×
04.04.2019
219.016.fc62

СПОСОБ ПОЛУЧЕНИЯ ХЕМОСЕНСОРНЫХ ПЛЕНОК

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получению структурированных хемосенсорных пленок на основе наночастиц кремнезема, модифицированного органическими растворителями, который включает получение золя сферических частиц кремнезема, модификацию полученного золя органическим красителем, нанесение модифицированного золя на подложку, отличающийся тем, что в качестве органического красителя используют флуоресцеин, который вводят при температуре 60-80°С в созревший золь сферических частиц кремнезема в смеси вода-этанол с pH 1,5-2 в соотношении флуоресцеин/золь не более 1/100, затем в полученный окрашенный золь вводят поверхностно-активное вещество (ПАВ) цетилтриметиламмония хлорид при соотношении ПАВ/золь = 0,3-0,8. Полученная пленка является сенсором на NH. 2 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к нанотехнологиям, в частности к получению структурированных хемосенсорных пленок на основе наночастиц кремнезема, модифицированного органическими красителями.

Уровень техники

Создание химических и биологических сенсорных пленочных материалов на основе структурированной матрицы из наночастиц кремнезема является актуальной задачей. Ее решение связано с модификацией поверхности частиц кремнезема молекулами органических красителей - хромофоров, функционально активных в отношении химических и биологических веществ, в результате присоединения которых к люминофору изменяется оптический отклик от сенсорной пленки.

В настоящее время определились два метода модификации наночастиц кремнезема. По первому методу краситель вводится в систему на стадии образования золя, физически адсорбируется на поверхности растущих частиц и захватывается в процессе их роста. Далее из этого золя приготовляется сенсорная пленка.

Отмечаются недостатки этого метода, связанные с недоступностью части молекул инкапсулированного красителя для определяемого вещества и вымыванием красителя, оказавшегося на поверхности частиц, в процессе аналитических операций. Kron J., Schottner G., Deichmann K.-J. // Thin Solid Films. 2001. V.392. P.236-242 /1/; Oh E.O., Gupta R.K., Whang C.M. // J. of Sol-Gel Sci. and Technology. 2003. V.28. P.279-288 /2/; Sokolov I., Kievsky Y.Y., Kaszpurenko J.M. // Small. 2007. V.3. №..3. P.419-423 /3/; Prosposito P., Casalboni M., Matteis F., Glasbeek Q.M., Van Veldhoven E., Zhang H. // J. of Sol-Gel Sci. and Technology. 2003. V.26. P.909-913 /4/; De Matteis F., Prosposito P., Sarcinelli F., Casalboni M., Pizzoferrato R., Furlani A., Russo M.V., Vannucci A., Varasi M. // J. of Non-Crystalline Solids. 1999. V.245. P.15-19 /5/.

Второй метод предлагает введение в золь кремнезема молекулы красителя, предварительно связанной с триалкоксисилильной группой Затем эти красители - «предшественники» (краситель, ковалентно связанный с кремнеземной основой), могут быть конденсированы и гидролизованы на поверхности наночастиц золя кремнезема. Frantz R., Carbonneau С., Granier M., Durand J.O., Lanneau G.F., Corrie R.J. // Tetrahedron Lett. 2002. V.43. P.6569-6572 /6/; Collinson M.M. // Trends in analytical chemistry. 2002.V.21.№1. Р.30-38 /7/. Chen X., Dai Y., Li Zh., Zhang Zh., Wang X. // Fresenius J. Anal. Chem. 2001. V.370. P.1048-1051 /8/.

Пленки, полученные из таких золей, не имеют недостатков, характерных для первого метода, но возникают новые проблемы с препятствием конденсации «предшественника» на поверхности частиц золя-матрицы, склонностью «предшественника» образовывать собственный золь, а также нарушением монодисперсности золя и сферической формы частиц, что не позволяет затем создавать структурно упорядоченные ансамбли из гибридных наночастиц. В связи с изложенным разработку оптимального метода получения сенсорных пленок еще нельзя считать завершенной.

Задачей изобретения является разработка способа модификации частиц кремнезема органическим красителем и получения стойких к механическим воздействиям и вымыванию модифицирующего красителя, структурированных сенсорных пленок на основе частиц кремнезема.

Раскрытие изобретения

Сущность изобретения состоит в том, что в известном способе получения на твердой подложке хемосенсорных пленок из золя наночастиц кремнезема, модифицированного органическим красителем, органический краситель вводят при температуре 60-80°С в созревший золь кремнезема с pH 1,5-2, затем в окрашенный золь вводят поверхностно-активное вещество (ПАВ) при соотношении ПАВ/золь 0,3-0,8, перед нанесением на подложку в зависимости от необходимой толщины пленки золь разбавляют этанолом в соотношении золь/ этанол от 2:1 до 1:4.

При этом

- в качестве органического красителя может быть использован, например, флуоресцеин в соотношении краситель/золь не более 1:100,

- время созревания золя составляет 2-4 часа при температуре 60-80°С;

- при разбавлении модифицированного золя этанолом в соотношении золь/этанол от 2:1 до 1:4. толщина пленки меняется примерно от 500 до 50 нм. Для модификации поверхности кремнезема красителями и последующего получения сенсорных пленок впервые использованы уже созревшие золи наночастиц кремнезема. В таких золях при pH в интервале 1,5-2 (область инверсии заряда частиц кремнезема) на поверхности частиц находятся нейтральные силанольные группы, что создает возможность присоединения к поверхности частиц молекул красителя с помощью водородных связей. Чтобы избежать их агрегирования при низких значениях pH применено катионное поверхностно-активное вещество (ПАВ) - цетилтриметиламмония хлорид (ЦТМА'Cl)-[СН3(СН2)15N(СН3)3Сl], который относится к группе флокулянтов, обеспечивающих мостиковые связи между частицами.

Кроме того, наличие ЦТМА'Cl в золе при высыхании пленки обеспечивает прочность пленки и ее стойкость к механическим воздействиям.

Но при избыточном (соотношении ПАВ/золь более 0,8) для флокуляции количестве ПАВ на поверхности частиц кремнезема происходит формирование вначале первого конденсированного слоя, а затем второго слоя ПАВ вследствие вандерваальсовского притяжения между углеводородными цепочками В результате заряженные группы второго слоя ориентируются наружу, а частицы разделяются, и происходит пептизация.

При уменьшении концентрации ЦТМА'Cl (соотношение соотношении ПАВ/золь менее 0,3) следует ожидать проявления флокуляции.

Таким образом, заявляемая совокупность признаков позволяет исключить такие нежелательные процессы, как инкапсулирование красителя, его вымывание из пленки, склонность «предшественника» образовывать собственный золь, что препятствует конденсации «предшественника» на поверхности частиц золя-матрицы, а также нарушение монодисперсности золя и сферической формы частиц и, благодаря этому, получать структурированные сенсорные пленки на основе модифицированных монодисперсных сферических частиц кремнезема, размером 5-8 нм, стойкие к механическим воздействиям и вымыванию модифицирующего красителя.

Пример осуществления способа

При приготовлении золя кремнезема использованы мольные отношения реагентов: ТЭОС:вода, подкисленная HCl до pH 1,5-2:этанол = 1:6:5. Для созревания золя кремнезема смесь реагентов, выдерживали в течение трех часов при температуре 70°С. В качестве красителя использовали флуоресцеин в концентрации 1 мг на 100 мг золя. Перемешивали золь до достижения его равномерного окрашивания. Затем в окрашенный золь вводили ЦTMA'Cl с мольным отношением ЦТМА'Cl:SiO2 около 0,5.

Используя различные коэффициенты разбавления готового золя этиловым спиртом, можно изменять толщину сенсорной пленки. При изменении объемных отношений золь:спирт от 2:1 до 1:4 толщина пленки меняется примерно от 500 до 50 нм.

Полученный окрашенный золь кремнезема наносили на поверхность стекла погружением подложки в золь или покрытием сверху каплей золя, растекающейся по поверхности в виде ровного тонкого слоя и затем высыхающего за 20-30 минут с образованием прозрачной равномерно окрашенной пленки.

Спектры пропускания и фотолюминесценции (ФЛ) пленок с флуоресцеином, полученные при комнатной температуре с разрешением 2 нм, приведены на фиг.1 и 2. На фиг.1 приведены спектры пропускания исходной пленки с флуоресцеином (1) и после различной обработки: в растворе аммиака (2); в растворе аммиака с последующей промывкой в воде (3). Кривая (4) показывает выход ФЛ в зависимости от длины волны для исходной пленки.

Спектры возбуждения ФЛ приведены на фиг.2, где: пленки с флуоресцеином до обработки (1), после обработки в растворе аммиака (2); обработки в растворе аммиака и последующей промывки в воде (3). Спектр (4) показывает ФЛ такой же пленки, подвергавшейся только обработке в воде.

При изучении сенсорной активности готовые пленки погружались в водные растворы аммиака (концентрации 1 мг/мл и 20 мг/мл) на 1 минуту. Спектры пропускания и ФЛ пленок изменяются одинаковым образом независимо от концентрации аммиака в этом диапазоне (фиг.1 и 2, кривая 2). Это может свидетельствовать о быстром и полном насыщении структуры ионами NH4+. После такой обработки поглощение усиливается примерно в 2,5 раза и доминирующей является полоса 497 нм со слабым плечом в области 467 нм. Эти изменения в спектре дают ощутимый глазом розоватый оттенок при слабо-желтом цвете образцов. После обработки интенсивность ФЛ ослабляется также примерно в 2,5 раза, тогда как максимум полосы смещается к 525 нм. Эффект появления розоватой окраски зафиксирован визуально и после обработки пленок газообразным аммиаком, что свидетельствует о фиксации аммиака. Последующая промывка пленок в воде сопровождается слабыми изменениями в спектрах ФЛ (фиг.2, кривая 3), что указывает на прочную фиксацию NH4+ красителями из водных растворов. Таким образом, вторичное использование пленок с данным красителем в отношении NH4+ оказывается невозможным. Между тем, окраска пленок после обработки в газообразном аммиаке оказалась обратимой - розоватый оттенок теряется в течение 10-15 минут с полным восстановлением первичной окраски пленки.

Источники информации

1. Kron J., Schottner G., Deichmann K.-J. // Thin Solid Films. 2001. V.392. P.236-242.

2. Oh E.G., Gupta R.K., Whang C.M. // J. of Sol-Gel Sci. and Technology. 2003. V.28. P.279-288.

3. Sokolov I., Kievsky Y.Y., Kaszpurenko J.M. // Small. 2007. V.3. №..3. P.419-423.

4. Prosposito P., Casalboni M., Matteis F., Glasbeek Q.M., Van Veldhoven E., Zhang H. // J. of Sol-Gel Sci. and Technology. 2003. V.26. P.909-913.

5. De Matteis F., Prosposito P., Sarcinelli F., Casalboni M., Pizzoferrato R., Furlani A., Russo M.V., Vannucci A., Varasi M. // J. of Non-Crystalline Solids. 1999. V.245. P.15-19.

6. Frantz R., Carbonneau C., Granier M., Durand J.O., Lanneau G.F., Corrie R.J. // Tetrahedron Lett. 2002. V.43. P.6569-6572.

7. Collinson M.M. // Trends in analytical chemistry. 2002. V.21. №1. Р.30-38.

8. Chen X., Dai Y., Li Zh., Zhang Zh., Wang X. // Fresenius J. Anal. Chem. 2001. V.370. P.1048-1051.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 15.
10.09.2013
№216.012.67d7

Способ активации дрожжей

Способ активации дрожжей предусматривает введение в суспензию хлебопекарных дрожжей раствора нанозоля частиц аморфного кремнезема с размером частиц 6-7 нм, который перед использованием разбавляют дистиллированной водой или физиологическим раствором NaCl в воде с концентрацией NaCl 0,9% до...
Тип: Изобретение
Номер охранного документа: 0002492230
Дата охранного документа: 10.09.2013
20.07.2014
№216.012.e11d

Способ получения минеральной кремниевой воды

Изобретение относится к способу получения минеральной кремниевой воды (МКВ), предназначенной для применения в медицинских целях. Способ получения включает гидролиз тетраэтоксисилана в смеси ТЭОС : этанол : вода, подкисленная HCl. Нанозоль получают при температуре 55-65°С в течение 1,5 часов с...
Тип: Изобретение
Номер охранного документа: 0002523415
Дата охранного документа: 20.07.2014
10.03.2016
№216.014.c0b4

Монокристаллический материал srmgf и способ его получения

Изобретение относится к области получения сегнетоэлектрических монокристаллов фторидов, применяемых в нелинейной оптике. Получен монокристаллический материал фторида SrMgF, обладающий способностью к преобразованию лазерного излучения в ВУФ/УФ области спектра от длины волны 0,122 мкм до 11,8...
Тип: Изобретение
Номер охранного документа: 0002576638
Дата охранного документа: 10.03.2016
19.01.2018
№218.016.0419

Кристаллический материал для регистрации рентгеновского излучения

Изобретение относится к технологии получения кристаллического материала, являющегося твердым раствором общей формулы ВаSr(ВО)F, где 0≤x≤1 и 0≤y≤0,5, пригодного для регистрации рентгеновского излучения. Кристаллический материал ВаSr(ВО)F имеет центры окраски, образованные под воздействием...
Тип: Изобретение
Номер охранного документа: 0002630511
Дата охранного документа: 11.09.2017
15.03.2019
№219.016.e07b

Способ получения композиционных оптических хемосенсорных пленок

Изобретение относится к нанотехнологиям, в частности к получению оптических структурированных хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, которые могут найти применение при экспрессном анализе вредных примесей. Готовую пленку-матрицу с размером монодисперсных...
Тип: Изобретение
Номер охранного документа: 0002399584
Дата охранного документа: 20.09.2010
15.03.2019
№219.016.e12d

Способ получения модифицированных оптических хемосенсорных пленок на основе кремнезема

Изобретение относится к нанотехнологиям, в частности к способу получения оптических структурированных хемосенсорных пленок на основе частиц кремнезема размером 5-8 нм с модифицированной поверхностью. Способ включает получение нанозоля сферических частиц кремнезема размером 5-8 нм из смеси:...
Тип: Изобретение
Номер охранного документа: 0002433084
Дата охранного документа: 10.11.2011
20.03.2019
№219.016.e509

Нелинейный монокристалл литиевых халькогенидов

Изобретение относится к кристаллам литиевых халькогенидов, предназначенных для применения в нелинейной оптике. Нелинейный монокристалл литиевых халькогенидов характеризуется формулой LiGaInSe, где х принимает любое значение больше 0,25 и меньше 0,75, имеет пространственную группу mm2...
Тип: Изобретение
Номер охранного документа: 0002344208
Дата охранного документа: 20.01.2009
29.03.2019
№219.016.f4d4

Способ получения наночастиц кремнезема

Изобретение относится к получению наночастиц кремнезема. Способ включает получение нанозоля кремнезема путем гидролиза тетраэтоксисилана (ТЭОС) при соотношении ТЭОС : этанол : вода, подкисленная HCl до рН 1,5-2, = 1:5:6 и созревание нанозоля. Созревание нанозоля проводят в течение двух часов...
Тип: Изобретение
Номер охранного документа: 0002426692
Дата охранного документа: 20.08.2011
17.04.2019
№219.017.15c1

Способ получения композиционной оптической хемосенсорной пленки

Изобретение относится к нанотехнологиям, в частности к получению водостойких и термостойких структурированных хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, которые могут найти применение при экспрессном анализе вредных примесей в газообразных и жидких отходах. Способ...
Тип: Изобретение
Номер охранного документа: 0002399585
Дата охранного документа: 20.09.2010
09.05.2019
№219.017.4c63

Способ упрочнения фотонно-кристаллических пленок на основе монодисперсных сферических частиц кремнезема

Изобретение может быть использовано в химической и электронной промышленности. Фотонно-кристаллические пленки (ФК) на основе монодисперсных сферических частиц кремнезема упрочняют погружением готовых пленок в спиртовый нанозоль кремнезема на короткое время и затем сушат. Нанозоль готовят...
Тип: Изобретение
Номер охранного документа: 0002399586
Дата охранного документа: 20.09.2010
+ добавить свой РИД