×
18.05.2019
219.017.5b04

СПОСОБ ПОЛУЧЕНИЯ ЭКСФОЛИИРОВАННОГО НАНОКОМПОЗИТА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области создания композиционных полимерных материалов. Изобретение может быть использовано для создания материалов, применяемых, в частности, для упаковочных пленок с барьерными свойствами, оболочек для кабелей и других полимерных изделий, в машиностроении. Эксфолиированный нанокомпозит полимер/глина получают смешением матричного полимера и нанонаполнителя - глины, модифицированной четвертичной аммониевой солью, проводят со сдвиговым измельчением при температуре выше температуры плавления матричного полимера до концентрации нанонаполнителя 51-70% мас. Затем в полученную смесь добавляют матричный полимер до концентрации нанонаполнителя - 0,1-30% мас. Изобретение позволяет повысить эффективность эксфолиации глины, механические свойства нанокомпозита, снизить энергетические затраты на его получение. 2 табл., 12 ил., 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к области создания нанокомпозитов на основе композиционных полимерных материалов с наноразмерными наполнителями и может быть использовано для создания материалов, применяемых, в частности, в полимерной индустрии и машиностроении.

Одним из наиболее перспективных направлений развития современной химической технологии является производство и использование материалов, содержащих наночастицы, например, нанокомпозитов на основе органического полимера и неорганического нанонаполнителя - слоистого силиката. При уменьшении размеров частиц вещества до нанометрового диапазона изменяются его свойства, что объясняется высокой удельной поверхностью наночастиц. Однако высокая поверхностная энергия частиц, позволяющая в принципе получить материалы с уникальными свойствами, является в то же время препятствием для их равномерного распределения в полимерной матрице. Поэтому важнейшей задачей при получении полимерных нанокомпозитов является создание условий для раздвижения силикатных пластин и обеспечения интеркаляции полимерных цепей в межслоевые пространства с ограниченной геометрией. Для этого используют различные приемы:

- модифицирование глины различными поверхностно-активными веществами (ПАВ), в том числе функционализированными (в частности, малеинизированными) полимерами (полиэтилен или полипропилен), которые, благодаря наличию функциональных групп в цепи, способны прививаться к поверхности глины;

- создание высоких напряжений сдвига при смешении компонентов в расплаве и/или значительное увеличение времени их смешения;

- проведение процесса расслоения (эксфолиирования) глины при твердофазном (ниже температуры плавления полимера) сдвиговом измельчении предварительно смешанного в расплаве композита.

Модифицирование глины малеинизированными полимерами, как правило, применяют при использовании в качестве полимерной матрицы композита полиэтилена или полипропилена, что является определенным ограничением для первого технологического приема.

Для второго - требуется использование шнеков сложной формы для создания высоких напряжений сдвига при смешении композитов в расплаве полимера. Кроме того, для каждого состава приходится проводить подбор оборудования и условий смешения для достижения эксфолиирования глины. К тому же увеличение времени смешения композитов для достижения эксфолиирования глины снижает производительность оборудования.

В третьем случае проведение процесса эксфолиирования глины при твердофазном сдвиговом измельчении предварительно смешанного в расплаве композита требует больших затрат энергии и опять-таки использования специальных шнеков и оборудования высокой мощности.

Известен метод получения эксфолиированных нанокомпозитов полимер/глина посредством твердофазного сдвигового измельчения (патент US №7223359). По этому методу эксфолиированные нанокомпозиты заданного состава (с низкими степенями наполнения) получают в две стадии. На первой наполнитель, предварительно модифицированный поверхностно-активным веществом - ПАВ (для улучшения совместимости с полимером), смешивают с расплавом полимера. Далее охлажденную ниже температуры плавления матрицы композицию перерабатывают в двухшнековом экструдере, в процессе чего в результате приложения больших сдвиговых напряжений происходит разделение слоистого силиката (глины) на отдельные пластины.

К недостаткам известного метода относится:

- необходимость в предварительном смешении компонентов в расплаве полимера;

- необходимость охлаждения композиции на второй стадии процесса - твердофазном сдвиговом измельчении;

- переработка полимерных смесей при температуре ниже температуры размягчения требует повышенных затрат энергии.

Наиболее близким к заявленному изобретению (прототипом) является способ получения эксфолиированного нанокомпозита полимер/глина (патент ЕР №1055706). По этому способу нанонаполнитель - глину, модифицированную ПАВ - четвертичной аммониевой солью, смешивают с карбоновой кислотой или сульфокислотой, а затем в экструдере с расплавленным полимером при сдвиговом измельчении. При этом количество модифицированной глины составляет 1-40% мас. от полимера.

Недостатками прототипа являются повышенные энергетические затраты на получение нанокомпозита.

Задача, на решение которой направлено предлагаемое изобретение, - повышение эффективности эксфолиации глины, повышение механических свойств нанокомпозита, снижение энергетических затрат на его получение.

Для решения этой задачи эксфолиированный нанокомпозит полимер/глина получают посредством смешения совместно со сдвиговым измельчением матричного полимера и нанонаполнителя - глины, предварительно модифицированной ПАВ - четвертичной аммониевой солью, при температуре выше температуры плавления матричного полимера. Смешение осуществляют до концентрации нанонаполнителя 51-70% мас., после чего при указанной температуре в полученную высококонцентрированную смесь добавляют матричный полимер до концентрации нанонаполнителя 0,1-30% мас.

В качестве глины могут быть использованы монтмориллонит, другие глины группы смектита, вермикулит.

В качестве полимеров могут быть использованы полиолефины, поликарбонаты, полистирол, полиметилметакрилат, поливинилхлорид и другие высокомолекулярные соединения с неполярными или слабополярными макромолекулами. Например, смешение модифицированной глины с полиэтиленом проводят при 160-180°С, полипропиленом - при 180-220°С, поликарбонатом - при 300-340°С и т.д. При этом для достижения напряжений сдвига, обеспечивающих эксфолиирование глины, значительно увеличивают содержание нанонаполнителя (далее наполнителя) в смеси - до 51-70% мас., то есть готовят высококонцентрированную смесь (суперконцентрат). Для улучшения совместимости с полимером наполнитель предварительно модифицируют ПАВ - четвертичными аммониевыми солями с алифатическими цепями различной длины и структуры (одно-, двух- и трехцепными). Для получения собственно нанокомпозита полученный суперконцентрат, содержащий эксфолиированную глину, разбавляют до требуемой (относительно низкой) концентрации наполнителя - 0,1-30% мас. - чистым полимером. В композициях, полученных в результате подобного разбавления, глина находится преимущественно в эксфолиированном состоянии.

Методика приготовления нанокомпозитов на основе полимеров и модифицированного монтмориллонита

Приготовление композиционных материалов проводили методом смешения модифицированного монтмориллонита (ММТ) в расплаве матричного полимера. Смешение проводили в двухшнековом экструдере Haake MiniLab, Германия, при 100 об/мин в течение 15 мин, с последующей экструзией. При использовании полиэтилена или полипропилена температура составляла 180°С. Нанокомпозиты получали двумя путями:

- прямое смешение чистого полимера и модифицированного ММТ в необходимой пропорции (по прототипу);

- предварительное получение суперконцентрата с последующим его разбавлением чистым полимером до необходимой степени наполнения.

Методика приготовления пленок из нанокомпозитов

Полученные композиты (нанокомпозиты) измельчали и прессовали навеску 0.6 г в алюминиевом кольце при температуре 180°С и давлении 0.7 МПа в течение 5 мин между листами алюминиевой фольги. Полученную пленку закаливали в холодной воде в течение 30 сек.

Рентгеноструктурный анализ

Измерения методом рентгеноструктурного анализа (РСА) проводили при 20°С на 12 кВт-генераторе с вращающимся анодом фирмы Rigaku, Япония, с регистрацией дифракционной картины посредством двумерного позиционно-чувствительного детектора GADDS фирмы Bruker AG, Германия (фоторентгенограммы) или сцинтилляционного счетчика (дифрактограммы). Использовали монохроматизированное графитовым монокристаллом медное излучение CuKα (длина волны λ=0.154 нм).

Композиты исследовали в виде прессованных пленок в больших и малых углах дифракции, использовали режимы съемки на отражение и на просвет.

Механические испытания

Испытания проводили на разрывной машине Instron 1121, Англия. Испытывали двухсторонние "лопатки" с длиной рабочей части 10 мм, шириной 3 мм. Образцы деформировали до различной кратности растяжения со скоростью 5 мм/мин. Определение поперечного сечения образца осуществляли с помощью микрометра. Испытанные «лопатки» имели толщину 0.15-0.20 мм. Механические характеристики определяли статистическим усреднением измерений минимум для пяти образцов.

Пример 1

Нанокомпозиты на основе полиэтилена

Структура наполнителя в исследуемых композитах была изучена методом РСА. На Фиг.1 представлены широкоугловые дифрактограммы в режиме съемки на отражение для композитов на основе полиэтилена (ПЭ). Рассчитанные по рентгенограммам значения межплоскостных расстояний ММТ d0001 суммированы в табл.1.

Для модифицированной глины МГ1, представляющей собой натриевый монтмориллонит (Na+-MMT), модифицированный четвертичной аммониевой солью - диоктадецилдиметиламмонийбромидом (ДОДАБ), и композитов на основе ПЭ, имеющего температуру плавления (минимум пика на термограмме - 123°С) на рентгенограммах наблюдаются три базальных рефлекса глины (табл.1).

Таблица 1
Значения межплоскостного расстояния в МГ1 и композитах с матрицей из ПЭ, приготовленных смешением в расплаве
Образец Содержание МГ1, % мас. d001, нм
МГ1 100.0 2.7, 2.1 1.1
ПЭ 20.0 3.1 1.4
30.8 3.3 1.4
46.2 1.4
61.5 - 1.4

Это означает, что в Na+-MMT, модифицированном ДОДАБ в количестве, соответствующем одной емкости катионного обмена, присутствуют три типа кристаллитов, которые имеют межплоскостные расстояния 2.7, 2.1 и 1.1 нм, соответственно (Фиг.1, нижняя кривая).

На рентгенограммах композитов, содержащих 20.0 и 30.8% мас. МП, присутствуют два рефлекса с межплоскостными расстояниями 3.2 нм и 1.4 нм. Это означает, что в процессе расплавного смешения происходит интеркаляция примерно одного слоя молекул полимера в межпакетные промежутки с начальной высотой 2.7 нм (прирост высоты 0.5 нм). При этом промежутки с начальным размером 2.1 нм при насыщении полимером раздвигаются больше, также достигают размера 3.2 нм, образуя интеркалированные нанокомпозиты.

В системах с более высокими концентрациями наполнителя наблюдается лишь один рефлекс, соответствующий межпакетному расстоянию 1.4 нм, что соответствует проникновению 1 молекулы ПЭ в тактоиды ММТ с межплоскостными расстояниями около 1.1 нм. Отсутствие рефлексов в диапазоне углов менее 5 градусов свидетельствует о полном разрушении в процессе смешения тактоидов с начальными межпакетными расстояниями 2.7 и 2.1 нм при наполнениях 46.2 и 61.5% мас. Это свидетельствует о формировании при смешении нанокомпозитов смешанного типа, в которых содержатся преимущественно полностью эксфолиированные силикатные пластины и остаточные интеркалированные полимером тактоиды.

На фоторентгенограммах (Фиг.2), зарегистрированных при боковой съемке (первичный пучок направлен «в торец» образца-пленки), в области углов 2θ примерно 3° наблюдается рефлекс от модифицированного ММТ, которому соответствует межплоскостное расстояние d - 3.5 нм. Интенсивность этого максимума постепенно увеличивается в ряду концентраций от 5 до 20% мас. МГ1, но при достижении степени наполнения 30% рефлекс становится менее четким, а при дальнейшем увеличении количества МГ1 в композите полностью исчезает. Аналогичная ситуация имеет место и при съемке на отражение.

Исчезновение брэгговского максимума, наблюдаемого при всех видах съемки, свидетельствует о потере периодичности в расположении силикатных слоев, и, следовательно, о расслоении кристаллитов ММТ на отдельные пластины, то есть об эксфолиации частиц наполнителя.

Эксфолиирование глины наблюдается в композитах, полученных лишь при высоких концентрациях ММТ.

Пример 2

Нанокомпозиты на основе поликарбоната

Композиты на основе поликарбоната (ПК), имеющего температуру плавления (минимум пика на термограмме) - 220°С, и модифицированной глины Cloisite 30В, представляющей собой монтмориллонит, обработанный четвертичной аммониевой солью формулы:

где Т - природная алкилсодержащая смесь приблизительно 65% C18H37, 30% С16Н33 и 5% C14H29, а анионом является хлорид, получали в две стадии. Сначала готовили при температуре 320°С смесь полимера и глины с содержанием наполнителя 61,5% мас. («суперконцентрат»). Далее концентрированную смесь разбавляли чистым полимером до требуемого содержания наполнителя. На Фиг.3 представлены широкоугловые дифрактограммы в режиме съемки на отражение для суперконцентрата и композитов, полученных при его разбавлении чистым полимером.

Из приведенных данных видно, что структура наполнителя в нанокомпозитах, полученных через «суперконцентрат», образуются нанокомпозиты смешанного типа, состоящие из эксфолиированных тактоидов и слабоинтеркалированных тактоидов глины.

Механические свойства

На фигурах 4-5 показаны номинальные деформационные кривые для исходного ПЭ и композитов на его основе. Механические характеристики образцов приведены в табл.2.

Таблица 2
Механические характеристики для ПЭ и композитов на его основе
Тип композита Содержание МГ1, % мас. Е*, МПа σт, МПа εт, % σр, МПа εp, %
Чистый полимер 0 480 16,6 15 29,2 880
Интеркалированный (полученный прямым смешением полимера и МГ1) 20.0 550 15,7 16 24,7 860
30.8 700 15,9 13 20,5 740
Смешанный 5.0 515 17.6 14 24.2 915
10.0 525 17.4 13 22.6 890
20.0 545 18.3 16 19.1 870
30.0 540 17.4 17 16.9 810
46.2 540 13,8 15 11,9 710
61.5 495 11,7 13 10,9 40
* Модуль упругости определяли на начальном линейном участке кривой нагружения

Здесь Е - модуль упругости, σт - предел текучести, σр - прочность, εт и εp - относительное удлинение при соответствующей нагрузке.

В композитах модуль упругости и верхний предел текучести при наполнении изменяются слабо, но эти материалы сохраняют высокую деформируемость вплоть до концентрации наполнителя 46% мас.

В интеркалированных нанокомпозитах наблюдается значительное увеличение модуля упругости, падение прочности и деформируемости с ростом содержания наполнителя. В нанокомпозитах смешанного типа, в которых имеются как эксфолиированные, так и незначительно интеркалированные кристаллиты наполнителя (с преобладанием эксфолиированных тактоидов глины), модуль упругости растет незначительно, растет предел текучести, падает прочность и сохраняется высокая способность к деформации.

Реологические свойства

Определение реологических свойств полученных нанокомпозитов различного типа показало, что в композитах с интеркалированным наполнителем вязкость возрастает по сравнению с чистым полимером, а в нанокомпозитах со значительным содержанием эксфолиированной глины вязкость падает с увеличением содержания наполнителя (Фиг.6.).

Пример 3

Нанокомпозиты на основе поликарбоната

В композитах, приготовленных смешением в расплаве и содержащих небольшие количества Cloisite 30В, на рентгенограммах (Фиг.7) присутствуют брэгговские рефлексы, локализованные при угле 2θ, равном приблизительно 5.8°, и отвечающие межплоскостным расстояниям около 1.5 нм, что соответствует межплоскостному расстоянию предварительно высушенной глины данной марки. Таким образом, при небольших содержаниях наполнителя при смешении формируется микрокомпозит, в котором тактоиды глины не интеркалированы матричным полимером, а только равномерно распределены в нем.

Дифракционная картина суперконцентрата, полученного смешением в расплаве с соотношением Cloisite 30В/ПК - 1:1, кроме рефлекса, отвечающего межплоскостному расстоянию около 1.5 нм (который наблюдается и на рентгенограммах образцов, приготовленных смешением в расплаве с изначально небольшим количеством наполнителя), содержит дополнительный рефлекс в малоугловой области, положение которого соответствует межплоскостному расстоянию 3.4 нм (Фиг.8). Сравнение интенсивностей и полуширин этих рефлексов доказывает, что базальный рефлекс при 2θ приблизительно 6° не является вторым порядком отражения рефлекса при 2θ приблизительно 2.6°. Таким образом, можно заключить, что в приготовленной данным способом системе наблюдаются два типа кристаллитов глины - интеркалированные и исходные. Значительно большая полуширина рефлекса при 2θ приблизительно 2.6° свидетельствует о существенно меньших размерах интеркалированных кристаллитов. Другим возможным объяснением расширения рефлекса является существенное нарушение изначальной периодичности в расположении слоев наполнителя, вызванное проникновением молекул полимера в некоторые межслоевые пространства некоторых частиц глины.

У композитов, которые получали разбавлением суперконцентрата, на рентгенограмме также присутствует рефлекс, отвечающий межплоскостным расстояниям около 1.5 нм (Фиг.8). Однако, при этом рефлекс 3.4 нм, который был в исходном материале, отсутствует. Единственно возможным объяснением этого факта является эксфолиация части кристаллитов глины, в которых силикатные слои были предварительно раздвинуты до 3.4 нм еще на стадии приготовления суперконцентрата смешением в расплаве при больших сдвиговых напряжениях, а затем распались на отдельные изолированные элементы в процессе смешения с избыточным полимером.

Механические свойства

Механические свойства композитов иллюстрируют фигуры 9-12. Введение в ПК модифицированной глины Cloisite 30B приводит к увеличению модуля упругости (обозначенного на фигуре как модуль) в композите, при сохранении предела текучести на уровне чистого ПК. Прочность и удлинение при разрыве становятся несколько меньше, чем у чистого полимера. В композите, полученном разбавлением суперконцентрата Cloisite 30В/ПК, все механические характеристики несколько выше, чем в композите, полученном обычным способом.

Таким образом, применение модифицированной глины Cloisite 30B в смесях с ПК при отсутствии интеркалирования цепей полимера в межслоевые пространства частиц глины, приводит к некоторому улучшению механических свойств материала по сравнению с композитами, содержащими не модифицированную глину. Частичное интеркалирование макромолекул полимера, достигаемое в результате изготовления суперконцентрата в расплаве при больших сдвиговых напряжениях, и дальнейшее диспергирование этих частиц вплоть до отдельных силикатных пластин при разбавлении (частичная эксфолиация), приводит к формированию композитов смешанного типа и, как следствие, обеспечивает повышение механических свойств материала в целом.

Изобретение позволяет получить следующие технические результаты:

А. Существенное повышение эффективности процесса эксфолиации тактоидов глины на отдельные нанопластины.

Б. Получение нанокомпозитов с различной концентрацией наполнителя от слабонаполненных до высококонцентрированных.

В. Снижение энергетических затрат.

Г. Повышение механических свойств нанокомпозитов.

Полученный нанокомпозит может быть использован для изготовления пленок с барьерными свойствами, применяемых в упаковке, оболочек для кабелей со свойствами самозатухания и других полимерных изделий.

Способ получения эксфолиированного нанокомпозита полимер/глина посредством смешения совместно со сдвиговым измельчением матричного полимера и нанонаполнителя - глины, предварительно модифицированной ПАВ-четвертичной аммониевой солью, при температуре выше температуры плавления матричного полимера, отличающийся тем, что смешение осуществляют до концентрации нанонаполнителя 51-70 мас.%, после чего при указанной температуре в полученную высококонцентрированную смесь добавляют матричный полимер до концентрации нанонаполнителя 0,1-30 мас.%.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 12.
20.02.2019
№219.016.c1c4

Способ получения биоспецифического полимерного сорбента для выделения протеиназ

Изобретение относится к области химии полимеров, биохимии и медицины. Для получения биоспецифического полимерного сорбента для выделения протеиназ осуществляют радикальную полимеризацию водного раствора, содержащего 0,1-1,5 мас.% овомукоида из белка утиных яиц, ацилированного хлорангидридом...
Тип: Изобретение
Номер охранного документа: 0002420739
Дата охранного документа: 10.06.2011
10.04.2019
№219.017.07e8

Способ получения формальдегида

Настоящее изобретение относится к способу получения формальдегида дегидрированием метанола в присутствии оксидного Zn-Na содержащего катализатора при повышенной температуре. При этом дегидрирование метанола проводят путем химического сопряжения в присутствии перекиси водорода, взятой в...
Тип: Изобретение
Номер охранного документа: 0002404959
Дата охранного документа: 27.11.2010
10.04.2019
№219.017.0847

Способ выделения и концентрирования органических веществ из водных сред

Изобретение относится к области химии, а именно разделения жидких смесей, и может применяться в различных отраслях промышленности и сельского хозяйства. Предложен способ выделения и концентрирования органических веществ из водных сред с помощью термоградиентного первапорационного разделения...
Тип: Изобретение
Номер охранного документа: 0002432984
Дата охранного документа: 10.11.2011
10.04.2019
№219.017.086a

Способ выделения и концентрирования органических веществ из водных сред

Изобретение относится к области химии, а именно разделения жидких смесей, и может применяться в различных отраслях промышленности и сельского хозяйства. Способ выделения и концентрирования органических веществ из водных сред заключается в термоградиентном первапорационном разделении жидких...
Тип: Изобретение
Номер охранного документа: 0002435629
Дата охранного документа: 10.12.2011
27.04.2019
№219.017.3df6

Способ получения имплантата для реконструктивно-восстановительной хирургии

Изобретение относится к области медицины, а именно к способу получения имплантата для реконструктивно-восстановительной хирургии, который может применяться в офтальмологии для формирования опорно-двигательной культи при энуклеации. Предложен способ получения имплантата для...
Тип: Изобретение
Номер охранного документа: 0002393878
Дата охранного документа: 10.07.2010
29.04.2019
№219.017.42f5

Модифицированный способ определения эстриола в биологической жидкости беременных женщин

Изобретение относится к области биохимии и медицины, а именно к модифицированному способу определения эстриола в биологической жидкости беременных женщин. Предложен способ определения эстриола в биологической жидкости беременных женщин, при котором проводят кислотный гидролиз суточной мочи в...
Тип: Изобретение
Номер охранного документа: 0002362166
Дата охранного документа: 20.07.2009
18.05.2019
№219.017.5a91

Способ многомерной тонкослойной хроматографии

Способ относится к тонкослойной хроматографии (ТСХ) и может быть использован в аналитической химии, например при анализе красителей, аминокислот, витаминов, липидов. Способ многомерной тонкослойной хроматографии ТСХ заключается в том, что анализируемую пробу наносят в угол пластинки и разделяют...
Тип: Изобретение
Номер охранного документа: 0002435162
Дата охранного документа: 27.11.2011
10.07.2019
№219.017.ac73

Способ получения катализатора для процесса дегидрирования этилбензола в стирол

Изобретение относится к технологии получения катализаторов, применяемых для процессов дегидрирования этилбензола в стирол. Описан способ получения катализатора для процесса дегидрирования этилбензола в стирол на основе смеси оксидов металлов, получаемой осаждением неорганических компонентов из...
Тип: Изобретение
Номер охранного документа: 0002393016
Дата охранного документа: 27.06.2010
10.07.2019
№219.017.ada2

Способ получения катализатора для паровой конверсии метансодержащих углеводородов

Изобретение относится к способу получения катализатора, применяемого для процессов конверсии углеводородного сырья в водород и водородсодержащие газы. Описан способ получения катализатора паровой конверсии метансодержащих углеводородов на основе шпинельсодержащего носителя, отличающийся тем,...
Тип: Изобретение
Номер охранного документа: 0002375114
Дата охранного документа: 10.12.2009
10.07.2019
№219.017.af3a

Катализатор и способ глубокой очистки газовых смесей от сероводорода в его присутствии

Изобретение относится к каталитическим способам газовых смесей от сероводорода. Описан катализатор глубокой очистки газовых смесей от сероводорода, содержащий активированную матрицу кремнезема, полученную кислотным травлением природного вермикулита, и наноразмерные частицы оксида железа или...
Тип: Изобретение
Номер охранного документа: 0002414298
Дата охранного документа: 20.03.2011
Показаны записи 1-10 из 15.
27.06.2013
№216.012.508c

Способ повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя

Изобретение относится к способу повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя. Согласно способу экструдируют и затем прессуют полученный экструдат. После экструзии проводят рентгеноструктурный анализ РСА экструдата для...
Тип: Изобретение
Номер охранного документа: 0002486213
Дата охранного документа: 27.06.2013
10.12.2014
№216.013.0d35

Способ получения этерифицированных дифенилолпропанформальдегидных олигомеров

Настоящее изобретение относится к способу получения этерифицированных дифенилолпропанформальдегидных олигомеров. Описан способ получения этерифицированных дифенилолпропанформальдегидных олигомеров взаимодействием дифенилолпропана с параформом в органическом растворителе при основном катализе с...
Тип: Изобретение
Номер охранного документа: 0002534798
Дата охранного документа: 10.12.2014
10.09.2015
№216.013.77f4

Порошковый состав редиспергируемой в воде краски

Изобретение относится к лакокрасочным материалам, в частности к порошковому составу редиспергируемой в воде краски, предназначенному для получения защитно-декоративных покрытий по неметаллическим подложкам в строительстве и в быту. Порошковый состав краски включает портландцемент,...
Тип: Изобретение
Номер охранного документа: 0002562297
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77f5

Порошковый состав редиспергируемой в воде краски

Изобретение относится к лакокрасочным составам, в частности к порошковым редиспергируемым композициям, предназначенным для получения недорогих защитно-декоративных покрытий по неметаллическим подложкам, а также для внутренней окраски зданий и сооружений по кирпичным, бетонным, отштукатуренным,...
Тип: Изобретение
Номер охранного документа: 0002562298
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77f6

Способ получения эпоксидно-фенольной композиции

Изобретение относится к области получения полимерных материалов на основе эпоксидно-фенольных композиций и может найти применение в качестве покрытий для антикоррозионной защиты консервной тары. Получают эпоксидно-фенольную композицию и осуществляют ультразвуковое воздействие на ее физическую...
Тип: Изобретение
Номер охранного документа: 0002562299
Дата охранного документа: 10.09.2015
10.05.2016
№216.015.3aeb

Способ получения эпоксидно-фенольной композиции

Изобретение относится к области получения полимерных материалов, таких как эпоксидно-фенольные композиции, и может найти применение в качестве покрытий для антикоррозионной защиты консервной тары. Получение эпоксидно-фенольной композиции осуществляют при перемешивании и диспергировании в...
Тип: Изобретение
Номер охранного документа: 0002583098
Дата охранного документа: 10.05.2016
10.08.2016
№216.015.52e7

Способ получения редиспергируемого в воде полимерного порошка

Изобретение относится к способу производства редиспергируемых в воде полимеров, которые могут быть использованы в качестве гидрофобизаторов для песка, глины, бумаги, текстиля, для получения защитных покрытий, сухих строительных смесей и других целей. Способ заключается в получении...
Тип: Изобретение
Номер охранного документа: 0002594215
Дата охранного документа: 10.08.2016
25.08.2017
№217.015.9d4a

Редиспергируемый в воде полимерный порошок

Изобретение относится к редиспергируемым в воде полимерным порошкам на основе акриловых сополимеров и акриламида, которые могут быть использованы в качестве полимерного связующего в строительных смесях, в качестве пленкообразующего компонента в лакокрасочных материалах и клеях, в качестве...
Тип: Изобретение
Номер охранного документа: 0002610512
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.cd3b

Способ получения тонкодисперсного глинистого материала

Изобретение относится к обогащению полезных ископаемых и может быть использовано для получения особо чистых и/или модифицированных глин, приготовления буровых растворов. Технический результат заключается в максимальном удалении кластического материала от глинистых минералов. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002619622
Дата охранного документа: 17.05.2017
29.12.2017
№217.015.fbc4

Композиция для катодного электроосаждения, предназначенная для получения лакокрасочных цинк-полимерных покрытий с повышенной твёрдостью и водостойкостью

Изобретение относится к области лакокрасочных покрытий, получаемых методом катодного электроосаждения. Композиция для электроосаждения на катоде представляет собой лакокрасочный материал, содержащий пленкообразователь - эпоксиаминный аддукт, модифицированный блокированным изоцианатом,...
Тип: Изобретение
Номер охранного документа: 0002638373
Дата охранного документа: 13.12.2017
+ добавить свой РИД