×
25.01.2019
219.016.b41a

Результат интеллектуальной деятельности: Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах

Вид РИД

Изобретение

Аннотация: Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их поверхностных слоев. Изобретение также может использоваться в химической промышленности. Способ заключается в том, что на стальную поверхность методом сверхзвукового холодного газодинамического напыления наносится порошок чистого алюминия фракцией 20-60 мкм. В качестве рабочего газа используется воздух. На образовавшийся алюминиевый первый слой методом сверхзвукового холодного газодинамического напыления наносят композиционный порошок, состоящий на 20% из корунда фракцией 50-60 мкм и на 80% из порошка алюминия фракцией 20-60 мкм, армированного свыше 50% наноразмерными частицами корунда фракцией до 100 нм. В качестве рабочего газа используется воздух. При напылении образуются скопления нанокорунда, которые заполняют поры покрытия. Далее образовавшийся алюминиевый упрочненный второй слой, имеющий пористость не более 5% от объема, подвергается микродуговому оксидированию в силикатно-щелочном электролите следующего состава: силикат натрия - 9 г/л, гидроксид калия - 2 г/л, остальное - вода. Продолжительность микродугового оксидирования составляет 1-1,5 часа, образуется внешний керамический оксидный МДО-слой внутрь упрочненного алюминиевого второго слоя с наночастицами корунда с открытой пористостью не более 7%. Данный способ позволяет уменьшить количество операций при формировании керамоматричного покрытия. Поверхность полученного керамоматричного покрытия имеет микротвердость 15-20 ГПа, адгезия покрытия к металлической основе не менее 50 МПа. При взаимодействии поверхности с агрессивной средой при температурах 400-600°С внешний МДО-слой и упрочненный алюминиевый второй слой с наночастицами корунда обеспечивают защиту керамоматричного покрытия от разрушения и создает необходимые условия для формирования интерметаллидного слоя Al-Fe с пористостью не более 2% от объема на всю толщину первого алюминиевого подслоя, вследствие активно протекающей диффузии на границе «подложка-покрытие». При этом адгезия покрытия к стали ухудшается не более чем на 5%. Интерметаллидный первый слой Al-Fe защищает сталь от взаимодействия с агрессивной средой, в случае ее частичного проникновения в поры износостойкого внешнего и второго слоя керамоматричного покрытия. 4 з.п. ф-лы, 2 пр.

Изобретение относится к области создания защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах (припои, печные газы, жидкометаллические среды) при температурах контактного взаимодействия 400-600°С, за счет изменения состава и структуры их поверхностных слоев. Так же изобретение относится к области материаловедения и химической промышленности.

Известно композиционное покрытие для защиты от коррозии металлических прокалочных опок в литейном производстве и трубопроводов (пат. RU 2355725 С2, C09D 1/02, C09D 5/8, опубл. 2009 г.). В составе покрытия в качестве наполнителя используется алюминиевый порошок, а в качестве связующего материала - жидкое стекло с плотностью 1,40-1,145 г/см3 и модулем 2,85-3,05 ед. или его водный раствор с плотностью 1,12-1,18 г/см3 и тем же модулем при следующем соотношении компонентов, мас. %: алюминиевый порошок 53,6-68,4 и связующее 46,4-31,6. Указанное покрытие не обеспечивает защиту металлических поверхностей от высокотемпературной коррозии при температурах более 500°С, что является главным недостатком. Покрытие деформируется, разрушается, осыпается с защищаемой металлической поверхности и открывает доступ к ней агрессивных печных газов.

Известен способ (RU 1772215 A1, С23С - 010/22, опубл. 1992 г.) насыщения поверхностных слоев стального изделия никелем из легкоплавких растворов. Нанесение покрытий осуществляется путем выдержки стального изделия в легкоплавком свинцовом расплаве, содержащем 0,5-0,8% лития и 3% никеля. В результате происходит адсорбция никеля на его поверхности и последующая диффузия никеля вглубь поверхностных слоев. Никель образует с железом твердые растворы, на поверхности изделия образуется диффузионное покрытие, представляющее собой сплав железа и никеля. Такое покрытие обладает высокой коррозионной стойкостью. Однако образующиеся покрытия являются хрупкими, склонны к растрескиванию, разрушению и износу при термомеханическом воздействии внешней среды.

Известны способы (Material Behavior and Physical Chemistry in Liquid Metal Systems./Ed. by H.U. Borstedt. New York: Plenum Press, 1982, p. 253-264) защиты металлов от коррозии, заключающиеся в том, что на поверхность сталей наносят керамические коррозионностойкие покрытия на основе нитридов и боридов титана, циркония, карбидов вольфрама, алюмо-магниевой шпинели. Покрытия формируют путем плазменного напыления. При этом предполагается, что создание керамических покрытий предотвратит коррозионное разрушение матрицы металлов в процессе эксплуатации при повышенных температурах. К недостаткам способов следует отнести формирование тонких покрытий, которые могут разрушиться, вследствие циклических термомеханических напряжений при продолжительном коррозионном воздействии, из-за существенной разницы коэффициентов термического расширения (КТР) на ярко выраженной границе раздела «керамика-металл».

Известен вариант (пат. RU 2206632 С2, С22С 38/50, С22С 38/58, В32В 15/18, опубл. 2003 г.) использования двухслойной плакированной стали с высокой коррозионной стойкостью внешнего слоя по отношению к агрессивным высокотемпературным внешним средам. Однако применение биметалла является технологически сложной, трудоемкой и дорогостоящей задачей, так как стальные конструкции могут включать в себя большое количество сварных соединений.

Коррозионностойкое покрытие на стальной основе (RU 90440 U1, С23С 28/00, C25D 11/02, опубл. 2011 г.) формируют плазменным напылением алюминия, затем проводят микродуговое оксидирование (МДО). Толщина алюминиевого слоя, который не подвергся оксидированию, составляет 35-65 мкм. При этом пористость предварительно наносимого слоя алюминия составляет до 10%. Недостатки способа заключаются в том, что плазменное напыление алюминия приводит к образованию пористого покрытия. Агрессивная среда, при контакте с поверхностью, может проникать в сталь через сквозные поры оксидированного и алюминиевого слоя, что приводит к коррозии. Так же при температурах контактного взаимодействия 400-600°С на границе «покрытие-сталь» активно протекают процессы диффузии алюминия в железо, что может привести к формированию интерметаллидов системы «алюминий-железо» на толщину алюминиевого слоя, который не подвергся оксидированию. Результатом станет охрупчивание покрытия из-за ухудшения адгезии на границе «интерметаллидный слой-керамика».

Наиболее близким решением к предлагаемому способу можно считать формирование антикоррозионного покрытия на стали (пат. RU 2455392 С1, С23С 28/04, опубл. 2011 г.) для работы в высокотемпературных агрессивных средах, которое взято за прототип. Покрытие содержит адгезионный слой и защитный слой. Адгезионный слой выполнен из циркония. Защитный слой состоит из внутреннего и наружного подслоев. Внутренний слой, состоит из двух подслоев, один из которых выполнен из нитрида циркония и нанесен на адгезионный слой методом ионно-плазменного напыления, а второй подслой образован из оксида циркония путем химико-термической обработки поверхности подслоя нитрида циркония. Наружный слой выполнен из материала на основе легкоплавкого вольфрамового стекла.

Покрытие, приведенное в качестве прототипа, обеспечивает хорошую защиту. К недостаткам прототипа можно отнести следующие:

- высокая трудоемкость процесса получения покрытия, который представляет собой совокупность трех технологических операций: ионно-плазменного напыления, химико-термической обработки поверхности, нанесения вольфрамового стекла;

- невозможность регулирования толщины покрытия в широком диапазоне, так как метод ионно-плазменного напыления позволяет получать тонкослойные металлические и керамические покрытия ограниченной толщины в диапазоне от одного до нескольких микрометров;

- адгезионный слой вольфрама по КТР значительно отличается от стальной подложки и от оксида циркония, что неизбежно приводит к возникновению на границе слоев при нагреве термических напряжений, которые могут вызвать расслоение и последующее разрушение покрытия;

- защитный слой покрытия имеет низкие прочностные характеристики, вследствие чего подвержен износу в результате термомеханического воздействия со стороны агрессивных сред;

- описанные методы нанесения слоев предполагают формирование покрытий, обладающих некоторой пористостью. Через поры агрессивная среда может проникать в стальную подложку, образовывая очаги коррозии. Не произведена оценка влияния пористости отдельных слоев на антикоррозионные свойства покрытия.

Техническим результатом изобретения является создание коррозионностойкого керамоматричного покрытия на стали в широком диапазоне толщин от 100 мкм до 5 мм, обладающего низкой пористостью, имеющего в своем составе алюминиевый слой, переходящий в интерметаллид системы «алюминий-железо»; упрочненный металлокерамический слой, и основной прочный корундовый слой. Наличие данных переходных диффузионных слоев обеспечивает высокую адгезию покрытия и обеспечивает плавное изменение коэффициента термического расширения по толщине покрытия при воздействии агрессивных сред при температурах до 600°С. Формирование керамоматричного покрытия осуществляется двумя последовательными технологическими операциями: холодным газодинамическим напылением (ХГДН) и микродуговым оксидированием.

Для достижения поставленной цели, использовался способ ХГДН. Благодаря сверхзвуковому потоку газа, скорость частиц составляет порядка 600 м/с. В результате интенсивной пластической деформации при ударе, частицы закрепляются на подложке в твердом состоянии и при температуре, значительно ниже температуры плавления распыляемого материала.

Технический результат достигается за счет того, что способом ХГДН наносят два алюминиевых слоя. При нанесении алюминиевого первого слоя используется порошок чистого алюминия фракцией 20-60 мкм. При нанесении упрочненного алюминиевого второго слоя используется композиционный порошок, состоящий на 20% из корунда фракцией 50-60 мкм и на 80% из порошка алюминия фракцией 20-60 мкм, армированного свыше 50% частицами корунда размером до 100 нм.

Установлено, что частицы размером 20-60 мкм имеют достаточную кинетическую энергию для закрепления на подложке. При использовании порошка фракцией более 50 мкм формируемое покрытие не обладает высокой адгезионной прочностью. Частицы корунда размером 50-60 мкм в составе композиционного порошка при попадании на напыляемую металлическую поверхность отлетают от нее, очищая ее при этом от загрязнений, и далее таким же образом устраняют оксидный слой только что сформированного алюминиевого покрытия, тем самым, значительно повышая его когезию.

Установлено, что армирование порошка алюминия фракцией 20-60 мкм свыше 50% наноразмерными частицами корунда приводит к образованию композиционного порошка конгломератного типа. Армирование достигается при помощи обработки смеси порошков в планетарной мельнице.

При этом в составе армированного порошка алюминия имеются свободные частицы нанокорунда. В результате значительно повышаются функциональные свойства покрытия, такие как твердость и износостойкость.

В процессе напыления эти частицы частично заполняют образующиеся поры, в результате чего пористость образующегося слоя не превышает 5 об.%.

В соответствии с предлагаемым изобретением, в качестве рабочего газа в процессе ХГДН используется воздух.

Процесс МДО проводится в силикатно-щелочном электролите силикат натрия - 2-15 г/л, гидроксид калия - 1-4 г/л, остальное - вода.

Продолжительность микродугового оксидирования составляет 1-1,5 часа. В результате образуется внешний керамический оксидный МДО-слой внутрь упрочненного алюминиевого второго слоя с наночастицами корунда, который имеет микротвердость в диапазоне 15-20 ГПа и обладает открытой пористостью не более 7%.

Установлено, что при взаимодействии покрытия с агрессивной средой при температурах 400-600°С происходит образование интерметаллидного слоя системы «алюминий-железо» с пористостью не более 2% от объема на толщину, соответствующую толщине алюминиевого первого слоя. Дальнейшее замедление диффузии вызвано естественным снижением химического потенциала, а так же наличием барьерного, насыщенного нанокорундом упрочненного алюминиевого слоя. Образующийся интерметаллидный слой понижает адгезию керамоматричного покрытия не более чем на 5%, адгезия покрытия к стали составляет не менее 50 МПа.

Пример 1.

Для получения защитного керамоматричного покрытия подготовлены образцы из стали марки Ст.3 в виде плоских пластин размером 50×20×0,4 мм.

На поверхность образцов методом ХГДН с использованием робота равномерно напыляли на толщину 200 мкм порошок чистого алюминия фракцией 30-50 мкм. В качестве рабочего газа использовался воздух. На образовавшийся слой методом ХГДН на толщину 400 мкм напыляли композиционный порошок, состоящий на 20% из корунда фракцией 50-60 мкм и на 80% из порошка алюминия фракцией 50-60 мкм, армированного на 70% частицами корунда фракцией до 100 нм. Далее образовавшийся внешний слой подвергался процессу МДО в силикатно-щелочном электролите состава: силикат натрия - 6 г/л, гидроксид калия - 3 г/л, остальное - вода. Длительность процесса МДО составляла 1 час, при этом формировался оксидный слой внутрь упрочненного алюминиевого слоя на толщину 80 мкм.

Полученное керамоматричное покрытие имеет микротвердость порядка 16 ГПа. Открытая пористость МДО-слоя составляет не более 7%, пористость алюминиевого упрочненного слоя не более 3% от общего объема, адгезия покрытия к металлической основе не менее 50 МПа.

На образцах проводили коррозионные испытания, посредством их выдержки в печи в керамическом тигле с расплавленным припоем марки ПОС-10, в состав которого входит 10% олова и 90% свинца. Температура расплава составила 500°С, время выдержки в печи в воздушной среде составило 3000 часов.

Исследование коррозионной стойкости покрытий образцов проводилось методом визуализации на электронном растровом микроскопе в их поперечных шлифах. Отмечено, что формирование МДО-слоя приводит к сохранению целостности покрытия после испытаний. Наблюдается проникновение расплава припоя через сквозные поры оксидной керамики, скопления металла задерживаются в армированном нанокорундом алюминиевом втором слое с низкой пористостью и не проходят вглубь покрытия, очаги коррозии отсутствуют. Обнаружено формирование дополнительного защитного интерметаллидного слоя системы «алюминий-железо» в покрытии.

Пример 2.

Для получения защитного керамоматричного покрытия подготовлены образцы из стали марки Ст.3 в виде плоских пластин размером 50×20×0,4 мм.

На поверхность образцов методом ХГДН с использованием робота равномерно напыляли на толщину 200 мкм порошок чистого алюминия фракцией 30-50 мкм. В качестве рабочего газа использовался воздух. На образовавшийся слой методом ХГДН на толщину 400 мкм напыляли композиционный порошок, состоящий на 20% из корунда фракцией 50-60 мкм и на 80% из порошка алюминия фракцией 50-60 мкм, армированного на 70% частицами корунда фракцией до 100 нм. Далее образовавшийся внешний слой подвергался процессу МДО в силикатно-щелочном электролите состава: силикат натрия - 6 г/л, гидроксид калия - 3 г/л, остальное - вода. Длительность процесса МДО составляла 1,5 часа, при этом формировался оксидный слой внутрь упрочненного алюминиевого слоя на толщину 120 мкм.

Полученное керамоматричное покрытие имеет микротвердость порядка 18 ГПа. Открытая пористость МДО-слоя составляет не более 7%, пористость алюминиевого упрочненного слоя не более 3% от общего объема, адгезия покрытия к металлической основе не менее 50 МПа.

На образцах проводили коррозионные испытания, посредством их выдержки в печи в керамическом тигле с расплавленным припоем марки ПОС-40, в состав которого входит 40% олова и 60% свинца. Температура расплава составила 500°С, время выдержки в печи в воздушной среде составило 3000 часов.

Исследование коррозионной стойкости покрытий образцов проводилось методом визуализации на электронном растровом микроскопе в их поперечных шлифах. Отмечено, что формирование МДО-слоя приводит к сохранению целостности покрытия после испытаний. Наблюдается проникновение расплава припоя через сквозные поры оксидной керамики, скопления металла задерживаются в армированном нанокорундом алюминиевом втором слое с низкой пористостью и не проходят вглубь покрытия, очаги коррозии отсутствуют. Обнаружено формирование дополнительного защитного интерметаллидного слоя системы «алюминий-железо» в покрытии.

Источники информации

1. Патент 2355725 С2 (RU) 20.05.09.

2. Патент 1772215 A1 (RU), 30.10.92.

3. Material Behavior and Physical Chemistry in Liquid Metal Systems./Ed. by H.u. Borstedt. New York: Plenum Press, 1982, p. 253-264.

4. Патент 2206632 C2 (RU), 20.06.03.

5. RU 90440 U1, 10.12.11.

6. Патент 2455392 C1 (RU), 10.07.11.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 25.
01.06.2019
№219.017.7226

Литейный сплав на основе титана

Изобретение относится к металлургии, в частности к литейным свариваемым сплавам на основе титана, обладающим высокой коррозионной стойкостью против щелевой и питтинговой коррозии в агрессивных средах, и может быть использован для изготовления фасонных отливок типа корпусов насосов и арматуры,...
Тип: Изобретение
Номер охранного документа: 0002690073
Дата охранного документа: 30.05.2019
02.10.2019
№219.017.cb6d

Способ получения покрытий с интерметаллидной структурой

Изобретение относится к способу получения покрытий с интерметаллидной структурой из порошковых материалов с высокой адгезионной прочностью. Техническим результатом изобретения является получение интерметаллидного покрытия с регулируемой структурой. Осуществляют послойное нанесение...
Тип: Изобретение
Номер охранного документа: 0002701612
Дата охранного документа: 30.09.2019
09.10.2019
№219.017.d39d

Высокопрочный титановый сплав для корпусных конструкций атомного реактора с водяным теплоносителем

Изобретение относится к металлургии сплавов на основе титана, предназначенных для изготовления корпусных конструкций атомных энергетических установок с водяным теплоносителем. Высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным...
Тип: Изобретение
Номер охранного документа: 0002702251
Дата охранного документа: 07.10.2019
18.10.2019
№219.017.d815

Радиационно-стойкая аустенитная сталь для внутрикорпусной выгородки ввэр

Изобретение относится к области металлургии легированных сталей и сплавов, которые предназначены для использования в атомном энергетическом машиностроении при производстве основного оборудования АЭС, а именно для изготовления внутрикорпусной выгородки водо-водяных энергетических реакторов...
Тип: Изобретение
Номер охранного документа: 0002703318
Дата охранного документа: 16.10.2019
22.12.2019
№219.017.f0a6

Способ получения функционального покрытия на основе алюминий-углеродных нановолокон

Изобретение относится к способу получения композиционного материала для изготовления функциональных покрытий из сплава алюминия и углеродного нановолокна и может быть использовано в авиационной, космической, судостроительной и других областях промышленности. Способ получения композиционного...
Тип: Изобретение
Номер охранного документа: 0002709688
Дата охранного документа: 19.12.2019
27.12.2019
№219.017.f3f8

Сплав на основе титана

Изобретение относится к области металлургии, а именно к титановым α сплавам, предназначенным для использования в качестве конструкционного высокотехнологичного теплопроводного материала для энергетических силовых и теплообменных установок, авиационной и космической техники, длительно работающих...
Тип: Изобретение
Номер охранного документа: 0002710407
Дата охранного документа: 26.12.2019
09.02.2020
№220.018.0124

Способ получения беспористого композиционного покрытия

Изобретение относится к области гальванотехники и может быть использовано в машиностроении с целью повышения функциональных характеристик механизмов, работающих в агрессивных средах, а также в изделиях нефтеперерабатывающей промышленности. Способ включает микродуговое оксидирование (МДО)...
Тип: Изобретение
Номер охранного документа: 0002713763
Дата охранного документа: 07.02.2020
09.02.2020
№220.018.0153

Порошковая проволока для механизированной и лазерно-дуговой сварки низколегированных высокопрочных сталей

Изобретение может быть использовано для механизированной сварки в среде защитных газов и лазерно-дуговой сварки конструкций из низколегированных высокопрочных сталей с пределом текучести до 690 МПа. Порошковая проволока содержит, мас. %: шлаковая основа 8,63-8,65; ферросилиций 0,45-0,65;...
Тип: Изобретение
Номер охранного документа: 0002713767
Дата охранного документа: 07.02.2020
09.02.2020
№220.018.015a

Агломерированный флюс 48аф-71

Изобретение может быть использовано для автоматической сварки на переменном токе под флюсом теплоустойчивых сталей перлитного класса, применяемых в атомном энергетическом машиностроении. Агломерированный флюс содержит компоненты в следующем соотношении, мас.%: обожженный магнезит 24,4-27,6;...
Тип: Изобретение
Номер охранного документа: 0002713769
Дата охранного документа: 07.02.2020
10.07.2020
№220.018.30f4

Листовой прокат, изготовленный из высокопрочной стали

Изобретение относится к области металлургии, а именно к листовому прокату толщиной до 50 мм из высокопрочной стали для судостроения, краностроения, транспортного и тяжелого машиностроения. Сталь содержит элементы при следующем соотношении, мас.%: углерод 0,08-0,10, кремний 0,15-0,35, марганец...
Тип: Изобретение
Номер охранного документа: 0002726056
Дата охранного документа: 08.07.2020
Показаны записи 11-20 из 84.
27.09.2014
№216.012.f8a9

Многослойный композиционный материал для защиты от электромагнитного излучения

Изобретение относится к средствам для защиты от электромагнитных полей электротехнических и электронных устройств и биологических объектов и может использоваться для создания электромагнитных экранов и безэховых камер. Композиционный материал для защиты от электромагнитного излучения состоит из...
Тип: Изобретение
Номер охранного документа: 0002529494
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fae6

Способ получения нанокристаллического порошка

Изобретение относится к порошковой металлургии, в частности к получению нанокристаллических магнитомягких порошковых материалов. Может использоваться для создания эффективных систем электромагнитной защиты на основе радиопоглощающих материалов. Исходный материал в виде аморфной ленты из...
Тип: Изобретение
Номер охранного документа: 0002530076
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.ff21

Способ тонкой очистки аргона от примесей азота

Предлагаемое техническое решение относится к области очистки инертных газов от газообразных примесей с помощью химических реагентов в промышленных установках, предназначенных для высокотемпературной обработки химически активных материалов. Предлагается способ тонкой очистки аргона от примесей...
Тип: Изобретение
Номер охранного документа: 0002531169
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.035a

Поглотитель электромагнитных волн

Изобретение относится к антенной технике, в частности к поглотителям электромагнитных волн, используемых в конструкциях антенн для оптимизации их радиотехнических характеристик, устранения резонансных явлений и уменьшения паразитных отражений от проводящих объектов, расположенных вблизи антенн....
Тип: Изобретение
Номер охранного документа: 0002532256
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0581

Способ получения нанокаталитического материала

Изобретение относится к технологическим процессам, а именно к способам осуществления химических процессов, в частности к области общего и специального катализа, также к созданию новых материалов с особыми свойствами для осуществления этих процессов. Изобретение может быть использовано для...
Тип: Изобретение
Номер охранного документа: 0002532807
Дата охранного документа: 10.11.2014
20.01.2015
№216.013.1fb0

Композиционный сплав на основе co-tib-bn

Изобретение относится к области металлургии, в частности к прецизионным сплавам на основе кобальта для нанесения функциональных покрытий с высокими физико-механическими свойствами методом гетерофазного переноса. Сплав на основе кобальта содержит, мас.%: хром - 17,4-21,1; кремний - 2,6-4,9;...
Тип: Изобретение
Номер охранного документа: 0002539553
Дата охранного документа: 20.01.2015
10.03.2015
№216.013.2f4f

Сплав на основе кобальта для нанесения покрытий

Изобретение относится к металлургии сплавов на основе кобальта, предназначенных для получения износостойких покрытий с высокой микротвердостью, полученных методами гетерофазного переноса. Сплав на основе кобальта имеет следующий состав, мас.%: 20,0-30,0 Cr; 6,0-12,0 Si; 2,0-4,0 В; 0,2-0,8 Y;...
Тип: Изобретение
Номер охранного документа: 0002543579
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2f53

Жаропрочная коррозионностойкая сталь

Изобретение относится к области металлургии, а именно к жаропрочным коррозионностойким сталям, используемым в атомной энергетике и машиностроении в установках, эксплуатирующихся длительное время при температурах 500-600°C. Сталь содержит компоненты в следующем соотношении, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002543583
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2f54

Электролит на водной основе для никелирования изделий из стали, алюминия, титана, меди и их сплавов

Изобретение относится к области гальванотехники и может быть использовано в авиационной промышленности, машиностроении и судостроении для увеличения коррозионной стойкости, паяемости и износостойкости деталей и узлов элементов систем управления, комбинированных конструкций из титана и алюминия....
Тип: Изобретение
Номер охранного документа: 0002543584
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2f55

Способ термической обработки полуфабрикатов из стали мартенситного класса

Изобретение относится к области черной металлургии, а именно к технологии термической обработки полуфабрикатов из стали мартенситного класса, предназначенных для изготовления деталей и узлов, работающих в условиях Крайнего Севера и Сибири, например контейнеров для перевозки отработавшего...
Тип: Изобретение
Номер охранного документа: 0002543585
Дата охранного документа: 10.03.2015
+ добавить свой РИД