия в связи с тем, что на фазовый переход воды в пар тратится значительное количество энергии. Расход воздуха и необходимый расход впрыснутой в поток воздуха воды рассчитывают, исходя из условия затрат энергии на фазовый переход капель воды в пар, не менее чем в 10 раз больших по сравнению с затратами энергии на охлаждение воздухом, протекающим у стенки лопатки. Расход жидкости определяют по количеству залитой в мерный бачок жидкости и времени испытания (эксперимента). Расход воздуха определяют по известной величине объема ресивера 1 и показаниям датчика давления 15. Для представленного примера, расход воздуха составляет 30 грамм в секунду, а расход воды, впрыснутой через эжекторное устройство 6 за время испытания 10 сек, составляет 3 грамма в секунду. В процессе охлаждения лопатки 4 определяют температуры ti0 и ti для каждой элементарной площадки тепловизором 9. Для данной установки используют тепловизор Российского производства «Иртис-200М». Фиксируют время τ0 охлаждения в начальный момент охлаждения и время τi в конце охлаждения с помощью компьютерной программы. После проведения указанных выше операций поворачивают лопатку 4 на 180°С и повторяют все операции для второй поверхности лопатки 4, например спинки лопатки, если в первом этапе исследования проводили для корыта лопатки 4.

По окончании испытаний выполняют обработку результатов: определяют по известной формуле для каждой элементарной площадки поверхности изделия темп изменения охлаждения

где:

ti - текущее значение температуры в i-той точке;

ti0 - начальная температура в i-той точке;

t0 - температура газа в ресивере;

τi0 - интервал времени охлаждения между начальной температурой ti и температурой ti0;

m - темп охлаждения 1/сек.

Темп охлаждения m определяют логарифмированием уравнения (1)

И рассчитывают распределение функции Vi(х, y) для исследуемой детали по формуле:

где mi(x, y) - темп охлаждения, рассчитанный для каждой элементарной площадки поверхности изделия с координатами (х, y) для исследуемого изделия;

Gi=GvС;

Gv - расход жидкости для исследуемого изделия (кг/сек);

С - удельная теплота фазового перехода жидкости в газ (C=const для конкретной жидкости - табличная величина) (Ккал/кг);

х и y - текущие координаты, элементарной площадки поверхности изделия, для которой производят расчет.

Испытание эталонных лопаток делают предварительно. По результатам рассчитывают распределение функции Ve(x, y) для эталонной лопатки по формуле:

Ve(x, y)=me(x, y)/Ge

где:

Ge=GтC;

Gт - расход жидкости для эталонной лопатки;

С - удельная теплота фазового перехода жидкости в газ;

me(x, y) - темп охлаждения, рассчитанный для каждой элементарной площадки поверхности изделия с координатами (х, y) для эталонного изделия;

х и y - текущие координаты элементарной площадки поверхности лопатки, для которой производят расчет.

Текущие координаты х и y для исследуемой лопатки и эталонной лопатки, а также условия экспериментов для эталона и исследуемого изделия идентичные.

Наличие дефекта определяется сравнением функций Vi(х, y) и Ve(х, y), а именно сравнением величины отношения ΔV с единицей.

Вычисляют величину ΔV=Vi/Ve, т.е.

Результаты обработки представляются в виде цифровых файлов распределений по поверхности детали отношения ΔV, а также в графическом виде. С целью наглядного представления на изображении (см. фиг.2) представлены распределения указанного числа ΔV в тонах черного и светло серого-цветов. На фиг.2 представлена теплограмма лопатки 4 (распределения по поверхности лопатки числа ΔV с обеих сторон - спинки и корыта). Зоны, имеющие черную и светло-серую окраску считаются дефектными. В указанных дефектных зонах распределение числа ΔV значимо (<0,25 черный цвет; от 0,25 до 0,75 светло-серый цвет)отличается от единицы в меньшую сторону. Указанный результат объясняется тем обстоятельством, что в данных зонах имеется различие в теплофизических параметрах по сравнению с эталоном, определяемых темпом охлаждения.

Реализация способа рассмотрена на примере определения дефектов у лопатки турбины, имеющей сквозные каналы для ее охлаждения, т.е. на примере выявления дефектов у детали, имеющей сложную форму. В связи с этим установка содержит устройство 7 для закручивания потока рабочей среды. В случае если деталь имеет несложную форму без внутренних каналов и полостей, например пластина, операции способа аналогичны вышеприведенным, за исключением того, что охлаждение осуществляют не путем подачи рабочей среды во внутреннюю полость или каналы, а путем обдувки наружных поверхностей детали. Для деталей неложной формы, например пластин, устройство 7 в составе установки не используется, т.е. охлаждение осуществляют незакрученным потоком. При выборе в качестве рабочего тела иного, чем воздух, газа (например, кислород) и иной, чем вода, жидкости (например, спирт) операции способа также аналогичны.

243800000006.tiftifdrawing62гдеG=GC,G-расходжидкостидляисследуемогоизделия;С-удельнаятеплотафазовогопереходажидкостивгаз;хиy-текущиекоординатыэлементарнойплощадкиповерхностиизделия,длякоторойпроизводятрасчет;m(х,y)-темпохлаждения,рассчитанныйдлякаждойэлементарнойплощадкиповерхностиизделияскоординатами(х,y)дляисследуемогоизделия;G=GC,G-расходжидкостидляэталонногоизделия;m(х,y)-темпохлаждения,рассчитанныйдлякаждойэлементарнойплощадкиповерхностиизделияскоординатами(х,y)дляэталонногоизделия.1.Способопределениядефектоввизделииметодомтепловогонеразрушающегоконтроля,включающийнагревизделия,егопоследующееохлаждение,измерениетемпературыизделияиопределениетемпаохлаждениядлякаждойэлементарнойплощадкиповерхностиизделия,отличающийсятем,чтоохлаждениеосуществляютрабочейсредой,вкачествекоторойиспользуютсмесьгазаижидкости,измеряютрасходжидкости,аналичиедефектавыявляютпоотклонениюотединицыотношенияΔV,рассчитываемогодлякаждойэлементарнойплощадкиповерхностиизделия,поформуле12.Способопределенияпоп.1,отличающийсятем,чторабочуюсредузакручиваютиохлаждениеосуществляютзакрученнойрабочейсредой.23.Способпоп.2,отличающийсятем,чторабочуюсредузакручиваютшнеком.34.Способполюбомуизпп.1-3,отличающийсятем,чтоизмерениетемпературыизделияосуществляютнеконтактнымметодом.4
Источник поступления информации: Роспатент

Показаны записи 1-10 из 86.
20.02.2019
№219.016.bcc0

Способ изготовления щеточного уплотнения

Изобретение относится к уплотнительной технике, в частности к способам изготовления щеточных уплотнений, и может быть использовано в машиностроении, авиадвигателестроении и других областях техники. Способ изготовления щеточного уплотнения, включающий намотку материала щетины на оправку из двух...
Тип: Изобретение
Номер охранного документа: 0002289742
Дата охранного документа: 20.12.2006
20.02.2019
№219.016.bcd7

Способ изготовления многослойного изделия из полимерных композиционных материалов

Изобретение относится к технологии изготовления многослойных изделий, в частности к способам изготовления многослойного изделия из полимерных композиционных материалов, и может быть использовано в машиностроении, энергетике, авиационной промышленности и других областях техники. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002285613
Дата охранного документа: 20.10.2006
20.02.2019
№219.016.bee6

Способ регулирования сопла с управляемым вектором тяги авиационного газотурбинного двигателя

Изобретение относится к технологиям регулирования авиационных газотурбинных двигателей (ГТД), в частности к способам регулирования сопла с управляемым вектором тяги. Такие сопла, как правило, оснащены приводным кольцом, управляющим сверхзвуковыми створками сопла, и гидроприводами управления со...
Тип: Изобретение
Номер охранного документа: 0002312244
Дата охранного документа: 10.12.2007
20.02.2019
№219.016.c081

Воздушно-реактивный двигатель

Воздушно-реактивный двигатель содержит турбокомпрессорную часть с компрессором, камерой сгорания и турбиной, размещенную перед выходным соплом камеру, имеющую, по меньшей мере, одно окно и заслонки, установленные с возможностью перемещения относительно окна с образованием канала, сообщенного с...
Тип: Изобретение
Номер охранного документа: 0002305200
Дата охранного документа: 27.08.2007
11.03.2019
№219.016.d675

Способ суфлирования масляной полости опоры ротора газотурбинного двигателя

Изобретение относится к смазке опор ротора газотурбинного двигателя, в частности к способам суфлирования масляных полостей опор ротора газотурбинных двигателей, и может найти применение в авиадвигателестроении, машиностроении и других областях техники. В способе суфлирования масляной полости...
Тип: Изобретение
Номер охранного документа: 0002267625
Дата охранного документа: 10.01.2006
11.03.2019
№219.016.d681

Способ монтажа двигателя летательного аппарата

Изобретение относится к авиационной технике и может быть использовано для монтажа авиационных двигателей на летательных аппаратах. Способ монтажа двигателя 5 летательного аппарата включает расстыковку фюзеляжа на носовую 4 и хвостовую 3 части. При этом до регулировки положения оси двигателя...
Тип: Изобретение
Номер охранного документа: 0002286922
Дата охранного документа: 10.11.2006
11.03.2019
№219.016.d70e

Абсорбционный способ осушки и охлаждения продуктов сгорания углеводородных топлив

Изобретение относится к теплоэнергетике и может быть использовано в процессах утилизации теплоты продуктов сгорания углеводородных топлив. Абсорбционный способ осушки и охлаждения дымовых газов включает абсорбцию водяного пара из дымовых газов охлажденным раствором соли металла в воде,...
Тип: Изобретение
Номер охранного документа: 0002290254
Дата охранного документа: 27.12.2006
11.03.2019
№219.016.d802

Осевой компрессор газотурбинного двигателя

Изобретение относится к осевым компрессорам газотурбинных двигателей, в частности к защите компрессора газотурбинного двигателя от резонансных напряжений, и может быть использовано в авиадвигателестроении, энергетике и других областях техники, в которых используются газотурбинные двигатели....
Тип: Изобретение
Номер охранного документа: 0002342566
Дата охранного документа: 27.12.2008
11.03.2019
№219.016.d804

Межроторная опора газотурбинного двигателя

Изобретение относится к газотурбинным двигателям, в частности к опорам двухроторных газотурбинных двигателей, и может быть использовано в авиадвигателестроении и других областях техники, где используют газотурбинные двигатели. Межроторная опора газотурбинного двигателя содержит вал, ротор...
Тип: Изобретение
Номер охранного документа: 0002342548
Дата охранного документа: 27.12.2008
11.03.2019
№219.016.d8be

Способ управления подачей топлива в форсажную камеру газотурбинного двигателя

Изобретение относится к системам автоматического регулирования авиационных газотурбинных двигателей (ГТД), в частности к способам управления подачей топлива в форсажную камеру ГТД, и может найти применение в авиадвигателестроении. Способ управления подачей топлива в форсажную камеру...
Тип: Изобретение
Номер охранного документа: 0002315883
Дата охранного документа: 27.01.2008
Показаны записи 1-10 из 40.
10.11.2013
№216.012.7ce4

Способ изготовления щеточного уплотнения роторов

Изобретение может быть использовано в процессах изготовления щеточных уплотнений методами пайки с помощью электронного луча. Кольцевое основание и кольцевые опорные пластины собирают в кольцевую оправку, на которую наматывают проволоку и прижимают ее к оправке прижимными кольцевыми пластинами....
Тип: Изобретение
Номер охранного документа: 0002497645
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a174

Способ изготовления сварной тонкостенной конической обечайки с продольными гофрами

Изобретение относится к области сварочного производства и может быть использовано в процессах изготовления методами сварки тонкостенных обечаек с элементами жесткости в виде продольных гофр, используемых, например, в качестве теплового экрана сопла ГТД. Способ заключается в том, что производят...
Тип: Изобретение
Номер охранного документа: 0002507047
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afab

Способ изготовления сварных тонкостенных конических обечаек с ребрами жесткости

Способ предназначен для изготовления тонкостенных конических обечаек с ребрами жесткости методом сварки. Производят формирование сегментов обечайки. Отгибают продольные кромки сегментов для получения ребер жесткости, размещают сегменты на съемных опорных пластинах, установленных на основании...
Тип: Изобретение
Номер охранного документа: 0002510686
Дата охранного документа: 10.04.2014
10.06.2014
№216.012.ceca

Щеточное уплотнение роторов, способ и устройство для его изготовления

Группа изобретений относится к уплотнительной технике. Щеточное уплотнение роторов выполнено в виде прижимной щеки и последовательно состыкованных с ней элементов - кольцевой проволочной щетки и опорной щеки. Устройство снабжено технологическим кольцом. Прижимная щека выполнена с торцевым...
Тип: Изобретение
Номер охранного документа: 0002518709
Дата охранного документа: 10.06.2014
10.06.2016
№216.015.49b4

Высокотемпературное теплозащитное покрытие

Изобретение относится к областям порошковой металлургии, в частности к неорганическим покрытиям из многослойных композиционных материалов, и может быть использовано в машиностроении для получения высокотемпературного теплозащитного покрытия (ТЗП) методом газотермического напыления, например...
Тип: Изобретение
Номер охранного документа: 0002586376
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7ba2

Композиция для изготовления выплавляемых моделей

Изобретение относится к литейному производству и может быть использовано для литья лопаток и других деталей ГТД сложной конфигурации. Композиция для изготовления выплавляемых моделей содержит, мас.%: твердый углеводород, и/или воск - 0,1-80, и/или полимер с температурой плавления до 300°C -...
Тип: Изобретение
Номер охранного документа: 0002600468
Дата охранного документа: 20.10.2016
20.02.2019
№219.016.c081

Воздушно-реактивный двигатель

Воздушно-реактивный двигатель содержит турбокомпрессорную часть с компрессором, камерой сгорания и турбиной, размещенную перед выходным соплом камеру, имеющую, по меньшей мере, одно окно и заслонки, установленные с возможностью перемещения относительно окна с образованием канала, сообщенного с...
Тип: Изобретение
Номер охранного документа: 0002305200
Дата охранного документа: 27.08.2007
11.03.2019
№219.016.d93e

Сплав на никелевой основе для литья монокристаллических лопаток турбины газотурбинного двигателя

Изобретение относится к металлургии, в частности к производству литейных жаропрочных коррозионно-стойких сплавов на никелевой основе, предназначенных для литья монокристаллических лопаток турбин газотурбинных двигателей методом направленной кристаллизации, и может быть использовано в наземных...
Тип: Изобретение
Номер охранного документа: 0002354733
Дата охранного документа: 10.05.2009
22.04.2019
№219.017.365f

Способ изготовления керамических оболочковых форм для точного литья металлов по выплавляемым моделям

Изобретение относится к литейному производству и может быть использовано при оценке качества связующего, используемого при изготовлении керамических оболочковых форм. Для приготовления связующего используют гидролизат этилсиликата, у которого значения средневесовых молекулярных масс находятся в...
Тип: Изобретение
Номер охранного документа: 0002296645
Дата охранного документа: 10.04.2007
22.04.2019
№219.017.3671

Способ определения суммарной пропускной способности внутренних сквозных каналов в изделии

Изобретение относится к контрольно-диагностическим технологиям. Способ включает заполнение газом ресивера и продувку каналов изделия газом из ресивера через трубопровод, при этом ресивер заполняют газом до давления, обеспечивающего критический перепад между давлением в ресивере и давлением...
Тип: Изобретение
Номер охранного документа: 0002303778
Дата охранного документа: 27.07.2007
+ добавить свой РИД