×
20.03.2019
219.016.e5ff

Результат интеллектуальной деятельности: СПОСОБ РЕГИСТРАЦИИ И ИДЕНТИФИКАЦИИ МАКРОМОЛЕКУЛ ПРИ ПОМОЩИ СОПРЯЖЕННОЙ СИСТЕМЫ НА ОСНОВЕ СКАНИРУЮЩЕЙ ПРОБНОЙ МИКРОСКОПИИ И МАСС-СПЕКТРОМЕТРИИ

Вид РИД

Изобретение

№ охранного документа
0002351932
Дата охранного документа
10.04.2009
Аннотация: Изобретение относится к медицинской диагностике. Предложен способ регистрации специфических макромолекул в биологической пробе с использованием комбинации двух методов: сканирующей зондовой микроскопии и масс-спектрометрии, что позволяет проводить регистрацию макромолекул в растворе аналита методом атомно-силовой микроскопии и одновременно идентифицировать выловленные молекулы с помощью методов масс-спектрометрии. Способ позволяет с чувствительностью до 10 М идентифицировать макромолекулы при проведении протеомных, вирусологических, диагностических исследований. 2 з.п. ф-лы, 3 ил.

Изобретение относится к протеомике и медицинской диагностике и касается применения методов зондовой микроскопии и масс-спектрометрии для регистрации и идентификации макромолекул при протеомных исследованиях, диагностике, в вирусологии и т.д.

В качестве прототипа может быть использован стандартный SELDI метод, который позволяет аффинно биоспецифически вылавливать макромолекулы из раствора на поверхность биочипа с иммобилизованными молекулами, после чего проводить измерение масс выловленных макромолекул с помощью масс-спектрометра с источником ионизации MALDI (Lewczuk P., Esselmann H., Groemer T.W., Bibi M., Maler J.M., Steinacker P., Otto M., Kornhuber J., Wiltfang, J., Biol. Psychiatry. 2004, 55, 524-530.; Landuyt В., Jaap Jansen J., Wildiers H., Goethals L., Boeck G.D., et al., J. Separation Science, 2003, 26, 619-623). Применение термина "вылавливают" (на английском языке "Fishing"), используемого в международных научных изданиях, в данном контексте означает захват молекулой, иммобилизованной на поверхности чипа, макромолекулы-партнера из раствора и концентрированно захваченных макромолекул на поверхности биочипа (см. review: Nelson R.W. and Krone J.R. J. of Molecular recognition 1999, 12, 77-93. Natsume Т., Nakayama H., Isobe T. Trends in Biotechnology 2001, 19, S28-S33).

Недостатком этого метода является отсутствие возможности визуализации комплексов, а именно нет информации о структуре комплексов.

Существует метод зондовой сканирующей микроскопии как частный случай атомно-силовой микроскопии (АСМ) для регистрации и визуализации структуры макромолекулярных комплексов в аналите, при котором биочип с иммобилизованными молекулами инкубируется в растворе аналита, при этом производится аффинное биоспецифическое вылавливание макромолекул из раствора, концентрирование их на поверхности биочипа, перешивание выловленных комплексов молекула/макромолекула, при этом концентрационная чувствительность которого достигает чрезвычайно высокого уровня - 10-19 М (заявка № 2004119864 от 30 июня 2004). Недостаток использования этого метода - нет достоверной идентификации выловленных комплексов из-за мешающего влияния артефактов от загрязненности образца.

Преодоление этих недостатков может быть достигнуто применением сопряжения двух методов сканирующей зондовой микроскопии и масс-спектрометрии, позволяющее проводить регистрацию макромолекул в растворе аналита с высокой чувствительностью до 10-19 М, характерной для метода атомно-силовой микроскопии, и одновременно идентифицировать выловленные молекулы с помощью методов масс-спектрометрии. Он заключается в том, что ансамбль аффинных иммобилизованных молекул на поверхности биочипа инкубируется в растворе макромолекул, которые за счет аффинного биоспецифического связывания с иммобилизованными молекулами вылавливаются из этого раствора, отмываются от неспецифически сорбированных молекул, после чего полученные комплексы иммобилизованных белков с выловленными макромолекулами регистрируются с помощью сканирующего зондового микроскопа.

Идентификация выловленных комплексов производится методом масс-спектрометрии in situ с использованием лазерной ионизации с десорбцией из матрицы (MALDI) или методом электроспрейной ионизации (ESI). В последнем случае комплексы смываются с биочипа и производится прямой масс-спектрометрический анализ методом электроспрейной ионизации. Метод пригоден как для анализа белков, так и для анализа олигонуклеотидов. Если белок имеет массу более 30 кДа, то может производиться протеолиз как in situ на биочипе, так и в смытом аналите в случае анализа ESI. В обоих случаях анализируются пептиды - продукты протеолиза.

Для повышения чувствительности комплексы молекул с макромолекулами на поверхности чипа могут ковалентно сшиваться с помощью химических, фотохимических, химических методов с радиоизотопной меткой.

В качестве примера реализации поставленной задачи был создан АСМ биочип, состоящий из ансамбля иммобилизованных молекул, расположенных на подложке биочипа к сканирующему атомно-силовому микроскопу для идентификации макромолекул с использованием сканирующей зондовой микроскопии и сопряжен с масс-спектрометром.

В качестве иммобилизованных на поверхности биочипа молекул, как пример, использовались антитела (анти-HCVcore) к HCVcore антигену (HCVcoreAg) вируса гепатита С, ковалентно иммобилизованные на поверхности модифицированной положке слюды с неровностью рельефа порядка 1 нм.

В качестве биоспецифического партнера антител к HCVcore антигену использовался раствор аналита с находящимися в нем макромолекулами HCVcore антигенов. Эти макромолекулы HCVcore антигенов специфически связывались и за счет этого вылавливались из раствора аналита, образуя биоспецифические комплексы anti-HCVcore/HCVcore на поверхности биочипа. Затем осуществлялась отмывка биочипа от неспецифически сорбировавшихся молекул на поверхности биочипа, после чего, проводилось обнаружение и визуализация белков и их комплексов на поверхности биочипа с помощью атомно-силовой микроскопии и затем проводился масс-спектрометрический анализ белков, оставшихся на подложке.

На фиг.1 приведено АСМ-изображение участка поверхности биочипов с иммобилизованными антителами к HCVcore и биочипов с анти-HCVcore/HCVcore комплексами, которые образовывались на поверхности биочипа с иммобилизованными анти-HCVcore при инкубации его в растворе аналита, содержащего HCV антигены при концентрации 10-9 М.

На фиг.1,А приведено изображение изолированных антител к HCVcore антигену на подложке биочипа. Высоты антител имеют распределение по высоте с размерами 1,5-2 нм. На биочипе с иммобилизованными анти-HCVcore, инкубированном в растворе аналита, содержащего HCVcore (фиг.1,В), кроме антител наблюдаются комплексы антиген/антитело, с размером 2,5-5 нм, превышающим размеры изолированных антител.

Для повышения чувствительности комплексы молекул с макромолекулами на поверхности чипа могут ковалентно сшиваться с помощью химических, фотохимических, химических методов с радиоизотопной меткой. На фиг.2 приведено АСМ-изображение части поверхности биочипов с активированными фотолинкерами, иммобилизованными антителами к HCVcore, и биочипов с анти-HCVcore/HCVcore комплексами, которые образовывались на поверхности биочипа с иммобилизованными анти-HCVcore при его инкубации в растворе аналита, содержащего HCV антигены при концентрации 10-14 М и последующей ковалентной фотосшивкой между анти-HCVcore с HCVcore антигенами посредством проведения фотореакции. На фиг.2,А приведено изображение изолированных активированных антител к HCVcore антигену на подложке биочипа. Высоты антител имеют распределение по высоте с размерами 1,5-3 нм. На биочипе с иммобилизованными анти-HCVcore, инкубированном в растворе аналита, содержащего HCVcoreAg (фиг.2,В), кроме антител наблюдаются комплексы антиген/антитело с размером 3,5-7 нм, превышающим размеры изолированных антител. Из сравнения фиг.2, В и фиг.1, В видно, что использование ковалентной сшивки между HCVcoreAg и анти-HCVcore позволяет зафиксировать примерно такое же количество белковых комплексов, что и в случае, когда не применяется ковалентная сшивка между белками при гораздо меньшей концентрации HCVcoreAg в аналите (на 5 порядков). То есть фиксация белков в комплексе на поверхности биочипа за счет ковалентной сшивки между белками в комплексе при вылавливании белков позволяет повысить чувствительность регистрации макромолекул в растворе аналита. Расчеты показывают, что чувствительность может быть повышена до 10-19 М.

На фиг.3 приведены масс-спектры, полученные методом MALDI с поверхности AFM-биочипа, с изолированными антителами (фиг.3,С), биочипа с комплексами антитген/антитело (фиг.3,D) и контрольные масс-спектры от антител в растворе (фиг.3,А) и от HCVcoreAg в растворе (фиг.3,В).

Как видно из фиг.3,А, масс-спектр анти-HCVcore в растворе имеет характерные сигналы с массами в диапазоне М=147 kDa, соответствующими массам целых молекул анти-HCVcore, и фрагментов легкой и тяжелой цепей этих антитела с сигналами в области М=24 kDa, 32 kDa и М=47 kDa соответственно. Масс-спектр HCVcore антигена в растворе имеет характерные сигналы с массами в диапазоне М=25 kDa, соответствующими массам целых молекул антигена. Масс-спектр иммобилизованных на поверхности биочипа изолированных анти-HCVcore (фиг.3,С) имеет характерные сигналы, соответствующие массам фрагментов легкой и тяжелой цепей этих антител с сигналами в области М=24 kDa, 32 kDa и М=47 kDa соответственно. Масс-спектр объектов на поверхности биочипа с иммобилизованными анти-HCVcore, которые были инкубированы в растворе аналита, содержащего HCV антигены (фиг.3,D), видно изменение паттерна масс-спектра по сравнению с паттерном масс-спектра изолированных анти-HCVcore (фиг.3,С), что связано со вкладом в полный масс-спектр сигналов от HCVcoreAg. Так, кроме сигналов, соответствующих массам фрагментов легкой и тяжелой цепей антител, появляются сигналы с массами М=52 kDa и 77 kDa, соответствующие комплексам фрагментов, включающих легкую цепь антител с антигенами HCVcore, а также существенное увеличение сигнала в области 25 kDa, соответствующей вкладу от целого антигена HCVcore. Таким образом, сопряжение системы на основе сканирующей атомно-силовой микроскопии и масс-спектрометрии позволяет регистрировать HCVcore антиген с помощью биочипа к атомно-силовому микроскопу в растворе и идентифицировать эти антигены с помощью масс-спектрометрического анализа. Если белок имеет массу более 30 кДа, то может производиться протеолиз как in situ на биочипе, так и в смытом аналите в случае анализа методом ESI, как описано в обзоре [Williams С., Addona T.A. TIBTECH, 2000, v.18, February, 45-48]. В обоих случаях анализируются пептиды - продукты протеолиза.

Для повышения чувствительности комплексы молекул с макромолекулами на поверхности чипа могут ковалентно сшиваться с помощью химических, фотохимических, химических методов с радиоизотопной меткой.

В качестве методов ионизации при масс-спектрометрометрическом анализе могут быть использованы LD, MALDI, SELDI, SALDI, ESI, SIMS, FAB (fast atom bombardment). В случае использования последних двух методов поверхность отмытого биочипа может покрываться тонким слоем золота, получаемого методом напыления в вакууме.

В качестве масс-анализаторов могут быть использованы TOF, Q, Q-TOF, FTICR, ion TRAP, ORBITRAP.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 11.
10.10.2014
№216.012.fcf3

Ингибитор образования цинк-зависимых димеров бета-амилоида

Настоящее изобретение относится к использованию эналаприлата, водорастворимого вещества на основе дипептида [L-аланил]-[L-пролин], в области медицины. Предложно применение эналаприлата в качестве средства для ингибирования образования цинк-зависимых димеров бета-амилоида. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002530601
Дата охранного документа: 10.10.2014
10.12.2014
№216.013.0e35

Способ получения композиции для фотодинамической терапии на основе хлорина е6, включенного в фосфолипидные наночастицы

Изобретение относится к способу получения лекарственного средства на основе хлорина Е6, включенного в фосфолипидные наночастицы, для применения в качестве средства для фотодинамической терапии. Способ характеризуется тем, что полученный при нагревании водный раствор мальтозы смешивают с...
Тип: Изобретение
Номер охранного документа: 0002535054
Дата охранного документа: 10.12.2014
27.02.2016
№216.014.c11b

Способ получения композиции для фотодинамической терапии в форме фосфолипидных наночастиц на основе глюкаминовой соли хлорина е6, мальтозы и фосфатидилхолина

Изобретение относится к фармацевтике. Описан способ получения фармацевтической композиции для фотодинамической терапии в форме фосфолипидных наночастиц на основе бис(N-метил-D-глюкамин)мононатриевой соли хлорина E6, мальтозы и фосфатидилхолина. Способ заключается в добавлении к водной суспензии...
Тип: Изобретение
Номер охранного документа: 0002576025
Дата охранного документа: 27.02.2016
27.05.2016
№216.015.4358

Электрохимический способ экспресс-анализа комплексообразования амилоида-бета с ионами металлов

Изобретение относится к области аналитической химии, электрохимии и биохимии и касается способа экспресс-анализа комплексообразования амилоида-бета с ионами металлов. Способ заключается в том, что на поверхность печатного графитового электрода наносят аликвоту раствора синтетического пептида...
Тип: Изобретение
Номер охранного документа: 0002585307
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.8ea7

Способ исследования биологической жидкости

Изобретение относится к медицине и биохимии и может быть использовано для исследования биологической жидкости. В качестве биологической жидкости используют сыворотку крови пациента, которую возбуждают путем принудительного ее движения механическим, тепловым, или импульсно-электрическим...
Тип: Изобретение
Номер охранного документа: 0002605294
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.bef2

Электрохимический способ анализа аминокислотных замен и модификаций в пептиде амилоид-бета

Изобретение относится к области аналитической химии, электрохимии и биохимии Задачей настоящего изобретения является разработка способа электрохимического анализа аминокислотных замен и модификаций пептида Aβ без и в присутствие ионов Zn(II), который основан на измерении сигнала окисления...
Тип: Изобретение
Номер охранного документа: 0002616706
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c22c

Производные прегн-17(20)-ена, проявляющие противоопухолевую активность

Изобретение относится к ингибитору активности 17α-гидроксилазы-17,20-лиазы (CYP17A1), подавляющему рост клеток карциномы простаты, представляющему собой производное прегн-17(20)-ена общей формулы (I), где R - 4',5'-дигидро-1',3'-оксазол-2'-ил- (Ia), либо бензо-[d]-оксазол-2'-ил- (Ib)...
Тип: Изобретение
Номер охранного документа: 0002617698
Дата охранного документа: 26.04.2017
19.01.2018
№218.016.0e08

Электрохимический способ выявления аминокислотных замен и идентификации пептидов

Изобретение относится к области химии, а именно к аналитической химии, электрохимии и биохимии, и предназначено для идентификации пептидов и выявления аминокислотных замен в их структурах. Для осуществления способа на печатный графитовый электрод наносят аликвоту 60-100 мкл 50 мкМ раствора...
Тип: Изобретение
Номер охранного документа: 0002633078
Дата охранного документа: 11.10.2017
29.03.2019
№219.016.f1c9

Нанодиагностическая тест-система для выявления вируса гепатитов

Изобретение относится к медицинской нанодиагностике, вирусологии, к прикладной иммунологии. Для выявления вируса гепатита В используют биосенсор "резонансное зеркало" с биочипом. Биочип состоит из биосенсорной кюветы, в основании которой расположена призма с сопряженным с ней волноводом,...
Тип: Изобретение
Номер охранного документа: 0002315999
Дата охранного документа: 27.01.2008
09.05.2019
№219.017.4db1

Лекарственный препарат и способ лечения ревматических заболеваний

Изобретение относится к медицине, в частности, к лекарственному препарату для внутрисуставного введения при лечении ревматических заболеваний. Препарат включает 0,1-3,0 мас.% метотрексата в составе фосфолипидных наночастиц. Наночастицы состоят из фосфолипидов, глицирризиновой кислоты или ее...
Тип: Изобретение
Номер охранного документа: 0002330664
Дата охранного документа: 10.08.2008
Показаны записи 1-10 из 44.
10.01.2013
№216.012.19d6

Емкостной датчик для измерения линейных перемещений

Изобретение относится к области прецизионных измерений перемещений посредством измерения емкости и может быть использовано для определения линейных перемещений сканирующих устройств в сканирующих зондовых микроскопах (СЗМ). Сущность: датчик содержит измерительную емкость и опорную емкость,...
Тип: Изобретение
Номер охранного документа: 0002472106
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a11

Сканирующий зондовый микроскоп для биологических применений

Изобретение относится к измерительной технике, а именно к устройствам измерения с помощью сканирующего зондового микроскопа (СЗМ) рельефа, линейных размеров и других характеристик объектов, преимущественно в биологии, с одновременным оптическим наблюдением объекта в проходящем через объект...
Тип: Изобретение
Номер охранного документа: 0002472165
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1c89

Способ получения замещенных 2,3,5,6-тетраоксабицикло-[2.2.1]гептанов

Настоящее изобретение относится к способу получения замещенных 2,3,5,6-тетраоксабицикло[2.2.1]гептанов формулы I, где R = адамантил, незамещенный или замещенный бензил, незамещенный или замещенный алкил С1-С6, при этом заместителями могут быть CN, COOMe, COOEt или СН=СН группа, R = низший алкил...
Тип: Изобретение
Номер охранного документа: 0002472799
Дата охранного документа: 20.01.2013
10.05.2013
№216.012.3e97

Способ изготовления коллоидного зондового датчика для атомно-силового микроскопа

Изобретение относится к области приборостроения, преимущественно к измерительной технике. Сущность изобретения заключается в способе изготовления коллоидного зондового датчика, в котором используется атомно-силовой микроскоп (АСМ), и его собственном работоспособном зондовом датчике. Сначала с...
Тип: Изобретение
Номер охранного документа: 0002481590
Дата охранного документа: 10.05.2013
27.06.2013
№216.012.5229

Формирователь малорасходящихся потоков излучения

Устройство относится к рентгеновской технике и может быть использовано в качестве формирователя первичного потока для рентгеновской дифрактометрии и топографии, приборов малоуглового рассеяния, рентгеновских рефлектометров различного назначения, рентгеновских дефектоскопов, систем и...
Тип: Изобретение
Номер охранного документа: 0002486626
Дата охранного документа: 27.06.2013
27.08.2013
№216.012.6433

Способ получения наноразмерного амфотерицина в

Настоящее изобретение относится к области медицины, фармацевтике и нанотехнологиям и, конкретно, к способу получения наноразмерного, нанесенного на алюмосиликатные нанотрубки, амфотерицина В - малорастворимого полиенового макроциклического антибиотика, который широко используется для лечения...
Тип: Изобретение
Номер охранного документа: 0002491288
Дата охранного документа: 27.08.2013
27.09.2013
№216.012.6ee2

Способ получения атомно-тонких монокристаллических пленок

Изобретение относится к области нанотехнологии и может быть использовано для получения атомно-тонких монокристаллических пленок различных слоистых материалов. Технический результат - упрощение технологии изготовления атомно-тонких монокристаллических пленок. Достигается тем, что в способе...
Тип: Изобретение
Номер охранного документа: 0002494037
Дата охранного документа: 27.09.2013
10.11.2013
№216.012.7c68

Фармацевтическая композиция, обладающая противогрибковой активностью, и способ ее получения

Изобретение относится к области медицины, фармацевтики и нанотехнологий, конкретно к фармацевтической композиции на основе флуконазола - противогрибкового средства из группы производных триазола, получаемого химическим синтезом, и к способу ее получения. Предложенная фармацевтическая...
Тип: Изобретение
Номер охранного документа: 0002497521
Дата охранного документа: 10.11.2013
20.05.2014
№216.012.c334

Сканирующий зондовый микроскоп для исследования крупногабаритных объектов

Устройство предназначено для проведения зондовых измерений на объектах, имеющих сложную форму, например на трубах в нефтяной и атомной отраслях промышленности. Сущность изобретения заключается в том, что в сканирующий зондовый микроскоп для исследования крупногабаритных объектов, включающий...
Тип: Изобретение
Номер охранного документа: 0002515731
Дата охранного документа: 20.05.2014
20.07.2014
№216.012.de67

Способ тестирования системы металлографического анализа на основе сканирующего зондового микроскопа

Изобретение относится к нанотехнологиям и методам проведения металлографического анализа образцов и определения трехмерной топографии их поверхности и структуры с помощью атомно-силовой микроскопии при разрешающей способности в нанометровом диапазоне. Способ тестирования системы...
Тип: Изобретение
Номер охранного документа: 0002522721
Дата охранного документа: 20.07.2014
+ добавить свой РИД