×
08.04.2019
219.016.fe47

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ С ИМЕЮЩИМИ ОДНУ СТЕПЕНЬ СВОБОДЫ СОЛНЕЧНЫМИ БАТАРЕЯМИ

Вид РИД

Изобретение

№ охранного документа
0002684241
Дата охранного документа
04.04.2019
Аннотация: Изобретение относится к управлению ориентацией космического аппарата (КА) и установленных на нём солнечных батарей (СБ) с осью вращения (Y), перпендикулярной продольной оси (X) КА. По высоте орбиты определяют диапазон витков, когда угол () между направлением (S) на Солнце и плоскостью (4) орбиты КА (1) превышает значение, при котором длительность теневой части витка равна времени отвода тепла с заданного участка (3) поверхности КА. К начальному витку диапазона разворачивают КА на угол () от перпендикуляра (S) к плоскости (4) при условии, что угол между S и S – острый. При этом поддерживают угол< 180° - - arctan (), где - удаленность участка (3) от оси Y; - длина СБ (2), а угол между S и осью Y - менее 90°. При прохождении терминатора оси Х и Y ориентируют так, чтобы СБ затеняла участок (3). В поддерживаемой ориентации КА (в т.ч. относительно орбитальной скорости ) воздействующий на КА внешний возмущающий момент обеспечивают минимальным. Технический результат состоит в обеспечении с помощью СБ требуемого режима затенения участков поверхности КА. 7 ил.

Изобретение относится к области космической техники и может быть использовано при управлении движением космических аппаратов (КА).

КА снабжены солнечными батареями (СБ), которые вырабатывают электроэнергию для обеспечения функционирования КА. При реализации полетных операций КА задействуется бортовая аппаратура, элементы которой при работе нагреваются. Выделяемое тепло используется для термостатирования КА, а его избыток сбрасывается в окружающее КА пространство через радиаторы-теплоизлучатели, размещаемые, как правило, с разных сторон корпуса КА. При этом сброс тепла наиболее эффективен на теневых участках околоземной орбиты, в течение которых вся поверхность радиатора-теплоизлучателя не освещена прямым солнечным излучением, и менее эффективен на освещенных Солнцем участках орбиты, когда сброс тепла происходит, в основном, с тех участков радиатора-теплоизлучателя, которые затенены элементами конструкции КА.

Известен способ управления орбитальным КА (Фаворский О.Н., Каданер Я.С. Вопросы теплообмена в космосе. Москва, «Высшая школа», 1972; Елисеев А.С. Техника космических полетов. Москва, «Машиностроение», 1983), включающий выполнение орбитального полета КА вокруг планеты, при котором сброс/отвод тепла с радиатора-теплоизлучателя осуществляется в моменты нахождения КА в тени планеты, а также в моменты световой части витка с тех участков радиатора-теплоизлучателя, которые при текущей ориентации КА затенены от прямого солнечного света конструктивными элементами КА.

В данном способе сброс тепла радиатором-теплоизлучателем осуществляется за счет естественного охлаждения радиатора-теплоизлучателя в моменты его затенений планетой или конструкций КА. Недостаток данного способа заключается в том, что он, в общем случае, накладывает известные ограничения на возможность сброса тепла радиатором-теплоизлучателем на световой части орбиты вследствие возможного неполного затенения его конструкцией КА. Например, при нахождении КА на бестеневой (солнечной) орбите отсутствует периодическое затенение КА планетой (которое на низких околоземных орбитах может составлять до 40% продолжительности витка) и возможен случай, когда радиатор-теплоизлучатель будет освещен Солнцем на протяжении всего витка, или случай, когда реализуется только частичное затенение радиатора-теплоизлучателя конструкцией КА, продолжительность которого недостаточна для эффективного выполнения радиатором-теплоизлучателем своих функций.

Известен способ управления орбитальным КА (патент РФ 2536765 по заявке №2013106322/11, приоритет от 13.02.2013, МПК (2006.01): B64G 1/24, 1/44, 1/50), включающий выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ с направлением на Солнце, согласно которому строят орбитальную ориентацию КА, при которой плоскость вращения СБ параллельна плоскости орбиты КА и СБ расположена относительно плоскости орбиты со стороны Солнца; определяют максимальное значение угла между вектором скорости КА и перпендикуляром к поперечной оси вращения СБ, проходящим через поверхность радиатора-теплоизлучателя; определяют высоту орбиты КА и угол между направлением на Солнце и плоскостью орбиты КА; по данным высоте орбиты и углу определяют витки орбиты, на которых длительность освещенной части витка превышает разность периода обращения КА и необходимой длительности времени сброса тепла радиатором теплоизлучателем на витке; на таких витках орбиты при прохождении КА освещенной части витка поворачивают СБ вокруг поперечной оси вращения до пересечения прямой, проходящей через обращенную к Солнцу область поверхности радиатора-теплоизлучателя и направленной на Солнце, с СБ; поворачивают СБ вокруг продольной оси вращения до достижения углом между нормалью к рабочей поверхности СБ и направлением на Солнце минимального значения; данные повороты СБ выполняют в пределах расчетного интервала времени.

Данный способ обеспечивает создание условий для естественного охлаждения радиатора-теплоизлучателя путем его затенения СБ, имеющими две степени свободы, поэтому возможность применения данного способа ограничена тем, что он не может быть реализован на КА, снабженном СБ, имеющими одну степень свободы.

Известен способ управления орбитальным КА (Малоземов В.В. Тепловой режим космических аппаратов. Москва, «Машиностроение», 1980), принятый за прототип, включающий выполнение орбитального полета КА вокруг планеты, разворот СБ в рабочее положение на Солнце и выполнение разворота КА до затенения радиатора-теплоизлучателя конструкцией КА. В данном способе сброс тепла радиатором-теплоизлучателем осуществляется за счет его естественного охлаждения при затенении конструкцией КА в специально построенной ориентации КА.

Данный способ имеет существенный недостаток - для создания условий для естественного охлаждения радиатора-теплоизлучателя за счет затенения его конструкцией КА по данному способу необходимо непрерывно выполнять вышеупомянутый специальный разворот КА, что, с одной стороны, требует дополнительных энергетических затрат на его выполнение, а с другой стороны, выполнение вышеупомянутого специального разворота КА в общем случае может противоречить построению требуемой целевой ориентации КА - той ориентации, в которой должен находиться КА для решения его целевых задач. Таким образом, в процессе решения целевых задач КА, сопровождаемых построением требуемой целевой ориентации КА, в общем случае не создаются специальные условия для естественного охлаждения радиатора-теплоизлучателя, что ухудшает эффективность его функционирования.

Задачей, на решение которой направлено настоящее изобретение, является обеспечение отвода тепла от задаваемых участков/зон поверхности КА, с которых необходимо обеспечить отвод тепла.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в расширении возможностей по обеспечению требуемого теплового режима функционирования КА, снабженного имеющими одну степень свободы СБ, путем отвода тепла от требуемых/задаваемых участков/зон поверхности КА за счет затенения данных участков поверхности КА вращающимися СБ КА.

Технический результат достигается тем, что в способе управления космическим аппаратом с имеющими одну степень свободы солнечными батареями, включающем построение и поддержание в орбитальной системе координат ориентации космического аппарата, оси вращения солнечных батарей которого перпендикулярны его продольной строительной оси, и поворот солнечной батареи до достижения минимального значения угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце, дополнительно определяют высоту орбиты космического аппарата, по определенной высоте орбиты определяют значение β* угла между направлением на Солнце и плоскостью орбиты космического аппарата, при котором длительность теневой части витка орбиты равна необходимой длительности времени отвода тепла с участка поверхности космического аппарата, с которого необходимо обеспечить отвод тепла, на витке, определяют диапазон витков орбиты, на которых текущее значение угла между направлением на Солнце и плоскостью орбиты космического аппарата β превышает β*, контролируют угол между перпендикуляром к плоскости орбиты, составляющим острый угол с направлением на Солнце, с одной стороны и проекцией на плоскость местного горизонта направления от упомянутого участка поверхности космического аппарата к солнечной батарее, спроецированного на продольную строительную ось космического аппарата, с другой стороны, к начальному витку указанного диапазона витков выполняют поворот космического аппарата до достижения контролируемым углом значения при поддержании значения угла между упомянутым перпендикуляром к плоскости орбиты и осью вращения солнечной батареи <90° и при значениях угла между радиус-вектором космического аппарата и продольной строительной осью космического аппарата и угла между радиус-вектором космического аппарата и осью вращения солнечной батареи, определяемых из условия пересечения прямой, направленной на Солнце и проходящей через упомянутый участок поверхности космического аппарата, с солнечной батареей в по крайней мере один из двух последовательных моментов прохождения космического аппарата через линию терминатора,

где L - длина солнечной батареи, измеряемая от проекции на ось вращения солнечной батареи упомянутого участка поверхности космического аппарата;

D - удаленность оси вращения солнечной батареи от упомянутого участка поверхности космического аппарата,

после чего в течение указанного диапазона витков поддерживают описанную ориентацию космического аппарата в орбитальной системе координат, при этом значения угла между линией проекции продольной строительной оси космического аппарата на плоскость местного горизонта и вектором скорости космического аппарата и углов между радиус-вектором космического аппарата с одной стороны и продольной строительной осью космического аппарата и осью вращения солнечной батареи с другой стороны выбирают из условия, что в поддерживаемой ориентации космического аппарата воздействующий на космический аппарат внешний возмущающий момент за виток достигает минимального значения.

Суть предлагаемого изобретения поясняется на фиг. 1÷7.

На фиг. 1 представлена схема, поясняющая определение угла между направлением на Солнце и плоскостью орбиты КА, при котором длительность теневой части витка орбиты равна необходимой длительности времени сброса тепла с участка поверхности космического аппарата, с которого необходимо обеспечить отвод тепла, на витке.

На фиг. 2÷5 представлены схемы взаимного положения КА, СБ, плоскости орбиты и Солнца для различных случаев расположении Солнца относительно плоскости орбиты.

На фиг. 6 и 7 представлены схемы взаимного положения КА, СБ и Солнца, иллюстрирующие определение значений углов между радиус-вектором КА и продольной осью КА и осью вращения СБ.

На фигурах введены обозначения:

S - направление на Солнце;

Sp - проекция направления на Солнце на плоскость орбиты;

O - центр планеты, вокруг которой обращается КА;

β - угол между направлением на Солнце и плоскостью орбиты КА;

F1, F2 - положения КА на момент начала и конца теневого участка витка;

FS - положение КА на момент середины теневого участка витка;

Z - поверхность планеты;

1 - корпус КА;

2 - СБ;

3 - участок поверхности КА, с которого необходимо обеспечить отвод тепла;

4 - плоскость орбиты КА;

5 - зона затенения от СБ;

Norb - нормаль к плоскости орбиты КА;

V - вектор скорости КА;

Sn - перпендикуляр к плоскости орбиты, составляющий острый угол с направлением на Солнце;

X - продольная строительная ось КА;

Y - ось вращения СБ;

Р - вектор проекции на продольную строительную ось КА направления, начинающегося на участке поверхности КА, с которого необходимо обеспечить отвод тепла, и оканчивающегося на СБ;

L - длина СБ, измеряемая от проекции на ось вращения СБ участка поверхности КА, с которого необходимо обеспечить отвод тепла;

D - удаленность оси вращения СБ от участка поверхности КА, с которого необходимо обеспечить отвод тепла;

α - угол между перпендикуляром к плоскости орбиты, составляющим острый угол с направлением на Солнце, и проекцией на плоскость местного горизонта вектора, составляющего проекцию на продольную строительную ось КА направления от участка поверхности КА, с которого необходимо обеспечить отвод тепла, на СБ;

ϕ - острый угол между линией проекции продольной строительной оси КА на плоскость местного горизонта и вектором скорости КА;

R - направление радиус-вектора КА;

S* - проекция направления на Солнце на плоскость рисунка;

ρ - угол между радиус-вектором КА и продольной строительной осью КА;

η - угол между радиус-вектором КА и осью вращения СБ.

Поясним предложенные в способе действия.

На КА СБ установлены с одной степенью свободы: панель СБ поворачивается вокруг оси вращения СБ. При этом рассматриваем систему управления положением СБ, в которой ось вращения СБ перпендикулярна продольной строительной оси КА.

Принимаем, что СБ выполнены непрозрачными: СБ задерживают поступающий на них поток солнечной энергии и могут затенять собой от Солнца внешнюю поверхность КА.

Принимаем, что СБ имеют вытянутую прямоугольную форму, причем длину СБ измеряют вдоль оси вращения СБ (вдоль продольной оси СБ).

В предложенном способе выполняют орбитальный полет КА вокруг планеты по околокруговой орбите и поддерживают штатную ориентацию СБ на Солнце, для чего выполняют поворот СБ до достижения минимального значения угла между нормалью к рабочей поверхности СБ и направлением на Солнце.

Определяют высоту орбиты КА H.

По определенной высоте орбиты определяют значение β* угла между направлением на Солнце и плоскостью орбиты КА, при котором длительность теневой части витка орбиты равна необходимой длительности времени сброса/отвода тепла с задаваемого участка поверхности КА, с которого необходимо обеспечить отвод тепла, на витке.

Определение угла β* может осуществляться, например, с использованием следующих соотношений:

Т=kP,

λ=kπ,

где k - коэффициент, характеризующий необходимую длительность времени сброса/отвода тепла с участка поверхности КА, с которого необходимо обеспечить отвод тепла, на каждом витке и равный отношению необходимой длительности времени сброса тепла на витке к длительности витка;

θ - угловой полураствор видимого с КА диска планеты;

λ - угловой полураствор теневой части витка орбиты, измеренный из центра планеты;

Re - радиус планеты;

P - период обращения КА;

Т - длительность теневой части витка.

Определяют диапазон витков орбиты, на которых текущее значение угла между направлением на Солнце и плоскостью орбиты КА β превышает найденное значение β*:

Здесь и далее принимаем, что угол β всегда положителен (не меняет знак при проходе Солнца через плоскость орбиты КА).

При выполнении условия (1) тень на витке или отсутствует совсем (т.е. длительность теневой части витка равна нулю), или ее продолжительность меньше необходимой длительности времени сброса/отвода тепла с участка поверхности КА, с которого необходимо обеспечить отвод тепла, на витке. При этом бестеневая орбита реализуется, когда текущее значение угла между направлением на Солнце и плоскостью орбиты КА β начинает превышать угловой полураствор видимого с КА диска планеты θ:

β>θ.

Контролируют угол α между перпендикуляром к плоскости орбиты, составляющим острый угол с направлением на Солнце, с одной стороны и проекцией на плоскость местного горизонта направления от упомянутого участка поверхности КА к СБ, спроецированного на продольную строительную ось КА, с другой стороны.

К начальному витку найденного диапазона витков выполняют поворот КА до достижения контролируемым углом α (а именно, углом, образованным перпендикуляром к плоскости орбиты, составляющим острый угол с направлением на Солнце, с одной стороны и проекцией на плоскость местного горизонта вектора, составляющего проекцию на продольную строительную ось КА направления от участка поверхности КА, с которого необходимо обеспечить отвод тепла, к СБ, с другой стороны) значения

где L - длина СБ, измеряемая от проекции на ось вращения СБ участка поверхности КА, с которого необходимо обеспечить отвод тепла;

D - удаленность оси вращения СБ от участка поверхности КА, с которого необходимо обеспечить отвод тепла (например, расстояние от оси вращения СБ до крайней точки участка поверхности КА, с которого необходимо обеспечить отвод тепла),

при поддержании значения угла между перпендикуляром к плоскости орбиты, составляющим острый угол с направлением на Солнце, и осью вращения СБ <90° и при значениях угла между радиус-вектором КА и продольной строительной осью КА и угла между радиус-вектором КА и осью вращения СБ, определяемых из условия пересечения прямой, направленной на Солнце и проходящей через участок поверхности КА, с которого необходимо обеспечить отвод тепла, с СБ в по крайней мере один из двух последовательных моментов прохождения КА через линию терминатора.

Соотношения (2), (3) иллюстрируются схемой, представленной на фиг. 2, и могут быть получены на основе следующих соотношений:

На фиг. 2 как X* и Y* обозначены положения соответственно продольной строительной оси КА и оси вращения СБ, получаемые в случае поворота КА до достижения указанным контролируемым углом значения, равного α*.

На фиг. 2 и 3 представлены возможные схемы взаимного положения КА, СБ, плоскости орбиты и Солнца для расположения Солнца со стороны нормали к плоскости к орбиты (фиг. 2) и с противоположной стороны (фиг. 3) на момент прохождения КА через линию утреннего терминатора - при переходе из теневой в освещенную зону трассы (подспутниковых точек).

На фиг. 4 и 5 представлены возможные схемы взаимного положения КА, СБ, плоскости орбиты и Солнца для расположения Солнца со стороны нормали к плоскости к орбиты (фиг. 5) и с противоположной стороны (фиг. 4) на момент прохождения КА через линию вечернего терминатора - при переходе из освещенной в теневую зону трассы (подспутниковых точек).

Схемы, представленные на фиг. 6 и 7 иллюстрируют определение значений угла ρ между радиус-вектором КА и продольной осью КА и угла η между радиус-вектором КА и осью вращения СБ согласно описанному правилу. На представленных схемах положение КА взято на момент прохождения КА через линию терминатора, что соответствует тому, что в данный момент вектор направления на Солнце перпендикулярен радиус-вектору КА.

Рассматриваем исходную орбитальную ориентацию КА, при которой значения углов ρ и η равны 90°. На представленных схемах показано, что в исходной ориентации КА участок поверхности КА, с которого необходимо обеспечить отвод тепла, затенен от Солнца поверхностью СБ.

На фиг. 6 показано, что при повороте КА вокруг продольной строительной оси КА на, например, показанный на рисунке угол Δρ=15° затенение указанного участка поверхности КА сохраняется (положение СБ, оси вращения СБ и указанного участка поверхности КА, с которого необходимо обеспечить отвод тепла, после поворота КА показаны точечными линиями).

На фиг. 7 показано, что при повороте КА вокруг строительной оси, параллельной оси вращения СБ, на, например, показанный на рисунке угол Δη=15° затенение указанного участка поверхности КА сохраняется (положение корпуса КА, продольной строительной оси КА и указанного участка поверхности КА, с которого необходимо обеспечить отвод тепла, после поворота КА показаны точечными линиями).

Таким образом, для задаваемого участка поверхности КА, с которого необходимо обеспечить отвод тепла, существуют комбинации значений угла между радиус-вектором КА и продольной осью КА и угла между радиус-вектором КА и осью вращения СБ, при которых прямая, направленная на Солнце и проходящая через данный участок поверхности КА, пересекается с СБ (т.е. при которых рассматриваемый участок поверхности КА, с которого необходимо обеспечить отвод тепла, затенен от Солнца поверхностью СБ) в по крайней мере один из двух последовательных моментов прохождения КА через линию терминатора.

В течение указанного диапазона витков поддерживают описанную ориентацию КА в орбитальной системе координат, при этом значения угла между линией проекции продольной строительной оси КА на плоскость местного горизонта и вектором скорости КА и углов между радиус-вектором КА с одной стороны и соответственно продольной строительной осью КА и осью вращения СБ с другой стороны выбирают из условия, что в поддерживаемой ориентации КА воздействующий на КА внешний возмущающий момент за виток достигает минимального значения (а именно, минимальное на множестве значений, при которых выполняется условие (2)).

Для реализации штатного режима орбитального полета КА обычно используется некоторая штатная дежурная ориентация КА, поддержание которой обеспечивается, в частности, с использованием экономичного режима расхода рабочего тела (топлива) КА.

Например, можно рассмотреть КА, в системе управления движением и ориентацией которых в качестве основных исполнительных органов используются инерционные исполнительные органы - силовые гироскопы (СГ). В этом случае при выполнении разворотов и при поддержании ориентации КА происходит накопление кинетического момента (КМ) СГ и по достижении КМ заданных граничных значений выполняется операция «разгрузки» СГ - приведения КМ в допустимые пределы с помощью реактивных двигателей ориентации (ДО). При этом при выполнении разгрузки СГ требуется дополнительное рабочее тело (топливо) для работы ДО.

Для реализации полета таких КА, как правило, используются специальные режимы ориентации, обеспечивающие благоприятные условия для работы системы СГ - такие, чтобы максимально уменьшать эффект «насыщения» СГ и, тем самым, избегать или, по крайней мере, уменьшать необходимость их разгрузки (Бебенин Г.Г., Скребушевский Б.С., Соколов Г.А. Системы управления полетом космических аппаратов // М.: Машиностроение, 1978; Скребушевский Б.С. Управление полетом беспилотных космических аппаратов // М.: «Владмо», 2003). Одним из таких режимов ориентации является режим, при котором выполняют построение и поддержание в орбитальной системе координат ориентации КА, при которой суммарный внешний возмущающий момент - момент от воздействия на КА атмосферы и силы тяжести - за виток достигает минимального значения и обеспечивается минимальное накопление кинетического момента гиросистемы.

С другой стороны, режим поддержания в орбитальной системе координат ориентации КА, при которой суммарный внешний возмущающий момент - момент от воздействия на КА атмосферы и силы тяжести - за виток достигает минимального значения, является наиболее благоприятным (с точки зрения минимизации расхода ресурса рабочего тела) и для КА, в системе управления ориентацией которых в качестве исполнительных органов используются исключительно ДО.

Схемы, представленные на фиг. 2 и 4, показывают случай, когда в данной ориентации (при которой суммарный внешний возмущающий момент за виток достигает минимального значения на множестве значений, при которых выполняется условие (2)) острый угол ϕ между линией проекции продольной строительной оси КА на плоскость местного горизонта и вектором скорости КА откладывается от вектора V скорости КА в сторону к нормали Norb к плоскости орбиты КА. При этом согласно предлагаемому способу в случае, когда перпендикуляр Sn к плоскости орбиты, составляющий острый угол с направлением на Солнце, направлен по нормали Norb к плоскости орбиты КА, то данную ориентацию строят таким образом, что вектор Р проекции на продольную строительную ось КА направления, начинающегося на участке поверхности КА, с которого необходимо обеспечить отвод тепла, и оканчивающегося на СБ, направлен в сторону вектора V скорости КА (а именно, составляет с ним острый угол) (фиг. 2), а в случае, когда перпендикуляр Sn направлен против нормали Norb, то данную ориентацию строят таким образом, что вектор Р направлен в противоположную сторону от вектора V (а именно, составляет с ним тупой угол) (фиг. 4).

Схемы, представленные на фиг. 3 и 5, показывают случай, когда в данной ориентации (при которой суммарный внешний возмущающий момент за виток достигает минимального значения на множестве значений, при которых выполняется условие (2)) острый угол ϕ между линией проекции продольной строительной оси КА на плоскость местного горизонта и вектором скорости КА откладывается от вектора V скорости КА в противоположную сторону от нормали Norb к плоскости орбиты КА. При этом согласно предлагаемому способу в случае, когда перпендикуляр Sn к плоскости орбиты, составляющий острый угол с направлением на Солнце, направлен против нормали Norb к плоскости орбиты КА, то данную ориентацию строят таким образом, что вектор Р проекции на продольную строительную ось КА направления, начинающегося на участке поверхности КА, с которого необходимо обеспечить отвод тепла, и оканчивающегося на СБ, направлен в сторону вектора V скорости КА (а именно, составляет с ним острый угол) (фиг. 3), а в случае, когда перпендикуляр Sn направлен по нормали Norb, то данную ориентацию строят таким образом, что вектор Р направлен в противоположную сторону от вектора V (а именно, составляет с ним тупой угол) (фиг. 5).

В описанной построенной и поддерживаемой в орбитальной системе координат ориентации КА, параметры которой удовлетворяют сформулированному условию (2), в по крайней мере один из двух последовательных моментов прохождения КА через линию терминатора - а именно, в момент прохождения КА через линию утреннего терминатора (при переходе из теневой в освещенную зону) и/или линию вечернего терминатора (при переходе из освещенной в теневую зону) рассматриваемый участок поверхности КА, с которого необходимо обеспечить отвод тепла, будет затенен (закрыт) от Солнца поверхностью вращающейся СБ. Тем самым будут созданы условия для естественного охлаждения данного участка поверхности КА.

Случай, когда рассматриваемый участок поверхности КА затенен (закрыт) от Солнца поверхностью СБ в точках прохождения обоих терминаторов на витке реализуется при выполнении соотношения

или, с учетом (4),

При этом, в зависимости от реализованных значений угла между радиус-вектором КА и продольной осью КА и угла между радиус-вектором КА и осью вращения СБ, указанное затенение рассматриваемого участка поверхности КА поверхностью СБ обеспечивается в определяемой окрестности перед и после прохождения соответствующей точки утреннего и/или вечернего терминатора вплоть до возможности расширения указанных окрестностей на весь интервал между точками утреннего и вечернего терминаторов.

Отметим, что как правило на КА размещают несколько СБ. Например, СБ могут быть установлены парами, при этом в каждой паре продольные оси вращения СБ направлены в противоположные стороны. В этом случае действия предлагаемого способа применяют к разным всевозможным комбинациям СБ и задаваемых участков/зон поверхности КА, с которых необходимо обеспечить отвод тепла.

Опишем технический эффект предлагаемого изобретения.

Предлагаемое техническое решение обеспечивает расширение возможностей по обеспечению требуемого теплового режима функционирования КА, снабженного имеющими одну степень свободы СБ, - а именно, обеспечивает возможность отвода тепла от задаваемых участков/зон поверхности КА, с которых необходимо обеспечить отвод тепла (например, от радиаторов теплоизлучателей КА или от установленной на внешней поверхности КА аппаратуры, для эксплуатации которой требуется поддержание специального теплового режима), путем создания дополнительных условий для естественного охлаждения данных участков поверхности КА за счет их затенения вращающимися СБ КА при использовании ориентации КА с экономичным режимом расхода рабочего тела (топлива), который обеспечивается за счет минимизации воздействующего на КА внешнего возмущающего момента за виток.

Достижение технического результата обеспечивается за счет определения предложенных углов и высоты орбиты, по которым предложенным способом определяют витки орбиты, на которых нарушается условие достижения требуемой длительности естественного охлаждения задаваемых участков поверхности КА в тени планеты, и предложенным образом определяется диапазон витков, в пределах которого выполняются предложенные повороты КА.

Отметим, что указанный эффект предлагаемого технического решения наиболее полно проявляется и востребован, в первую очередь, на орбитах с малой продолжительностью теневой части витка (на данных орбитах естественное охлаждение элементов КА за счет нахождения КА в тени планеты ограничено): на околокруговых бестеневых (непрерывно освещенных Солнцем в течение всего витка) и близких к ним орбитах КА.

Выполненная оценка эффективности применения предлагаемого изобретения для КА типа орбитальных космических станций показывает, что при поддержании ориентации данного типа КА, в которой воздействующий на КА внешний возмущающий момент за виток достигает минимального значения, значения угла между линией проекции продольной строительной оси КА на плоскость местного горизонта и вектором скорости КА могут составлять единицы десятков градусов, а значения углов между радиус-вектором КА с одной стороны и продольной строительной осью КА и осью вращения СБ с другой стороны могут составлять единицы градусов и использование предлагаемого изобретения качественно повысит эффективность функционирования как размещенных на космической станции радиаторов-теплоизлучателей, так и различной устанавливаемой на внешней поверхности космической станции научной и/или служебной аппаратуры, для эксплуатации которой требуется поддержание специального теплового режима.

Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено по известным технологиям.


СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ С ИМЕЮЩИМИ ОДНУ СТЕПЕНЬ СВОБОДЫ СОЛНЕЧНЫМИ БАТАРЕЯМИ
СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ С ИМЕЮЩИМИ ОДНУ СТЕПЕНЬ СВОБОДЫ СОЛНЕЧНЫМИ БАТАРЕЯМИ
СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ С ИМЕЮЩИМИ ОДНУ СТЕПЕНЬ СВОБОДЫ СОЛНЕЧНЫМИ БАТАРЕЯМИ
СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ С ИМЕЮЩИМИ ОДНУ СТЕПЕНЬ СВОБОДЫ СОЛНЕЧНЫМИ БАТАРЕЯМИ
СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ С ИМЕЮЩИМИ ОДНУ СТЕПЕНЬ СВОБОДЫ СОЛНЕЧНЫМИ БАТАРЕЯМИ
СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ С ИМЕЮЩИМИ ОДНУ СТЕПЕНЬ СВОБОДЫ СОЛНЕЧНЫМИ БАТАРЕЯМИ
СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ С ИМЕЮЩИМИ ОДНУ СТЕПЕНЬ СВОБОДЫ СОЛНЕЧНЫМИ БАТАРЕЯМИ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 92.
17.10.2019
№219.017.d6a6

Виброизолятор

Изобретение относится к машиностроению. Виброизолятор содержит упругие элементы, контактирующие с ограничительной втулкой. Упругие элементы выполнены из теплопроводного материала с высоким коэффициентом теплопроводности. На торце ограничительной втулки выполнен фланец. Средний упругий элемент,...
Тип: Изобретение
Номер охранного документа: 0002702926
Дата охранного документа: 14.10.2019
18.10.2019
№219.017.d7af

Устройство защиты от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой от перегрузки по току. Технический результат заключается в расширении функциональных возможностей за счет уменьшения времени срабатывания защиты при перегрузке по току,...
Тип: Изобретение
Номер охранного документа: 0002703331
Дата охранного документа: 16.10.2019
22.11.2019
№219.017.e4b1

Устройство стягивания периферийного стыковочного механизма

Изобретение относится к космической технике, а более конкретно к стыковочным узлам. Устройство стягивания периферийного стыковочного механизма содержит барабан намотки тросов и электропривод, имеющий редуктор. Имеются пружины компенсации разности длин тросов при окончательном втягивании,...
Тип: Изобретение
Номер охранного документа: 0002706741
Дата охранного документа: 20.11.2019
22.11.2019
№219.017.e4bf

Устройство стягивания стыковочных агрегатов космических аппаратов

Изобретение относится к космической технике, в частности к стыковочным устройствам. Устройство стягивания стыковочных агрегатов космических аппаратов содержит механизмы защелок, штанги, а также привод. Штоки в штангах шарнирно связаны со стыковочным кольцом. Устройство имеет барабаны намотки...
Тип: Изобретение
Номер охранного документа: 0002706640
Дата охранного документа: 19.11.2019
22.11.2019
№219.017.e4db

Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников

Группа изобретений относится к способу и устройству определения координат космического аппарата по сигналам навигационных спутников. Для определения координат передают радиосигналы от навигационных спутников с известными параметрами орбиты в известные моменты времени, отслеживают их приемными...
Тип: Изобретение
Номер охранного документа: 0002706636
Дата охранного документа: 19.11.2019
01.12.2019
№219.017.e8c2

Устройство для перекрытия канала

Заявленное устройство для перекрытия канала относится к машиностроительной гидравлике и может быть использовано в системах обеспечения теплового режима изделий ракетной-космической техники, а также в других областях техники. Техническим результатом, достигаемым с помощью заявленного...
Тип: Изобретение
Номер охранного документа: 0002707789
Дата охранного документа: 29.11.2019
24.12.2019
№219.017.f156

Способ определения орбиты космического аппарата с аппаратурой для съемки подстилающей поверхности

Изобретение относится к аэрокосмической технике. Способ включает измерение исходных значений параметров орбиты и прогнозирование по ним значений времени и координат местоположений КА. В течение заданного интервала времени выполняют съемку с КА подстилающей поверхности при различных значениях...
Тип: Изобретение
Номер охранного документа: 0002709978
Дата охранного документа: 23.12.2019
24.12.2019
№219.017.f168

Способ управления движением космического объекта при перелёте с орбиты земли на орбиту луны

Изобретение относится к межпланетным перелётам, например при доставке космических объектов (КО) на станцию, расположенную на высокой окололунной орбите. Способ включает перелет от Земли к Луне по траектории с пролетом Луны на заданной высоте, где выполняют первый тормозной импульс для перевода...
Тип: Изобретение
Номер охранного документа: 0002709951
Дата охранного документа: 23.12.2019
21.01.2020
№220.017.f7cc

Способ герметизации дефекта в оболочке пилотируемого космического аппарата

Изобретение может быть использовано для герметизации сквозного дефекта в оболочке пилотируемого космического аппарата. Формирование пробки производят путем пропитки безусадочной герметизирующей композицией центральной части салфетки из прореженного тканого материала с высокой...
Тип: Изобретение
Номер охранного документа: 0002711388
Дата охранного документа: 17.01.2020
24.01.2020
№220.017.f8ec

Способ контроля эффективности солнечной батареи космического аппарата

Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает измерение тока СБ при задаваемых параметрах орбиты и углового положения СБ и КА и сравнение значений тока СБ, измеренных на текущем и предшествующих этапах полета. К моменту выхода КА на...
Тип: Изобретение
Номер охранного документа: 0002711823
Дата охранного документа: 22.01.2020
Показаны записи 41-50 из 95.
10.05.2018
№218.016.479b

Способ контроля движения наблюдаемого с космического аппарата ледника

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для контроля движения ледника относительно наземного объекта, столкновение с которым с вероятностью приведет к катастрофическим последствиям. Сущность: выполняют съемку с...
Тип: Изобретение
Номер охранного документа: 0002650779
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4ef1

Способ контроля действий находящегося на борту космического аппарата космонавта

Изобретение относится к управлению космическим аппаратом (КА) с участием космонавта (К). Способ включает определение параметров местоположения К, их сравнение с задаваемыми параметрами и формирование команд К. При этом измеряют параметры текущего положения и ориентации головы К относительно...
Тип: Изобретение
Номер охранного документа: 0002652721
Дата охранного документа: 28.04.2018
18.05.2018
№218.016.50e7

Способ контроля готовности космонавта к выполнению полетных операций

Изобретение относится к методам обучения экипажей космических аппаратов. Способ включает воспроизведение заданий одному или нескольким космонавтам (К), регистрацию параметров, характеризующих выполнение К заданий, сравнение полученных данных с задаваемыми значениями и определение уровня...
Тип: Изобретение
Номер охранного документа: 0002653219
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.526f

Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает определение угла между нормалью к рабочей поверхности СБ и нормалью к плоскости орбиты КА при условии минимального затенения СБ конструкцией КА. Измеряют также угол между направлением на Солнце и...
Тип: Изобретение
Номер охранного документа: 0002653891
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.52b6

Способ определения производительности установленной на космическом аппарате солнечной батареи с положительной выходной мощностью тыльной поверхности

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает измерение вектора направления на Солнце в инерциальной системе координат, угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также изменения данного угла за виток. При некотором...
Тип: Изобретение
Номер охранного документа: 0002653890
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.584e

Способ оценки состояния солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к системам электроснабжения космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает ориентацию СБ на Солнце, измерение на последовательных витках орбиты угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также тока СБ в моменты...
Тип: Изобретение
Номер охранного документа: 0002655089
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5b10

Способ контроля производительности солнечной батареи космического аппарата на бестеневых орбитах

Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает ориентацию нормали к рабочей поверхности СБ на Солнце (под углом α) и измерение тока СБ. На последовательных витках орбиты измеряют угол β между направлением на Солнце и плоскостью орбиты КА...
Тип: Изобретение
Номер охранного документа: 0002655561
Дата охранного документа: 28.05.2018
26.07.2018
№218.016.7570

Способ определения плотности атмосферы на высоте полета космического аппарата

Изобретение относится к методам и средствам наблюдения свободно движущегося по орбите космического аппарата (КА), ориентацию которого поддерживают с помощью гиродинов. При этом измеряют параметры движения центра масс и параметры вращательного движения КА. По параметрам ориентации КА и положению...
Тип: Изобретение
Номер охранного документа: 0002662371
Дата охранного документа: 25.07.2018
26.07.2018
№218.016.75be

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Изобретение относится к системе энергопитания космического аппарата (КА) с солнечными батареями (СБ). Способ включает измерение тока и параметров углового положения СБ. При измерении тока СБ определяют расстояние от Земли до Солнца и поворачивают нормаль к рабочей поверхности СБ до угла Q+ƒ с...
Тип: Изобретение
Номер охранного документа: 0002662372
Дата охранного документа: 25.07.2018
29.08.2018
№218.016.8138

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Изобретение относится к космической технике. Способ контроля системы энергопитания снабженного солнечными батареями (СБ) космического аппарата (КА) включает измерение тока СБ и параметров углового положения СБ, определение параметров эффективности СБ и контроль системы энергопитания по...
Тип: Изобретение
Номер охранного документа: 0002665145
Дата охранного документа: 28.08.2018
+ добавить свой РИД