×
08.02.2019
219.016.b80a

Результат интеллектуальной деятельности: НАНОКОМПОЗИЦИОННЫЙ БИОЦИДНЫЙ МАТЕРИАЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины и народного хозяйства, а именно к нанокомпозиционному биоцидному полимерному материалу, включающему 5-40 мас.% неорганической слоистой глины, модифицированной сополимером полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина, и 60-95 мас.% матричного полимера, который представляет собой сэвилен с содержанием винилацетатных звеньев 15-30 мас.%. Изобретение обеспечивает повышение биоцидных свойств нанокомпозитного материала и расширение диапазона его применения по отношению к различным микроорганизмам (грамположительным и грамотрицательным бактериям, грибам) при сохранении механических свойств. 3 табл., 1 ил.

Настоящее изобретение относится к области получения нанокомпозиционных материалов и более конкретно к получению бактерицидных композиционных материалов и может быть использовано в народном хозяйстве и медицине в качестве бактерицидных дезинфицирующих средств, а также заменителей тяжелых небактерицидных гипсовых шин при переломах и т.д.

Полимеры и сополимеры гуанидина (полигуанидины) получили широкое распространение как биоцидные средства. Они обладают широким спектром действия, способны воздействовать как на аэробные, так и на анаэробные микроорганизмы, нетоксичны, стабильны, могут длительно храниться без утраты биоцидных свойств, биоразлагаемы. Однако изготовление изделий непосредственно из полигуанидинов ограничено ввиду их растворимости или значительного набухания в воде. Кроме того, полигуанидины - полярные полимеры, что затрудняет их равномерное диспергирование в большинство полимеров. Поэтому рациональнее использовать полигуанидины в качестве биоцидных добавок к промышленно выпускаемым полимерам. При этом необходимо обеспечить их совместимость и равномерное распределение в полимерной матрице.

Для решения этой проблемы используют такой прием, как нанесение биоцидных добавок в неорганические носители с получением комплексных нанонаполнителей. В связи с тем, что частицы неорганической глины являются ультрадисперсными, имеют толщину 10-20 нм, с одной стороны, и со способностью неорганических глин к проведению ионно-обменных реакций за счет наличия обменных катионов в межслоевом пространстве, с другой, этот природный материал чрезвычайно интересен для применения в качестве носителя в наноматериалах и нанокомпозитах.

Так, например, известна стабильная дисперсия металлических наночастиц, описанный в заявке US 20090148484 А1, где заряды в промежуточном слое неорганической глины в результате катионно-обменной реакции были замещены на металлические частицы, обладающие предпочтительно сферической структурой, например Au, Ag, Cu и Fe. В качестве неорганической глины нанокомпозит содержит различные типы глин, в том числе монтмориллонит. Катионная емкость неорганической глины составляет 0,1-5,0 мэкв./г.

Недостатком описанного решения является то, что известный состав представляет собой порошок или суспензию, из которой невозможно сформировать композиционный материал. При смешении же его с полимерами полярная глина и неполярная или слабополярная полимерная матрица будут образовывать агрегаты, что приведет к частичной потере свойств материала.

Наиболее близким к предложенному по совокупности существенных признаков и техническому результату (прототипом) являются нанокомпозиционный биоцидный материал, описанный в патенте RU 2424797. Нанокомпозиционный полимерный материал на основе неорганической слоистой глины, модифицированной добавками, в качестве добавок содержит (со)полимеры производных гуанидина и четвертичной аммониевой соли, содержащие группы, способные к реакций радикальной полимеризации, и дополнительно содержит синтетическую гуттаперчу.

При этом достигаются следующие механические свойства: модуль упругости нанокомпозита - 39-62 МПа, предел текучести - 2-3 МПа, прочность - 2.6-6 МПа, деформация при разрыве - 87-286%. При испытании биоцидных свойств таких нанокомпозитов на примере культуры St. Aureus зона гибели составляет 1-6 мм.

Недостатком прототипа является то, что он проявляет биоцидные свойства только по отношению к стафилококку (St. Aureus). Другие недостатки прототипа:

сложный процесс модификации глины гуанидинсодержащим (со)полимером, включающий на первой стадии модификацию глины мономером, а на второй - полимеризацию привитого мономера при введении инициатора полимеризации и этого же или другого гуанидинсодержащего мономера;

использование гуттаперчи, которая не выпускается в отечественной промышленности в настоящее время, что ограничивает сферу применения нанокомпозитного материала и удорожает его получение.

Задачей предложенного изобретения является повышение биоцидных свойств нанокомпозитного материала и расширение диапазона его применения по отношению к различным микроорганизмам (грамположительным и грамотрицательным бактериям, грибам) при сохранении механических свойств, а также упрощении способа его получения при применении промышленно выпускаемого полимера - сэвилена.

Поставленная задача решается тем, что предложен нанокомпозиционный биоцидный полимерный материал на основе неорганической слоистой глины, модифицированной сополимером полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина, и матричного полимера, который в качестве матричного полимера содержит сэвилен с содержанием винилацетатных звеньев 15-30% мас. при следующем соотношении компонентов, % масс.:

указанный сэвилен 60-95
указанная модифицированная
неорганическая слоистая глина 5-40.

Сэвилен (иначе СЭВА) представляет собой сополимер этилена с винилацетатом, полученный аналогично полиэтилену низкого давления. По сравнению с полиэтиленом сэвилен отличается более высокой адгезией к различным материалам и эластичностью при низких температурах.

Свойства сэвилена зависят, главным образом, от содержания винилацетата (5-30% мас.) С повышением содержания винилацетата кристалличность, разрушающее напряжение при растяжении, твердость, теплостойкость уменьшаются, в то время как плотность, эластичность, прозрачность, адгезия увеличиваются. Введение винилацетатных (ВА) групп в цепь полиэтилена изменяет физические свойства получаемого полимера за счет повышения полярности и снижения степени кристалличности. Введение полярной ВА группы увеличивает адгезию полимера к различным поверхностям, улучшает совместимость с полярными полимерами и пластификаторами. Содержание винилацетатных (ВА) звеньев в значительной степени определяет свойства материала.

Выбор марки сэвилена для полимерной матрицы нанокомпозитов с комплексным наполнителем должен проводиться с учетом следующих требований:

- в полимере наполнитель должен хорошо диспергироваться и равномерно распределяться при смешении в расплаве;

- полимерная матрица не должна снижать биоцидные свойства гуанидинсодержащих полимеров.

Технический результат изобретения - повышение биоцидных свойств нанокомпозитного материала и расширение диапазона его применения по отношению к различным микроорганизмам (грамположительным и грамотрицательным бактериям, грибам) при сохранении механических свойств, упрощение способа его получения, экономичность.

Примеры осуществления изобретения

В микрокомпаундере-экструдере MiniLab HAAKE смешением в расплаве получают композиты с наполнителем (содержание наполнителя - 5% мас.) и сэвиленами производства КазаньОргсинтез марок 113, 117 и 122.

Время смешения - 15 мин, скорость вращения шнеков - 100 об/мин, температура - 160°С.

В табл. 1. приведены характеристики сэвиленов производства КазаньОргсинтез.

В качестве наполнителя используют модифицированную глину, получаемую перемешиванием 6%-ной суспензии монтмориллонита с 10%-ным раствором гуанидинсодержащего сополимера полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина (сополимера ПДАДМАХ/ПМАГ) в массовом соотношении 15/85 с последующей сушкой смеси.

Распределение наполнителя в сэвиленах различных марок характеризуют по данным рентгеноструктурного анализа. Дифрактограммы композитов в сэвиленах с различным содержанием ВА групп представлена на Фиг. 1. Верхняя линия на дифрактограмме относится к сэвилену 113, средняя - к сэвилену 177, нижняя - к сэвилену 122.

В сэвилене 113 с наименьшим содержанием ВА групп в диапазоне углов дифракции 3-7 град. наблюдаются рефлексы глины. В сэвиленах 117 и 122 рефлексов, относящихся к глине, не наблюдается, что позволяет характеризовать эти композиты, как эксфолиированные. Таким образом, сэвилены с содержанием винилацетатных групп до 14% мас. не пригодны

для получения нанокомпозитных материалов, так как не позволяют осуществить эксфолиирование глины в материале.

Результаты исследования механических свойств нанокомпозитного материала (нанокомпозита) представлены в табл. 2.

Из представленных данных видно, что при содержании наполнителя (модифицированной глины) 40% мас. механические свойства снижаются, хотя предел текучести и деформируемость остается на уровне прототипа. В связи с этим увеличение содержания наполнителя свыше 40% мас. нецелесообразно.

Исследование биоцидных свойств проводят по отношению к культурам стафилококка (Staphylococcus aureus, грамположительный), синегнойной палочки (Pseudomonas aeruginosa, грамотрицательный) и одноклеточным дрожжевым грибам (Candida lipolytica). Исследования проводят по следующей методике.

Сначала из каждой пленки нарезают по 4 образца в форме круга диаметром 1 см, стерилизуют их в стерильном боксе под воздействием жесткого УФ-излучения в течение часа. Культуры выращивают на скошенной агаризованной питательной среде LB в течение трех дней. Жидкую культуру получают в результате смыва культуры пятью мл стерильной жидкой среды LB в агаризованной среде. Полученный смыв добавляют в колбу, в которой содержится 50 мл стерильной среды LB; колбу инкубируют в течение суток при 30°С на качалке 150 об/мин.

На каждый образец наполненного СЭВА готовится по 4 пробирки системы Балч: 3 для культур и одна под холостой опыт (для контроля фоновой окраски). В каждую пробирку добавляют по 2,5 мл жидкой среды LB, после стерилизации пробирок в них стерильно вносят по одному стерильному образцу, далее проводят засев, добавляя в пробирки по 50 мкл культуры соответствующего микроорганизма (в пробирку под холостой опыт культуру не добавляют). После засева образцы инкубируются при 30°С на качалке 150 об/мин в течение суток.

Количественную оценку степени обрастания образцов проводят путем пятнадцатиминутного окрашивания СЭВА с адсорбированными на нем микроорганизмами 1%-ным раствором кристаллического фиолетового и последующим измерением оптической плотности связанного красителя. Проинкубированные образцы отмывают проточной водой от жидкой культуры (или просто среды, в случае холостого опыта), и в те же пробирки добавляют по 1 мл раствора красителя КФ.

По завершении окрашивания образцы в пробирках отмывают от красителя, с помощью пинцета их помещают в специальные планшеты, каждый образец СЭВА заливался 2,0 мл 96% этанола для экстракции связавшегося красителя. Экстракцию проводят в течение 40 минут.

По истечении 40 минут проводят измерение оптической плотности связанного КФ на фотоэлектроколориметре при длине волны 590 нм в стеклянных кюветах с длиной оптического пути 2,5 мм.

Для определения степени обрастания значение оптической плотности раствора связанного КФ образца, засеянного культурой (OD образца), делят на значение оптической плотности холостого опыта (OD сэвилена). Степень стимулирования роста биопленок в образцах с наполнителем оценивают в

процентах относительно роста тех же биопленок в образце СЭВА без добавления полигуанидина по формуле:

Если степень ингибирования роста биопленок на образцах с исследуемыми добавками выше 80%, можно говорить об отсутствии биоцидного эффекта на поверхности материала; для вариантов, где эта величина в диапазоне 10%-80% от контроля, можно говорить о слабом биоцидном эффекте. Материалы, степень ингибирования которых не превышает 10% от контроля, обладают высокими биоцидными свойствами.

Результаты исследований приведены в табл. 3.

Как видно из табл. 3, при содержании биоцидного наполнителя менее 15% мас. в композите на основе сэвилена 117 нанокомпозит проявляет лишь слабые биоцидные свойства по отношению к стафилококку. Только при содержании 15-20% мас. материал проявляет высокие биоцидные свойства

по отношению к стафилококку и слабые (ингибирующие) - по отношению к синегнойной палочке. При содержании наполнителя 30-40% мас. материал проявляет высокие биоцидные свойства по отношению ко всем исследуемым микроорганизмам.

При использовании сэвилена 122 биоцидные свойства наполнителя снижаются слабо: даже при его содержании 5% мас. материал способен ингибировать рост как стафилококка, так и дрожжевых грибов.

Таким образом, предложенный нанокомпозитный материал проявляет биоцидные свойства по отношению ко всем исследуемым микроорганизмам при сохранении достаточно высоких механических свойств.


НАНОКОМПОЗИЦИОННЫЙ БИОЦИДНЫЙ МАТЕРИАЛ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 141.
10.02.2013
№216.012.2309

Коллоидный раствор наночастиц серебра, металл-полимерный нанокомпозитный пленочный материал, способы их получения, бактерицидный состав на основе коллоидного раствора и бактерицидная пленка из металл-полимерного материала

Изобретение может найти применение в качестве стерилизующей среды или антибактериального компонента, в частности, при создании бактерицидных жидких пластырей, компонента при создании материалов для восстановления костных и других тканей организма в репаративной медицине, пленочный материал как...
Тип: Изобретение
Номер охранного документа: 0002474471
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.3256

Катализатор, способ его получения и способ трансалкилирования бензола диэтилбензолами с его использованием

Изобретение относится к катализаторам трансалкилирования. Описан катализатор трансалкилирования бензола диэтилбензолами в виде цилиндрических гранул правильной формы, включающий цеолит типа Y в кислотной Н-форме, который содержит 100 мас.% цеолита со степенью замещения ионов Na на H не менее...
Тип: Изобретение
Номер охранного документа: 0002478429
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.43bc

Способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов

Изобретение относится к способам получения катализаторов. Описан способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов путем алкилирования изобутана олефинами на основе цеолита типа NaNHY при остаточном содержании оксида натрия не более...
Тип: Изобретение
Номер охранного документа: 0002482917
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.49cf

Способ получения биоспецифического гидрогелевого сорбента для выделения протеиназ

Настоящее изобретение относится к области медицины и описывает способ получения биоспецифического гидрогелевого сорбента для выделения протеиназ путем радикальной полимеризации при комнатной температуре под действием окислительно-восстановительного катализатора полимеризации водного раствора,...
Тип: Изобретение
Номер охранного документа: 0002484475
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b74

Способ повышения времени стабильной работы катализатора в реакции гидроалкилирования бензола ацетоном с получением кумола и способ получения кумола гидроалкилированием бензола ацетоном

Изобретение относится к каталитическим процессам получения кумола. Описан способ повышения времени стабильной работы катализатора, содержащего гидрирующий и алкилирующий компоненты, в реакции получения кумола гидроалкилированием бензола ацетоном, включающим послойное размещение гидрирующего и...
Тип: Изобретение
Номер охранного документа: 0002484898
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5369

Способ получения модифицированного титан-магниевого нанокатализатора

Изобретение относится к производству полимеров, а именно: к металлокомплексным катализаторам полимеризации, и может быть использовано для получения транс-1,4-полиизопрена. Описан способ получения модифицированного титан-магниевого нанокатализатора для полимеризации изопренат путем...
Тип: Изобретение
Номер охранного документа: 0002486956
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.56ea

Способ трансалкилирования бензола полиалкилбензолами

Изобретение относится к способу трансалкилирования бензола полиалкилбензолами на цеолитсодержащем катализаторе с получением этилбензола или изопропилбензола. Способ характеризуется тем, что в качестве полиалкилбензолов используют диэтилбензолы или диизопропилбензолы, процесс проводят в...
Тип: Изобретение
Номер охранного документа: 0002487858
Дата охранного документа: 20.07.2013
10.08.2013
№216.012.5c22

Катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии

Изобретение относится к катализаторам получения алифатических углеводородов. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные частицы железа и сформированный in situ непосредственно в зоне реакции в процессе термообработки...
Тип: Изобретение
Номер охранного документа: 0002489207
Дата охранного документа: 10.08.2013
20.09.2013
№216.012.6b82

Способ получения полиакриламидного гидрогеля

Настоящее изобретение относится к способу получения полиакриламидного гидрогеля, который применяется в качестве разделяющей среды в жидкостной хроматографии, в качестве носителя иммобилизованных биологически активных веществ, а также для изготовления эндопротезов мягких тканей. Данный способ...
Тип: Изобретение
Номер охранного документа: 0002493173
Дата охранного документа: 20.09.2013
10.11.2013
№216.012.7caa

Способ получения мембранного катализатора и способ дегидрирования углеводородов с использованием полученного катализатора

Изобретение относится к области создания и использования катализаторов дегидрирования углеводородов, представляющего собой пористую подложку из нержавеющей стали, никеля или меди, на одну сторону которой нанесен слой пиролизованного инфракрасным излучением полиакрилонитрила (ИК-ПАН), а на...
Тип: Изобретение
Номер охранного документа: 0002497587
Дата охранного документа: 10.11.2013
Показаны записи 1-7 из 7.
27.06.2013
№216.012.508c

Способ повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя

Изобретение относится к способу повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя. Согласно способу экструдируют и затем прессуют полученный экструдат. После экструзии проводят рентгеноструктурный анализ РСА экструдата для...
Тип: Изобретение
Номер охранного документа: 0002486213
Дата охранного документа: 27.06.2013
25.08.2017
№217.015.acd9

Способ получения полимерного гидрогеля

Изобретение относится к области химии полимеров и медицины, а именно к способу получения полимерного гидрогеля, который может быть использован в качестве носителя биологически активных веществ при создании гидрогелевых покрытий для лечения ран и ожогов. Полимерный гидрогель получают...
Тип: Изобретение
Номер охранного документа: 0002612703
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.cd3b

Способ получения тонкодисперсного глинистого материала

Изобретение относится к обогащению полезных ископаемых и может быть использовано для получения особо чистых и/или модифицированных глин, приготовления буровых растворов. Технический результат заключается в максимальном удалении кластического материала от глинистых минералов. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002619622
Дата охранного документа: 17.05.2017
25.06.2018
№218.016.6757

Способ получения полимерного биодеградируемого материала

Изобретение относится к разработке способа создания биодеградируемого материала на базе первичного или вторичного полимерного сырья и может быть использовано для получения полимерных материалов, способных к ускоренному фотоокислительному старению. Способ получения полимерного биодеградируемого...
Тип: Изобретение
Номер охранного документа: 0002658415
Дата охранного документа: 21.06.2018
15.10.2018
№218.016.926d

Способы получения соли метакрилоилгуанидина, полимера и сополимера соли метакрилоилгуанидина и полученные полимер и сополимер

Изобретение относится к химии гуанидинсодержащих низкомолекулярных и высокомолекулярных соединений и может найти применение при получении препаратов, способных подавлять рост бактерий. Конкретно изобретение относится к способу получения соли метакрилоилгуанидина, который включает получение...
Тип: Изобретение
Номер охранного документа: 0002669563
Дата охранного документа: 12.10.2018
15.02.2019
№219.016.ba8f

Нанокомпозиционный полимерный биоцидный материал и способ его получения

Группа изобретений относится к области медицины. Предложен нанокомпозиционный полимерный биоцидный материал, содержащий: 5-10 мас.% модифицированной неорганической слоистой глины, полученной из суспензии, содержащей неорганическую слоистую глину и модификатор при их массовом соотношении от...
Тип: Изобретение
Номер охранного документа: 0002679804
Дата охранного документа: 13.02.2019
18.05.2019
№219.017.5b04

Способ получения эксфолиированного нанокомпозита

Изобретение относится к области создания композиционных полимерных материалов. Изобретение может быть использовано для создания материалов, применяемых, в частности, для упаковочных пленок с барьерными свойствами, оболочек для кабелей и других полимерных изделий, в машиностроении....
Тип: Изобретение
Номер охранного документа: 0002443728
Дата охранного документа: 27.02.2012
+ добавить свой РИД