×
21.03.2019
219.016.eb18

Результат интеллектуальной деятельности: Способ изготовления смеси железокобальтовых карбоксилатов

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу изготовления смеси железокобальтовых карбоксилатов, в частности к универсальным добавкам, повышающим способность полиолефинов к окислению или гидролитической диссоциации под воздействием внешних факторов окружающей среды с последующим биоразложением, и может быть использовано для создания материалов и изделий из них, способных подвергаться ускоренному биоразложению в природных условиях. Способ включает получение смеси карбоксилатов натрия с кислотным числом 1,0÷1,3 мг КОН/г путем омыления жирных кислот с кислотным числом 110 мг КОН/г, выделенных из соапстока светлых растительных масел, гидрокарбонатом или карбонатом натрия при непрерывном перемешивании в температурном диапазоне 200÷220°C, последующее получение карбоксилата железа путем введения в карбоксилат натрия неорганического соединения железа, при этом процесс получения карбоксилата железа проводится при температуре 150÷190°C до степени конверсии карбоксилата натрия 95%. В качестве неорганического соединения железа используется оксид или гидроксид железа (II, III), мольное соотношение карбоксилата натрия и оксида или гидроксида железа (II, III) равно 3:1 при использовании трехвалентного железа или 2:1 при использовании двухвалентного железа. Далее после получения карбоксилата железа в реакционную смесь вводятся соединения кобальта, в качестве которых используется оксид или гидроксид кобальта (II, III), и проводится реакция взаимодействия карбоксилатов натрия и соединений кобальта с получением карбоксилата кобальта при температуре 150÷190°C в течение 5÷10 минут, мольное соотношение карбоксилата натрия и оксида или гидроксида кобальта (II, III) равно 3:1 при использовании трехвалентного кобальта или 2:1 при использовании двухвалентного кобальта. Готовый продукт в виде агломерата является смесью карбоксилатов железа и кобальта при их массовом соотношении 95:5 мас.% соответственно. Технический результат - повышение выхода целевого продукта вследствие увеличения степени конверсии реагирующих веществ, обеспечение универсальной добавки-прооксиданта при использовании смеси железокобальтовых карбоксилатов, повышение эффективности инициаторов деструктивных процессов при производстве оксибиоразлагающих добавок, снижение негативного воздействия на окружающую среду, повышение технико-экономических показателей производства, утилизация отходов масложировой отрасли – соапстока. 2 табл., 12 пр.

Изобретение относится к технологиям создания оксобиоразлагаемых полимерных материалов, в частности к универсальным добавкам, повышающим способность полиолефинов к окислению или гидролитической диссоциации под воздействием внешних факторов окружающей среды с последующим биоразложением, и может быть использовано для создания материалов и изделий из них, способных подвергаться ускоренному биоразложению в природных условиях.

Известно, что для получения оксобиоразлагающих добавок используют металлы переменной валентности, при этом соли кобальта и железа являются наиболее употребляемыми, ввиду их выраженной способности к окислению полимерных материалов [Biodegradation of polyethylene films with prooxidant additives, Marek Koutny, Jacques Lemaire, Anne-Marie Delort, Chemosphere, 64, - 2006, P. 1243-1252]. Однако, ввиду различной природы металлов - инициаторов деструкции - механизмы оксобиодеградации существенно отличаются. Катализатор деструкции, имеющий в составе карбоксилаты железа, способствует в большей мере биодеградации полимеров под воздействием влажности и температуры, так как подвергается гидролизу, а в случае применения карбоксилатов кобальта более преобладающей является фотодеструкция под воздействием ультрафиолетового излучения, это объясняется различием природы металла, проявляющемся в отличии стандартных восстановительных потенциалов: для Co3th /2th=1,92 V, для Fe3th / 2th=0,77 V [Investigating the role of metal oxidation state on the degradation behaviour of LDPE, P.K. Roy, P. Surekha, R. Raman, C. Rajagopal, Polymer Degradation and Stability, 94, - 2009, 1033-1039].

В работе [Comparison of the biodegradability of various polyethylene films containingpro - oxidant additives, Stéphane Fontanella, Sylvie Bonhomme, Marek Koutny, Lucie Husarova, Jean-Michel Brusson, Jean-Paul Courdavault, Silvio Pitteri, Guy Samuel, Gérard Pichon, Jacques Lemaire, Anne-Marie Delort, Polymer Degradation and Stability, 95, - 2010, P. 1011-1021] отмечено, что соединения кобальта не токсичны при низких концентрациях и могут быть использованы в качестве прооксиданта в полиэтиленовых пленках с ограниченными и контролируемыми концентрациями.

Известен способ изготовления термопластичных материалов [Патент RU 2396292 «Термопластичный материал с регулируемым полезным сроком службы, способ его изготовления и продукты из него»], характеризующийся хорошей перерабатываемостью и регулируемой долговечностью продуктов на основе таких термопластов, который включает смешение, по меньшей мере, одного стимулятора окисления, и, по меньшей мере, одного ингибитора окисления, с термопластом, при этом стимулятор разложения представляет собой растворимое в жире соединение металла, получаемое в результате создания условий для протекания реакции между солью металла и растворимым в жире органическим соединением в способе, в котором используют подходящий окислитель, причем конечный продукт обладает окислительной способностью по отношению к определенному восстановителю, которая превышает окислительную способность эталонного продукта, стимулятор разложения получают из хлорида трехвалентного железа в качестве соли металла, стеариновой кислоты в качестве органического соединения и перекиси водорода в качестве окислителя, стимулятор разложения промывают водным раствором перекиси водорода для удаления любых остатков не вступившей в реакцию соли металла, диспергируют в водном растворе перекиси водорода при 55÷70°C в течение от 1÷3 ч и высушивают, при этом упомянутое растворимое в жире органическое соединение добавляют в стехиометрическом избытке с кратностью 3.

Недостатками данного способа являются проведение процесса в стехиометрическом избытке, так как это приводит к значительным затратам на сырье, недостаточная степень конверсии, и как следствие - необходимость использования перекиси водорода, что усложняет производственный процесс и является фактором экологической опасности производства, а использование хлорида трехвалентного железа приводит к необходимости повышения коррозионной стойкости оборудования. В заявленном способе приводится ряд металлов, подходящих для использования в качестве инициаторов деструкции полимеров: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ga, Ge, As, Y, Zr, Nb, Ru и другие (наиболее предпочтительным металлом из которых является железо), однако, в нем не используются комбинации соединений, позволяющих повысить выход продукта.

Известен способ получения оксо-разлагающей добавки [Патент RU 2540273 «Оксо-разлагающая добавка к полиолефинам»], в котором используют комбинацию 2-этилгексаноата цинка и циркония, заключающийся в смешении измельченного на шаровой мельнице карбоната кальция с раствором соли или смеси солей в уайт-спирите до получения гомогенной пастообразной массы. Недостатком является проведение синтеза в среде органического растворителя, что требует дополнительной стадии отмывки конечного продукта, а также создает экологическую опасность при производстве.

Известен способ производства карбоксилатов металлов, включающий сплавление оксидов, гидрооксидов или солей (карбонатов, ацетатов) металла с кислотами при 320÷360°C. (Химическая энциклопедия, т. 4, Москва, Большая Российская энциклопедия, 1995, с. 669-670). Недостатком способа является проведение процесса при высокой температуре, что делает его энергозатратным.

Известен способ [Патент RU 2072982 «Способ получения маслорастворимой кобальтовой соли алифатической кислоты С7-С8»] получения маслорастворимой кобальтовой соли алифатической кислоты С7-С8 катализатора окисления, заключающийся в нагревании кобальтовой соли уксусной кислоты в среде алифатической кислоты С7-С8, в котором соль кобальта используют в виде ее водного раствора с концентрацией 0,50÷4,10 мас. % по кобальту, процесс проводят в ректификационной колонне непрерывного действия при температуре куба колонны 220÷270°C. Недостатком способа является проведение процесса в водной среде, что создает необходимость в дополнительной стадии удаления водной фракции.

В качестве прототипа взят способ получения карбоксилатов железа [Патент RU 2607207 «Способ получения карбоксилатов железа»], заключающийся в том, что в качестве жирнокислотного компонента используют смесь натриевых жирных кислот, выделенных из соапстока светлых растительных масел с кислотным числом 100÷120 мг KOH/г. Процесс омыления проводят гидрокарбонатом или карбонатом натрия при непрерывном перемешивании в температурном диапазоне 200÷220°C до получения смеси карбоксилатов натрия с кислотным числом 1,0 1,3 мг KOH/г. Далее происходит подача неорганической соли двух- или трехвалентного железа в мольном соотношении 2:1 или 3:1 в зависимости от валентности соединения железа. Полученную смесь нагревают при температуре 105÷160°C при непрерывном перемешивании до превращения карбоксилатов натрия в карбоксилат железа с кислотным числом до 1,0 мг KOH/г.

Недостатком данного метода является использование сернокислого семиводного железа, что влечет необходимость удаления избыточной влаги в процессе получения целевого продукта, кроме того, продуктами реакции являются коррозионно активные вещества - серная кислота и сероводород, а также образуются отходящие газы, что влечет необходимость установки очистного оборудования. При использовании же оксида или гидроксида железа наблюдается малый выход целевого продукта (обусловленный малой степенью конверсии карбоксилата натрия) - 95%.

Технической задачей изобретения является повышение степени конверсии карбоксилатов натрия, интенсификация технологического процесса, увеличение прооксидантной способности оксо-биоразлагающей добавки на основе смеси железокобальтовых карбоксилатов, минимизация негативного воздействия на окружающую среду.

Техническая задача изобретения достигается тем, что в способе изготовления смеси железокобальтовых карбоксилатов, включающем получение смеси карбоксилатов натрия с кислотным числом 1,0÷1,3 мг KOH/г путем омыления жирных кислот, в том числе полученных из соапстока светлых растительных масел, гидрокарбонатом или карбонатом натрия при непрерывном перемешивании в температурном диапазоне 200÷220°C и последующее получение карбоксилата железа при температуре 105÷160°C путем введения в карбоксилат натрия неорганического соединения железа, новым является то, что процесс получения карбоксилата железа проводится при температуре 150÷190°C до степени конверсии карбоксилата натрия 95%, при этом в качестве неорганического соединения железа используется оксид или гидроксид железа (II, III), мольное соотношение карбоксилата натрия и оксида или гидроксида железа (II, III) равно 3:1 при использовании трехвалентного железа или 2: 1 при использовании двухвалентного железа, далее после получения карбоксилата железа в реакционную смесь вводятся соединения кобальта, в качестве которых используется оксид или гидроксид кобальта (II, III) или его соли, и проводится реакция взаимодействия карбоксилатов натрия и соединений кобальта с получением карбоксилата кобальта при температуре 150÷190°C в течении 5÷10 минут, мольное соотношение карбоксилата натрия и оксида или гидроксида кобальта (II, III) равно 3:1 при использовании трехвалентного кобальта или 2:1 при использовании двухвалентного кобальта; готовый продукт в виде агломерата является смесью карбоксилатов железа и кобальта при их массовом соотношении 95:5 мас. % соответственно, а выход смеси железокобальтовых карбоксилатов составляет не менее 99,6%.

Технический результат изобретения заключается в повышении степени конверсии карбоксилатов натрия, интенсификации технологического процесса, увеличении прооксидантной способности оксо-биоразлагающей добавки на основе смеси железокобальтовых карбоксилатов за счет содержания карбоксилата кобальта, минимизации негативного воздействия на окружающую среду.

Использование оксида или гидроксида железа позволяет исключить стадию выпаривания влаги и провести процесс при более высокой температуре (150÷190°C), благодаря чему можно интенсифицировать химический процесс. Нижний предел температурного диапазона обусловлен температурой разложения соединения железа (150°C), верхний - температурой кипения жирных кислот (200÷220°C). Проведение синтеза при температуре выше 200°C способствует образованию производных жирных кислот, при температуре ниже 150°C происходит образование осадка соединения железа, что приводит к снижению выхода целевого продукта.

Предварительные исследования способности пленок к деструктивным процессам (таблица 1), содержащих оксобиоразлагающую добавку, отличающуюся различным содержанием карбоксилата кобальта, показали, что при содержании в добавке карбоксилата кобальта в количестве 5 мас. % наблюдается выраженное увеличение карбонильного индекса, рассчитанного через отношение зафиксированных с помощью ИК-спектрометрии пиков в области 1740÷1715 см-1, свидетельствующих об образовании кетонных связей, и в области 1470÷1465 см-1, свидетельствующих о наличии стандартных карбонильных связей в полиэтилене.

Таким образом, оптимальное содержание в оксобиоразлагающей добавке карбоксилата кобальта принято 5 мас. %, а содержание карбоксилата железа соответственно 95 мас. %.

В способе изготовления смеси железокобальтовых карбоксилатов используют:

- смесь жирных кислот, выделенных из соапстока светлых растительных масел ТУ 10-10-04-02-80-91 (число омыления - 228,3 мг KOH/г; эфирное число - 179,4 мг KOH/г; жирные кислоты - 35%, мас; диглецириды - 15%, мас; триглицериды - 45%, мас; фосфолипиды - 15%, мас; пальмитиновая кислота - 9,15%, мас; стеариновая кислота - 4,87%, мас; арахиновая кислота - 20,67%, мас; олеиновая кислота - 18,33%, мас; линолевая кислота - 44,0%, мас; и др.),

- Натрия гидроокись ГОСТ 4328-77

- Натрий двууглекислый ГОСТ 2156-76

- Оксид железа, ГОСТ 4173-77

- Железо (III) оксид ТУ 6-09-5346-87

- Кобальта гидроксид ТУ 2611-001-469133-78-2002.

- Кобальта оксид ГОСТ 4467-79

Способ изготовления смеси железокобальтовых карбоксилатов осуществляют следующим образом.

Смесь жирных кислот, в том числе выделенную из соапстока светлых растительных масел, загружают в реактор и подвергают омылению гидрокарбонатом или карбонатом натрия при непрерывном перемешивании в температурном диапазоне 200÷220°C до получения карбоксилата натрия с кислотным числом 1,0÷1,3 мг KOH/г, далее вводят в полученный карбоксилат натрия оксид или гидроксид железа (ПДП) и проводят процесс получения карбоксилата железа при температуре 150÷190°C до степени конверсии карбоксилата натрия 95%, далее вводят в полученную смесь карбоксилатов железа и натрия соединения кобальта и проводят процесс получения смеси железокобальтовых карбоксилатов при температуре 150÷190°C в течении 5÷10 минут с выходом продукта не менее 99,6%, готовый продукт получают в виде агломерата.

Способ поясняется следующими примерами.

Пример 1 (прототип)

В емкость V=l дм3, снабженный мешалкой и обогревом, загружают 400 г (1,41 моль) смесь жирных кислот, выделенных из соапстока светлых растительных масел, и нагревают до температуры кипения 220°C, лимитирующаяся температурой кипения смеси жирных кислот и разложением гидрокарбоната натрия. Затем включают мешалку и добавляют 118 г (1,41 моль) гидрокарбоната натрия, активно перемешивают, и поддерживают температуру на уровне, реакция проходит при температуре в течение 15 минут до достижения кислотного числа 1,0 мг KOH/г. Далее в полученную смесь вводят оксид железа (II) в мольном соотношении 2:1, в количестве 84 г (0,705 моль) при постоянном перемешивании, реакция проходит при температуре 110°C в течение 20 минут. Далее останавливают мешалку, полученную массу оставляют на 40 мин, для остывания, выгружают пастообразные карбоксилаты железа, затем удаляют сульфат натрия из целевого продукта, методом отстаивания. Контроль полноты превращения исходных веществ осуществляют по кислотному числу реакционной массы, данные анализа целевого продукта представлены в таблице 2.

Пример 2

В реактор V=5 дм3 загружают 1000 г (4,05 моль) смеси жирных кислот с кислотным числом 110 мг KOH/г, выделенных из соапстока светлых растительных масел, далее добавляют карбонат натрия в стехиометрическом соотношении и проводят процесс омыления жирных кислот с получением карбоксилата натрия при непрерывном перемешивании и температуре 200°C до получения карбоксилата натрия с кислотным числом 1,3 мг KOH/г, далее добавляют в полученный карбоксилат натрия 137,3 г (1,28 моль) оксида железа и проводят процесс получения карбоксилата железа при температуре 170°C до выхода - 95%, а далее вводят в полученную смесь карбоксилатов железа и натрия 7,33 г (0,06 моль) оксида кобальта и проводят реакцию взаимодействия оксида кобальта с карбоксилатом натрия при температуре 170°C течение 7 минут с получением готового продукта (смеси железокобальтовых карбоксилатов) в виде агломерата.

Основные характеристики процесса получения смеси железокобальтовых карбоксилатов представлены в таблице 2.

Пример 3

Получают смесь железокобальтовых карбоксилатов аналогично примеру 2, но в качестве соединений металлов переменной валентности используют гидроксид железа и гидроксид кобальта. Основные характеристики процесса получения смеси железокобальтовых карбоксилатов представлены в таблице 2.

Пример 4

Получают смесь железокобальтовых карбоксилатов аналогично примеру 2, но в качестве соединения металла переменной валентности используют нитрат кобальта. Основные характеристики процесса получения смеси железокобальтовых карбоксилатов представлены в таблице 2.

Следует отметить, что в этом случае процесс производства усложняется дополнительным аппаратурным оформлением, так как необходимо применение коррозионностойкого оборудования, а также оборудования для улавливания азотистых газов.

Пример 5

Получают смесь железокобальтовых карбоксилатов аналогично примеру 2, но реакцию взаимодействия соединения кобальта с карбоксилатом натрия проводят в течение 5 минут. Основные характеристики процесса получения смеси железокобальтовых карбоксилатов представлены в таблице 2.

Пример 6

Получают смесь железокобальтовых карбоксилатов аналогично примеру 2, но реакцию взаимодействия соединения кобальта с карбоксилатом натрия проводят в течение 8 минут. Основные характеристики процесса получения смеси железокобальтовых карбоксилатов представлены в таблице 2.

Пример 7

Получают смесь железокобальтовых карбоксилатов аналогично примеру 2, но реакцию взаимодействия соединения кобальта с карбоксилатом натрия проводят при температуре 150°C течение 7 минут. Основные характеристики процесса получения смеси железокобальтовых карбоксилатов представлены в таблице 2.

Пример 8

Получают смесь железокобальтовых карбоксилатов аналогично примеру 2, но реакцию взаимодействия соединения кобальта с карбоксилатом натрия проводят при температуре 150°C течение 10 минут. Основные характеристики процесса получения смеси железокобальтовых карбоксилатов представлены в таблице 2.

Пример 9

Получают смесь железокобальтовых карбоксилатов аналогично примеру 2, но реакцию взаимодействия соединения кобальта с карбоксилатом натрия проводят при температуре 150°C течение 11 минут. Основные характеристики процесса получения смеси железокобальтовых карбоксилатов представлены в таблице 2.

Пример 10

Получают смесь железокобальтовых карбоксилатов аналогично примеру 2, но реакцию взаимодействия соединения кобальта с карбоксилатом натрия проводят при температуре 190°C течение 4 минут. Основные характеристики процесса получения смеси железокобальтовых карбоксилатов представлены в таблице 2.

Пример 11

Получают смесь железокобальтовых карбоксилатов аналогично примеру 2, но реакцию взаимодействия соединения кобальта с карбоксилатом натрия проводят при температуре 190°C течение 5 минут. Основные характеристики процесса получения смеси железокобальтовых карбоксилатов представлены в таблице 2.

Пример 12

Получают смесь железокобальтовых карбоксилатов аналогично примеру 2, но реакцию взаимодействия соединения кобальта с карбоксилатом натрия проводят при температуре 190°C течение 6 минут. Основные характеристики процесса получения смеси железокобальтовых карбоксилатов представлены в таблице 2.

Как видно из таблицы 2, оптимальное время проведения реакции при температуре 150°C составляет 10 мин, при температуре 170°C - 7 мин, при температуре 190°C - 5 мин, т.к. обеспечивается максимальный выход целевого продукта (смеси железокобальтовых карбоксилатов) равный 99,6%. Следует отметить, что превышение продолжительности термического воздействия более 5÷10 минут (при температурах проведения реакции соответственно 190°C и 150°C) также способствует образованию побочных продуктов (оксидов, гидроперекисей) и дефектов структуры целевого продукта (спекание).

Предложенный способ изготовления смеси железокобальтовых карбоксилатов позволяет:

- повысить выход целевого продукта, вследствие увеличения степени конверсии реагирующих веществ;

- создать универсальную добавку-прооксидант при использовании смеси железокобальтовых карбоксилатов;

- повысить эффективность инициаторов деструктивных процессов при производстве оксибиоразлагающих добавок;

- снизить негативное воздействие на окружающую среду;

- повысить технико-экономические показатели производства;

- утилизировать отходы масложировой отрасли - соапстока;

- заменить импортные оксибиоразлагающие добавки для полимерных материалов на российском рынке отечественными аналогами.

Способ изготовления смеси железокобальтовых карбоксилатов, включающий получение смеси карбоксилатов натрия с кислотным числом 1,0÷1,3 мг КОН/г путем омыления жирных кислот с кислотным числом 110 мг КОН/г, выделенных из соапстока светлых растительных масел, гидрокарбонатом или карбонатом натрия при непрерывном перемешивании в температурном диапазоне 200÷220°C, последующее получение карбоксилата железа путем введения в карбоксилат натрия неорганического соединения железа, при этом процесс получения карбоксилата железа проводится при температуре 150÷190°C до степени конверсии карбоксилата натрия 95%, в качестве неорганического соединения железа используется оксид или гидроксид железа (II, III), мольное соотношение карбоксилата натрия и оксида или гидроксида железа (II, III) равно 3:1 при использовании трехвалентного железа или 2:1 при использовании двухвалентного железа, далее после получения карбоксилата железа в реакционную смесь вводятся соединения кобальта, в качестве которых используется оксид или гидроксид кобальта (II, III), и проводится реакция взаимодействия карбоксилатов натрия и соединений кобальта с получением карбоксилата кобальта при температуре 150÷190°C в течение 5÷10 минут, мольное соотношение карбоксилата натрия и оксида или гидроксида кобальта (II, III) равно 3:1 при использовании трехвалентного кобальта или 2:1 при использовании двухвалентного кобальта; готовый продукт в виде агломерата является смесью карбоксилатов железа и кобальта при их массовом соотношении 95:5 мас.% соответственно.
Источник поступления информации: Роспатент

Показаны записи 171-180 из 214.
22.01.2020
№220.017.f858

Способ производства творожного продукта, обогащенного растительными компонентами

Изобретение относится к пищевой промышленности, в частности к молочной. Способ предусматривает раскатывание творожной смеси в лепешку толщиной 1,5-2,0 мм и сушку до приобретения хрустящего состояния по типу чипсов. При этом творожную смесь готовят на основе творога с массовой долей жира...
Тип: Изобретение
Номер охранного документа: 0002711639
Дата охранного документа: 17.01.2020
24.01.2020
№220.017.f8f3

Способ получения рыбного клея из костей промысловых рыб

Изобретение относится к рыбной промышленности. Способ получения рыбного клея из костей промысловых рыб предусматривает промывание рыбных костей холодной водой температурой 12°C при гидромодуле 1:6 в течение 2 ч. Затем кости промывают 2-3 раза водой температурой 90°C, после стекания воды...
Тип: Изобретение
Номер охранного документа: 0002711801
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f910

Способ производства полуфабрикатов рыбных рубленых замороженных

Способ включает размораживание рыбы, ее разделку на филе, мойку, получение фарша, смешивание его с растительными компонентами, формовку полуфабрикатов и их замораживание. В состав фарша дополнительно вносится гидратированный в соотношении 1:9 пищевой коллагеновый гидролизат из вторичных...
Тип: Изобретение
Номер охранного документа: 0002711792
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f930

Способ производства булочных изделий

Изобретение относится к пищевой промышленности. В способе производства булочных изделий готовят тесто из муки пшеничной первого сорта, дрожжей хлебопекарных прессованных, соли пищевой, сахара белого, маргарина столового, сухой подсырной молочной сыворотки и пророщенных семян льна. Пророщенные...
Тип: Изобретение
Номер охранного документа: 0002711800
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f93a

Способ получения леденцовой карамели на патоке крахмальной

Изобретение относится к кондитерской промышленности. Предложен способ производства леденцовой карамели на патоке крахмальной, включающий подготовку патоки к производству, уваривание ее до карамельной массы в вакуум-варочной установке, введение вкусоароматических и красящих веществ, формование,...
Тип: Изобретение
Номер охранного документа: 0002711808
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f961

Способ получения порошкообразного напитка на основе пермеата творожной сыворотки

Изобретение относится к пищевой промышленности, в частности к молочной. Способ предусматривает ультрафильтрацию творожной сыворотки на керамической мембране с разрешающей способностью 95-97 кДа, при рабочем давлении 0,32-0,33 МПа, температуре 42-45 °С в течение 50–55 минут, с величиной...
Тип: Изобретение
Номер охранного документа: 0002711795
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f971

Способ производства сбивного безглютенового мучного кондитерского изделия на основе патоки

Изобретение относится к пищевой промышленности. Способ производства сбивного безглютенового мучного кондитерского изделия предусматривает приготовление водно-белковой смеси из сухого яичного белка и воды при гидромодуле 1:5 путем взбивания до получения стойкой пены при частоте вращения...
Тип: Изобретение
Номер охранного документа: 0002711784
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f97d

Способ производства зернового хлеба

Изобретение относится к пищевой промышленности. Способ производства зернового хлеба включает замачивание нешелушеного зерна пшеницы, его набухание, проращивание, измельчение. Замес теста осуществляют из зерновой измельченной массы, раствора пищевой соли, суспензии прессованных дрожжей, масла...
Тип: Изобретение
Номер охранного документа: 0002711794
Дата охранного документа: 22.01.2020
25.01.2020
№220.017.f9c0

Способ получения белкового гидролизата из вторичного рыбного сырья

Изобретение относится к биотехнологии, пищевой и кормовой промышленности. Вторичные продукты разделки рыб промывают проточной водой t = 12°C в течение 2-6 ч. Замачивают сырье в воде на 24 ч и снова промывают 3-4 раза проточной водой. Обезжиривают сырье спирто-эфирной смесью в соотношении 1:1 в...
Тип: Изобретение
Номер охранного документа: 0002711915
Дата охранного документа: 23.01.2020
25.01.2020
№220.017.f9d8

Способ производства сыровяленой продукции из языков сельскохозяйственных животных (говяжьих, телячьих, свиных или мелкого рогатого скота)

Изобретение относится к пищевой промышленности и может быть использовано при производстве сыровяленых языков в индивидуальной или общей упаковке, в том числе в нарезанном виде, а также изделий типа «снэк-продукты». Языки, полученные от сельскохозяйственных животных, промывают, зачищают и...
Тип: Изобретение
Номер охранного документа: 0002711918
Дата охранного документа: 23.01.2020
Показаны записи 11-12 из 12.
06.07.2020
№220.018.2fb1

Состав и способ получения биодеградируемой термопластичной композиции

Настоящее изобретение относится к составу биодеградируемой термопластичной композиции и способу получения биодеградируемой термопластичной композиции. Состав биодеградируемой термопластичной композиции содержит: полипропилен 32-34 мас.%, крахмал 55-47 мас.%, карбонат кальция 4,5-8 мас.%,...
Тип: Изобретение
Номер охранного документа: 0002725606
Дата охранного документа: 03.07.2020
17.06.2023
№223.018.7f23

Композитный гидропонный субстрат

Изобретение относится к области растениеводства, в частности, к технологиям гидропоники, и может быть использовано для создания материала гидропонного субстрата, а также может быть использовано при получении бинарных композитов с высоким водопоглощением и влагоудержанием. Композитный...
Тип: Изобретение
Номер охранного документа: 0002773532
Дата охранного документа: 06.06.2022
+ добавить свой РИД