×
15.10.2018
218.016.926d

СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к химии гуанидинсодержащих низкомолекулярных и высокомолекулярных соединений и может найти применение при получении препаратов, способных подавлять рост бактерий. Конкретно изобретение относится к способу получения соли метакрилоилгуанидина, который включает получение метакрилоилгуанидина реакцией гуанидина и метилметакрилата в органическом растворителе и реакцию метакрилоилгуанидина с кислотой. Способ характеризуется тем, что в качестве органического растворителя используют ацетонитрил, а в качестве кислоты – уксусную, трифторуксусную или метакриловую кислоту. Изобретение относится также к способам получения полимера и сополимера соли метакрилоилгуанидина, полимеру и сополимеру соли метакрилоилгуанидина, полученным указанными способами. 5 н. и 3 з.п. ф-лы, 13 ил., 1 табл., 29 пр.
Реферат Свернуть Развернуть

Изобретение относится к химии гуанидинсодержащих низкомолекулярных (мономеров) и высокомолекулярных (полимеров и сополимеров) соединений, конкретно к усовершенствованному способу синтеза производных гуанидина и (со) полимеров из них. Полученные мономеры и (со) полимеры в силу особенностей строения гуанидиновой группы и ее комплексообразующих свойств могут послужить основой различных форм новых бактерицидных препаратов (полимерные растворы, порошки, полимер-полимерные нанокомпозиции, строительные материалы, включая лакокрасочные и др.), в том числе пролонгированного действия для профилактики распространения резистентных бактерий в местах массового скопления людей в помещениях и общественном транспорте, применяться для создания катализаторов для переработки продуктов важнейших процессов нефтехимии, а также как носители лекарственных форм и др.

Известны:

способ получения соли метакрилоилгуанидина, а именно метакрилоилгуанидин гидрохлорида (МГГХ), реакцией с соляной кислотой метакрилоилгуанидина, выделенного из раствора после взаимодействия гуанидина с метилметакрилатом в ацетоне или диоксане, где гуанидин получен растворением при повышенной температуре в метаноле предварительно полученного метилата натрия и реакцией метилата натрия с гуанидингидрохлоридом;

способ получения полимера этой соли радикальной полимеризацией в воде;

способ получения сополимера этой соли с диаллилдиметиламмоний хлоридом радикальной полимеризацией в воде с сомономером;

полученные этими способами полимер и сополимер

[см., А.А. Жанситов, А.И. Мартыненко, Н.И. Попова, Н.А. Сивов // Синтез новых мономеров метакрилоилгуанидина и его гидрохлорида и их способность к радикальной (со)полимеризации Известия ВУЗов. Химия и химическая технология. 2012. Т. 55. №9. с. 46-52]. Данные способы, полимер и сополимер по назначению и совокупности существенных признаков могут быть приняты в качестве наиболее близкого аналога (прототипа) изобретения. Прототип обладает рядом существенных недостатков: синтез соли метакрилоилгуанидина, и, соответственно, полимера и сополимера этой соли является длительным (продолжительность отдельных стадий составляет более суток), в синтезе используют токсичные и пожароопасные компоненты (метанол, щелочной металл натрий).

Целью изобретения является улучшение условий труда и упрощение технологии процесса, а также расширение ассортимента целевых продуктов и получение (со)полимеров с бактерицидными свойствами.

Поставленная цель достигается тем, что в способе получения соли метакрилоилгуанидина, включающем получение метакрилоилгуанидина реакцией гуанидина и метилметакрилата в органическом растворителе и реакцию метакрилоилгуанидина с кислотой, в качестве органического растворителя используют ацетонитрил, а в качестве кислоты - уксусную или трифторуксусную, или метакриловую кислоту.

Гуанидин получают растворением соли гуанидина (гуанидингидрохлорид или дигуанидинкарбонат, предпочтительно используют дигуанидинкарбонат) в этанольном или водном растворе гидроксида натрия при комнатной температуре. В результате проведения реакции по предлагаемым схемам гуанидин получают с количественным выходом. При этом исключается использование как метанола, так и натрия. Далее полученный гуанидин реагирует с метилметакрилатом в органическом растворителе (ацетон, диоксан, ацетонитрил) с получением раствора метакрилоилгуанидина Выход метакрилоилгуанидина (МГУ) составляет 50-65% в расчете на гуанидин. МГУ могут как выделять из раствора, так и не выделять из него. Выходы солей в расчете на МГУ достигают 95% и более. Получают мономерные соли соответствующего строения: метакрилоилгуанидин трифторацетат (МГТФА), метакрилоилгуанидин ацетат (МГАц), метакрилоилгуанидин метакрилат (МГМА), как приведено на схеме:

Поставленная цель также достигается тем, что в способе получения полимера соли метакрилоилгуанидина, включающем радикальную полимеризацию соли метакрилоилгуанидина в растворителе под действием инициаторов радикальной полимеризации и выделение полученного полимера, в качестве соли метакрилоилгуанидина используют соль, полученную заявленным способом, а полимеризацию проводят при 30-80°С.

Структуры полимеров представлены на ниже приведенной схеме:

Еще одна поставленная цель достигается тем, что в способе получения сополимера соли метакрилоилгуанидина, включающий радикальную сополимеризацию мономера - соли метакрилоилгуанидина - с сомономером в растворителе под действием инициаторов радикальной полимеризации и выделение полученного сополимера, в качестве мономера используют соль метакрилоилгуанидина, полученную заявленным способом, в качестве сомономера - диаллилдиметиламмоний хлорид (ДАДМАХ) или метилметакрилат (ММА), или метакриловую кислоту (МАК),, или соль метакрилоилгуанидина, также полученную заявленным способом и отличную от мономера, а указанную сополимеризацию проводят при 20-60°С.

Предпочтительно в качестве растворителя используют ацетон или диметилсульфоксид.

Могут использовать и другие растворители, такие, как вода, метанол.

Применяют обычно используемые инициаторы радикальной полимеризации, например, персульфат аммония или динитрила азобисизомасляной кислоты. Полимеры (гомополимеры) получают с конверсией 47-84%, сополимеры - с конверсией 47-84%.

Поставленная цель также достигается тем, что полимер соли метакрилоилгуанидина получен заявленным способом из соли метакроилгуанидина и трифторуксусной кислоты и обладает свойством подавлять рост бактерий.

Поставленная цель также достигается тем, что сополимер соли метакрилоилгуанидина получен заявленным способом из мономера - соли метакроилгуанидина и трифторуксусной кислоты и сомономера диаллилдиметиламмоний хлорида, и обладает свойством подавлять рост бактерий.

Синтез солей из МГУ и соответствующих кислот в различных растворителях описан в примерах 1-6.

Пример 1.

В двугорлую круглодонную колбу объемом 0.5 л, снабженную мешалкой и обратным холодильником, помещают 16 г (0.4 моль) гидроксида натрия и прикапывают этиловый спирт (200 мл), и перемешивают при комнатной температуре до растворения. В полученный раствор этилата натрия при перемешивании порциями добавляют эквимольное количество (41.7 г, 0.4 моль) 92% гуанидингидрохлорида (ГГХ), перемешивают 3 часа, после чего раствор гуанидина отфильтровывают от выпавшего осадка хлорида натрия, отгоняют на роторном испарителе этанол, остаток сушат в вакуумном шкафу. Получают 23.6 г (выход количественный) твердого гуанидина.

Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 1).

К полученному гуанидину (23.6 г, 0.4 моль), находящемуся в круглодонной колбе, снабженной мешалкой и капельной воронкой, добавляют 300 мл ацетона. Затем при перемешивании капают в смесь гуанидина и растворителя в течение часа при комнатной температуре ММА (51,6 мл, 0,48 моль). В процессе взаимодействия ММА и гуанидина образуется осадок нерастворимого побочного продукта (циклический аналог МГУ). Раствор перемешивают 3 часа при комнатной температуре. По окончании реакции образовавшийся циклический побочный продукт отфильтровывают. После удаления растворителя на роторном испарителе остаток сушат в вакууме при комнатной температуре. Получают 32.5 г МГУ (выход 64%).

Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 2).

Полученный МГУ (12.7 г, 0.1 моль) помещают в плоскодонную колбу с магнитной мешалкой и растворяют в 100 мл ацетона. Раствор охлаждают смесью льда с поваренной солью до - (5-10)°С. Затем прикапывают раствор 32%-ной соляной кислоты (10 мл, 0.1 моль) в 10 мл ацетона (0.5 часа); температура в реакционной массе не превышала - (5) - 0°С. После добавления всего количества соляной кислоты раствор перемешивают еще 0.5 часа при комнатной температуре. Выпавший белый осадок метакрилоилгуанидин гидрохлорида (МГГХ) отфильтровывают на стеклянном фильтре, промывают абсолютными ацетоном и диэтиловым эфиром и сушат в вакууме при комнатной температуре. Получают 16 г МГГХ (выход 97%). Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 3).

Пример 2.

Метакрилоилгуанидин трифторацетат (МГТФА) получают как в примере 1. Отличие состоит в том, что в качестве кислоты используют трифторуксусную кислоту (11.4 г, 0.1 моль в 10 мл ацетона). Получают 18.3 г соли (выход 76%). Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 4)

Пример 3.

МГТФА получают как в примере 2. Отличие состоит в том, что в качестве растворителя используют ацетонитрил (100 мл). В этом случае соль не выпадает, раствор упаривается до 20 мл, а затем выпавшую соль фильтруют и перекристаллизовывают из ацетонитрила. Получают 17.1 г соли (выход 71%).

Пример 4.

Метакрилоилгуанидин ацетат (МГАц) получают как в примере 1. Отличие состоит в том, что в качестве кислоты используют уксусную кислоту (6.0 г, 0.1 моль в 10 мл ацетона). Получают 18.5 г соли (выход 99%).

Пример 5.

МГАц получают как в примере 4. Отличие состоит в том, что в качестве растворителя используют ацетонитрил (100 мл). Получают 17.6 г соли (выход 94%). Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 5).

Пример 6.

Метакрилоилгуанидин метакрилат (МГМА) получают как в примере 1. Отличие состоит в том, что МГУ берут вдвое меньше и в качестве кислоты используют метакриловую кислоту (4.3 г, 0.05 моль в 10 мл ацетона). Получают 8.7 г соли (выход 82%). Структура и чистота полученного вещества была подтверждена методом ЯМР спектроскопии (Фиг. 6).

Синтез полимеров из синтезированных солей описан в примерах (П) 7-23.

Полимеры синтезируют методом радикальной полимеризации мономеров (М) в различных растворителях (Р, ДМСО - диметилсульфоксид) при 30-80°С под действием инициаторов (И) персульфата аммония (ПСА) и динитрила азобисизомасляной кислоты (ДАК) при концентрации мономеров 0.4 моль/л и концентрации инициатора (2.5-10)×10-3 моль/л и за определенное время (t). Раствор мономера и инициатора помещают в ампулу, трижды дегазируют, отпаивают и помещают в термостат. По окончании процесса полимер выделяют (В) высаживанием в ацетон (А), диализом (Д), фильтрованием (Ф). Экспериментальные данные по примерам 22-35 приведены в таблице 1 (К - конверсия, [η] - характеристическая вязкость, определяют при 30°С в 0.5 н водном растворе хлорида натрия в вискозиметре Убеллоде). Спектры ЯМР гомополимеров представлены на Фиг. 7-9.

Пример 21

Поли-МГГХ получают как в примере 10. Отличие состоит в том, что раствор МГГХ (13 г) и ПСА (0.29 г) в 200 мл дистиллированной воды помещают не в ампулу, а в колбу и продувают инертным газом аргоном. Колбу, снабженную обратным холодильником, помещают в термостат на 16 часов. Получают 11.6 г полимера (конверсия 89%), [η]=0.32 дл/г.

Пример 22

Поли-МГГХ получают как в примере 21. Отличие состоит в том, что раствор МГГХ и ПСА в дистиллированной воде в колбе не продувают инертным газом аргоном. Получают 8.7 г полимера (конверсия 67%), [η]=0.11 дл/г.

Пример 23

Поли-МГМА получают как в примере 21. Отличие в том, что раствор объемом 25 мл готовят из 2.13 г МГМА и 0.029 г ПСА и дистиллированной воды (остальное). Полимер образуется в виде осадка, который отфильтровывают и промывают на фильтре водой. Получают 1.55 г полимера (конверсия 73%).

Синтез сополимеров из синтезированных солей описан в примерах 24-29; их синтезируют методом радикальной сополимеризации сомономеров в различных растворителях под действием инициаторов ПСА и ДАК. Раствор сомономеров и инициатора помещают в ампулу, трижды дегазируют, отпаивают либо помещают в колбу, снабженную обратным холодильником, и продувают инертным газом аргоном. Раствор в ампуле или в колбе термостатируют. По окончании процесса сополимер выделяют высаживанием в ацетон, диализом или фильтрованием.

Пример 24

Помещают в колбу 32.8 г МГГХ и 70 мл концентрированного раствора ДАДМАХ (содержание мономера 32.4 г) в колбу, снабженную обратным холодильником, прибавляют дистиллированную воду до общего объема реакционной смеси 200 мл. После чего продувают аргоном, добавляют 0.228 г ПСА и помещают в термостат, нагретый до 60°С. Реакционную массу выдерживают при этой температуре 13 часов, после чего для выделения сополимера МГГХ и ДАДМАХ высаживают реакционный раствор в 1200 мл ацетона. Выпавший сополимер отфильтровывают и промывают ацетоном и эфиром. После чего сушат в вакуумном шкафу при температуре 50-55°С. Получают 49.7 г сополимера (конверсия 76%). [η]=0.95 дл/г. Содержание МГГХ в сополимере по данным ЯМР 69 мол. % (Фиг. 10).

Структурная формула

Пример 25

Сополимер МГТФА и ДАДМАХ получают как в примере 24. Отличие состоит в том, что раствор готовят объемом 50 мл из МГТФА (6.0 г), ДАДМАХ (4.0 г) и ПСА (0.114 г) в дистиллированной воде; колбу, помещают в термостат на 19 часов; по окончании процесса реакционный раствор диализуют относительно воды; содержимое диализного мешка упаривают и сушат в вакуумном шкафу при температуре 50-55°С. Получают 6.0 г сополимера (конверсия 60%). [η]=0.21 дл/г. Содержание МГТФА в сополимере по данным ЯМР 90 мол. % (Фиг. 11).

Структурная формула:

Пример 26

Сополимер МГТФА и ММА получают как в примере 24. Отличие состоит в том, что сополимеризацию проводят в ампуле, в качестве растворителя используют ацетон; МГТФА берут 4.8 г, в качестве второго сомономера используют ММА (2.0 г), в качестве инициатора используют ДАК (0.041 г) и время сополимеризации составляет 9 часов. Получают 4.0 г сополимера (конверсия 59%). [η]=0.14 дл/г. Содержание МГТФА в сополимере по данным ЯМР 60 мол. % (Фиг. 12).

Структурная формула:

Пример 27

Сополимер МГАц и ММА получают как в примере 26. Отличие состоит в том, что в качестве растворителя используют ДМСО; МГАц берут 3.7 г, время сополимеризации составляет 6 часов и сополимер выделяют высаживанием в ацетон. Получают 2.7 г сополимера (конверсия 47%). Содержание МГАц в сополимере по данным элементного анализа и ЯМР составляет 37 мол. % (Фиг. 13).

Структурная формула:

Пример 28

Сополимер МГАц и МАК получают как в примере 27. Отличие состоит в том, что в качестве второго сомономера используют МАК (1.72 г), время сополимеризации составляет 4 часов, сополимер в процессе сополимеризации выпадал в осадок и его отфильтровывают и промывают растворителем. Получают 4.5 г сополимера (конверсия 84%). Содержание МГАц в сополимере по данным элементного анализа составляет 40 мол. %. найдено: % N, 13.17, вычислено: % N, МГАц 22.45, МАК 0.00.

Пример 29

Сополимер МГГХ и МГТФА получают как в примере 24. Отличие состоит в том, что раствор готовят объемом 50 мл из МГГХ (1.64 г), МГТФА (2.41 г) и ПСА (0.057 г) в дистиллированной воде и реакционную массу в колбе перемешивают на магнитной мешалке 8 суток при комнатной температуре (20-25°С). Получают 2.76 г сополимера (конверсия 68%). [η]=1.27 дл/г. Содержание МГГХ в сополимере по данным элементного анализа 67 мол. %. Найдено, (N/C) сополимера = 0.618; вычислено: МГГХ - % N 25.68, % С 36.71; МГТФА - % N 17.42, % С 34.86.

Испытание биоцидных (бактерицидных) свойств

Минимальную подавляющую концентрацию (МПК) определяют по эффективности обеззараживания тест-поверхности (стекло), контаминированной тест-микроорганизмом (S. aureus штамм 906), способом протирания (норма расхода 100 мл/м2) при концентрации раствора 5% и ниже (снижение концентрации проводят последовательным двойным разбавлением) и времени выдержки 60 мин. Концентрацию, при которой не наблюдается роста бактерий или он минимален (менее 0.01%), можно считать минимальной подавляющей концентрацией (МПК).

Испытания подтверждают способность заявленных полимеров и сополимеров эффективно подавлять рост бактерий.


СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
СПОСОБЫ ПОЛУЧЕНИЯ СОЛИ МЕТАКРИЛОИЛГУАНИДИНА, ПОЛИМЕРА И СОПОЛИМЕРА СОЛИ МЕТАКРИЛОИЛГУАНИДИНА И ПОЛУЧЕННЫЕ ПОЛИМЕР И СОПОЛИМЕР
Источник поступления информации: Роспатент

Показаны записи 1-10 из 141.
10.02.2013
№216.012.2309

Коллоидный раствор наночастиц серебра, металл-полимерный нанокомпозитный пленочный материал, способы их получения, бактерицидный состав на основе коллоидного раствора и бактерицидная пленка из металл-полимерного материала

Изобретение может найти применение в качестве стерилизующей среды или антибактериального компонента, в частности, при создании бактерицидных жидких пластырей, компонента при создании материалов для восстановления костных и других тканей организма в репаративной медицине, пленочный материал как...
Тип: Изобретение
Номер охранного документа: 0002474471
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.3256

Катализатор, способ его получения и способ трансалкилирования бензола диэтилбензолами с его использованием

Изобретение относится к катализаторам трансалкилирования. Описан катализатор трансалкилирования бензола диэтилбензолами в виде цилиндрических гранул правильной формы, включающий цеолит типа Y в кислотной Н-форме, который содержит 100 мас.% цеолита со степенью замещения ионов Na на H не менее...
Тип: Изобретение
Номер охранного документа: 0002478429
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.43bc

Способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов

Изобретение относится к способам получения катализаторов. Описан способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов путем алкилирования изобутана олефинами на основе цеолита типа NaNHY при остаточном содержании оксида натрия не более...
Тип: Изобретение
Номер охранного документа: 0002482917
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.49cf

Способ получения биоспецифического гидрогелевого сорбента для выделения протеиназ

Настоящее изобретение относится к области медицины и описывает способ получения биоспецифического гидрогелевого сорбента для выделения протеиназ путем радикальной полимеризации при комнатной температуре под действием окислительно-восстановительного катализатора полимеризации водного раствора,...
Тип: Изобретение
Номер охранного документа: 0002484475
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b74

Способ повышения времени стабильной работы катализатора в реакции гидроалкилирования бензола ацетоном с получением кумола и способ получения кумола гидроалкилированием бензола ацетоном

Изобретение относится к каталитическим процессам получения кумола. Описан способ повышения времени стабильной работы катализатора, содержащего гидрирующий и алкилирующий компоненты, в реакции получения кумола гидроалкилированием бензола ацетоном, включающим послойное размещение гидрирующего и...
Тип: Изобретение
Номер охранного документа: 0002484898
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5369

Способ получения модифицированного титан-магниевого нанокатализатора

Изобретение относится к производству полимеров, а именно: к металлокомплексным катализаторам полимеризации, и может быть использовано для получения транс-1,4-полиизопрена. Описан способ получения модифицированного титан-магниевого нанокатализатора для полимеризации изопренат путем...
Тип: Изобретение
Номер охранного документа: 0002486956
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.56ea

Способ трансалкилирования бензола полиалкилбензолами

Изобретение относится к способу трансалкилирования бензола полиалкилбензолами на цеолитсодержащем катализаторе с получением этилбензола или изопропилбензола. Способ характеризуется тем, что в качестве полиалкилбензолов используют диэтилбензолы или диизопропилбензолы, процесс проводят в...
Тип: Изобретение
Номер охранного документа: 0002487858
Дата охранного документа: 20.07.2013
10.08.2013
№216.012.5c22

Катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии

Изобретение относится к катализаторам получения алифатических углеводородов. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные частицы железа и сформированный in situ непосредственно в зоне реакции в процессе термообработки...
Тип: Изобретение
Номер охранного документа: 0002489207
Дата охранного документа: 10.08.2013
20.09.2013
№216.012.6b82

Способ получения полиакриламидного гидрогеля

Настоящее изобретение относится к способу получения полиакриламидного гидрогеля, который применяется в качестве разделяющей среды в жидкостной хроматографии, в качестве носителя иммобилизованных биологически активных веществ, а также для изготовления эндопротезов мягких тканей. Данный способ...
Тип: Изобретение
Номер охранного документа: 0002493173
Дата охранного документа: 20.09.2013
10.11.2013
№216.012.7caa

Способ получения мембранного катализатора и способ дегидрирования углеводородов с использованием полученного катализатора

Изобретение относится к области создания и использования катализаторов дегидрирования углеводородов, представляющего собой пористую подложку из нержавеющей стали, никеля или меди, на одну сторону которой нанесен слой пиролизованного инфракрасным излучением полиакрилонитрила (ИК-ПАН), а на...
Тип: Изобретение
Номер охранного документа: 0002497587
Дата охранного документа: 10.11.2013
Показаны записи 1-7 из 7.
27.06.2013
№216.012.508c

Способ повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя

Изобретение относится к способу повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя. Согласно способу экструдируют и затем прессуют полученный экструдат. После экструзии проводят рентгеноструктурный анализ РСА экструдата для...
Тип: Изобретение
Номер охранного документа: 0002486213
Дата охранного документа: 27.06.2013
25.08.2017
№217.015.acd9

Способ получения полимерного гидрогеля

Изобретение относится к области химии полимеров и медицины, а именно к способу получения полимерного гидрогеля, который может быть использован в качестве носителя биологически активных веществ при создании гидрогелевых покрытий для лечения ран и ожогов. Полимерный гидрогель получают...
Тип: Изобретение
Номер охранного документа: 0002612703
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.cd3b

Способ получения тонкодисперсного глинистого материала

Изобретение относится к обогащению полезных ископаемых и может быть использовано для получения особо чистых и/или модифицированных глин, приготовления буровых растворов. Технический результат заключается в максимальном удалении кластического материала от глинистых минералов. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002619622
Дата охранного документа: 17.05.2017
25.06.2018
№218.016.6757

Способ получения полимерного биодеградируемого материала

Изобретение относится к разработке способа создания биодеградируемого материала на базе первичного или вторичного полимерного сырья и может быть использовано для получения полимерных материалов, способных к ускоренному фотоокислительному старению. Способ получения полимерного биодеградируемого...
Тип: Изобретение
Номер охранного документа: 0002658415
Дата охранного документа: 21.06.2018
08.02.2019
№219.016.b80a

Нанокомпозиционный биоцидный материал

Изобретение относится к области медицины и народного хозяйства, а именно к нанокомпозиционному биоцидному полимерному материалу, включающему 5-40 мас.% неорганической слоистой глины, модифицированной сополимером полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина, и 60-95 мас.%...
Тип: Изобретение
Номер охранного документа: 0002679147
Дата охранного документа: 06.02.2019
15.02.2019
№219.016.ba8f

Нанокомпозиционный полимерный биоцидный материал и способ его получения

Группа изобретений относится к области медицины. Предложен нанокомпозиционный полимерный биоцидный материал, содержащий: 5-10 мас.% модифицированной неорганической слоистой глины, полученной из суспензии, содержащей неорганическую слоистую глину и модификатор при их массовом соотношении от...
Тип: Изобретение
Номер охранного документа: 0002679804
Дата охранного документа: 13.02.2019
18.05.2019
№219.017.5b04

Способ получения эксфолиированного нанокомпозита

Изобретение относится к области создания композиционных полимерных материалов. Изобретение может быть использовано для создания материалов, применяемых, в частности, для упаковочных пленок с барьерными свойствами, оболочек для кабелей и других полимерных изделий, в машиностроении....
Тип: Изобретение
Номер охранного документа: 0002443728
Дата охранного документа: 27.02.2012
+ добавить свой РИД