×
02.10.2019
219.017.cb6d

Результат интеллектуальной деятельности: Способ получения покрытий с интерметаллидной структурой

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения покрытий с интерметаллидной структурой из порошковых материалов с высокой адгезионной прочностью. Техническим результатом изобретения является получение интерметаллидного покрытия с регулируемой структурой. Осуществляют послойное нанесение компонентов методом ХГН путем напыления по меньшей мере двух слоев. Один слой состоит из одного металла интерметаллической композиции, а второй слой из - другого металла выбранной интерметаллидной композиции. За счет вариации скорости и шага сканирования толщина каждого из слоев формируется такой, что в любом поперечном сечении указанных двух слоев покрытия химический состав соответствует стехиометрическому составу создаваемого интерметаллического соединения. Затем производят локальное расплавление покрытия сканирующим лазерным лучом, за счет чего после затвердевания формируется интерметаллическое покрытие заданного химического состава. 2 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к способу получения износостойкого покрытия на деталях и может найти применение в изделиях судостроения, авиационной промышленности, теплоэнергетического машиностроения, металлургии. Способ включает в себя совместное использование технологий, а именно холодное газодинамическое напыление (ХГН), обеспечивающее нанесение слоя с заданным химическим составом и толщиной и лазерную обработку нанесенного слоя для формирования интерметаллидного покрытия с требуемой структурой, а также повышения адгезионной прочности.

Известен способ получения интерметаллидного сплава системы титан-алюминий, включающий уплотнение композиционного порошка, содержащего алюминий и титан, путем компактирования до плотности 93-97%, нагрев под давлением до 630-650°С и выдержку при этой температуре в течение времени, соответствующего образованию интерметаллидного соединения и составляющего 0,5-1,5 ч. В качестве композиционного порошка используют частицы титана, покрытые алюминием, при содержании алюминия в количестве 50-63 мас. % и титана в количестве 37-50 мас. %. Данный способ позволяет получать любой интерметаллидный сплав системы титан-алюминий в зависимости от соотношения компонентов исходной порошковой смеси (патент RU 2038192, МПК6 B22F 3/14, С22 1/04).

Известен способ получения интерметаллидного сплава на основе системы алюминий-титан, включающий предварительную механическую активацию порошка алюминия в количестве 25 мас. % и порошка титана в количестве 75 мас. %. Полученную смесь уплотняют, помещают в вакуум и осуществляют ее нагрев высокочастотным электромагнитным полем до температуры 1200-1400°С и последующую выдержку. Обеспечивается получение монофазного интерметаллидного сплава заданного состава с однородным распределением структурных составляющих (патент RU 2561952, B22F 3/23, С22С 14/00, 2015).

Известен способ получения интерметаллидного композиционного материала с возможностью получения разнообразных сложных форм и регулирования состава, по которому металлическую фольгу разных металлов (например, 100 слоев титановой фольги и 100 слоев никелевой фольги) укладывают в чередующемся порядке и полученную слоистую заготовку подвергают прессованию при высокой или низкой температуре с последующим диффузионным отжигом при 950°С в течение 8 часов (Заявка JP №1031938).

Известен способ получения композиционного материала, включающий сборку пакета, состоящего из слоев, выполненных в виде фольги из одного или более металлов, выбранных из группы Ti, Ni, V, Fe или их сплавов, и последующее прессование пакета при температуре и давлении, необходимых для получения интерметаллидного соединения, отличающийся тем, что на верхнюю и нижнюю сторону каждого слоя фольги предварительно наносят покрытие из порошка Аl или его сплава методом холодного газодинамического напыления (патент RU 2394665 С1).

Прототипом является способ получения композиционного материала с интерметаллидной матрицей, включающий сборку в пакет чередующихся слоев фольги первого металла, такого как Ti, Ni, V, Fe, и фольги второго металла, такого как алюминий и его сплавы, способного образовывать с первым металлом интерметаллидное соединение, с последующим прессованием полученной исходной заготовки в механическом прессе при определенных температуре и давлении в течение времени не менее 10 часов, в результате чего второй металл (алюминий) полностью реагирует с первым и становится зоной интерметаллидного соединения, а итоговый материал представляет собой монолитный материал, в котором зоны первого металла (например, титана) чередуются с интерметаллидными зонами (алюминидом титана) (Патент США №6357332).

Недостатком этого способа является сложность и длительность, необходимая для полного проведения твердофазной диффузии исходных материалов, в результате чего стоимость такого материала высока, а технологический процесс довольно длительный. При формировании материала таким способом возможно очаговое схватывание по границе раздела слоев, что характеризует резкое снижение свойств конечного продукта. Также существует возможность окисления титановой фольги и, как следствие, получения дефектного материала.

В основу настоящего изобретения положена задача создания способа получения интерметаллидного покрытия с заданным химическим и фазовым составом на поверхностях изделий, работающих при высоких температурах и повышенном износе.

Техническим результатом изобретения является получение интерметаллидного покрытия с высокой адгезионной прочностью и управляемой структурой, реализуемой за счет комплексной технологии, интегрирующей преимущества холодного газодинамического напыления (ХГН), обеспечивающее нанесение слоя с заданным химическим составом и толщиной, и лазерной обработки для формирования интерметаллидного покрытия.

Технический результат достигается тем, что в способе получения покрытий с интерметаллидной структурой, осуществляется послойное нанесение компонентов методом ХГН для этого производят напыление двух или более числа слоев, при этом один слой состоит из одного металла интерметаллической композиции, а второй слой из - другого металла выбранной интерметаллидной композиции, при этом за счет вариации скорости и шага сканирования толщина каждого из слоев формируется такой, что в любом поперечном сечении указанных двух слоев покрытия химический состав соответствует стехиометрическому составу создаваемого интерметаллического соединения, после чего производится локальное расплавление покрытия сканирующим лазерным лучом, за счет чего после затвердевания формируется интерметаллическое покрытие заданного химического состава.

Способ получения интерметаллидного покрытия осуществляется следующим образом.

Подвергаемую наплавке поверхность (1нафиг. 1) очищают, промывают и подвергают струйно-абразивной обработке для придания шероховатости, обеспечивающей высокую адгезию с покрытием напыляемым методом ХДН. Согласно методу ХГН частицы материала покрытия ускоряют посредством их введения в распылительное сопло с газом в направлении к поверхности с формируемым покрытием. В данном случае метод ХГН (4 на фиг. 1) наносится многослойное покрытие (2 на фиг. 1). Для этого используется система с двумя дозаторами, в дозатор 1 помещается порошок компоненты 1, (металл IV - VI группы и/или Аl и/или Ni и/или Fe и/или Sn и/или Сr и/или Со и/или Сr и/или Zn и/или Mg и/или Мn и/или их соединения) (7 на фиг. 1), а в дозатор 2 порошок компоненты 2 (металл IV - VI группы и/или Аl и/или Ni и/или Fe и/или Sn и/или Сr и/или Со и/или Сu и/или Zn и/или Mg и/или Мn и/или их соединения) (поз.8), и производится напыление многослойного покрытия, причем, толщина и количество слоев (9-12 на фиг. 1) подбирается таким образом, чтоб обеспечить заданный шихтовый состав покрытия. Для создания трехкомпонентного интерметаллического соединения используется покрытие, содержащее как минимум три слоя различного состава из требуемых компонент, четырехкомпонентного, соответственно четыре слоя, пятикомпонентного, соответственно пять слоев. Скорость потока может составлять от 350 м/с до 900 м/с, например для мягких металлов, таких как, Al, Zn, Сu скорость составляет от 350 м/с до 500 м/с, а для твердых, таких как, Mo, W скорость составляет от 750 м/с до 900 м/с. Наносимые попеременно слои состоят преимущественно из алюминия, титана, никеля, хрома, кобальта, железа и/или их сплавов (основные элементы, входящие в состав жаропрочных сплавов) и их соотношение и толщина выбирается в зависимости от того какое интерметаллидное соединение требуется получить. В зависимости от состава напыляемого порошка, варьируя скоростью и шагом сканирования, возможно получать слои толщиной от нескольких микрон до нескольких миллиметров. Поэтому в процессе нанесения покрытия строго контролируется толщина каждого слоя покрытия, посредством управления скоростью сканирования (перемещения вдоль оси X, может составлять от 3 мм/с до 200 мм/с, причем с увеличением скорости, получаемая толщина слоя снижается), и шагом сканирования (7 на фиг. 1), (перемещение вдоль оси Y составляет от 0,1 до 1,0 диаметра пятна напыления (13 на фиг. 1), что также влияет на толщину слоя, причем увеличение нахлеста увеличивает толщину покрытия).

После нанесения покрытия методом ХГН производится его обработка лазерным лучом. В результате воздействия лазерного луча (5 на фиг. 1) происходит мгновенное расплавление обрабатываемой поверхности, образуя, таким образом, микроскопическую ванну жидкого расплава, содержащего компоненты покрытия и подложки. После смещения лазерного луча жидкий металл моментально затвердевает, высокая скорость охлаждения способствует образованию интерметаллидной фазы. Таким образом, в результате методичного сканирования поверхности подложки лазерным лучом с заданной скоростью сканирования (перемещения вдоль оси X, может составлять от 1 мм/с до 20 мм/с) и шагом сканирования (перемещение вдоль оси Y составляет от от до 1 диаметра пятна напыления), формируется слой заданного фазового состава (3 на фиг. 1). Режим обработки зависит от состава покрытия и его толщины, для это осуществляется варьирование мощностью лазерного луча, его диаметром, скоростью продольного перемещения, шагом сканирования.

Важным фактором является выбор оптимальных режимов обработки покрытий лазером в зависимости от их состава и толщины, в результате обработки должно осуществляться быстрое переплавление нижнего слоя покрытия и подложки, что обеспечивает высокие адгезионные свойства покрытия. Низкая скорость перемещения луча приводит к значительному перегреву как обрабатываемого участка, приводящего к закипанию и испарению металла, так и к перегреву подложки, что приводит к деградации структуры покрытия и непосредственно материала подложки. Высокая скорость перемещения луча напротив снижает вероятность расплавления покрытия и подложки, что делает невозможным образование интерметаллидных соединений.

Способ получения интерметаллидного покрытия осуществляется следующим образом.

ПРИМЕР 1. Получение интерметаллидного покрытия Ni3Al.

Для нанесения покрытия используются два дозатора. В дозатор 1 (7 на фиг. 1) помещают порошок алюминия марки ПА-ВЧ, а в дозатор 2 (8 на фиг. 1) порошок никеля марки ПН. Материал подложки Ст-3 (1 на фиг. 1). В начале методом ХГН (4 на фиг. 1) напыляется слой алюминия толщиной 50 мкм (9 на фиг. 1) при скорости потока 500 м/с, скорости сканирования 10 мм/с, шаг сканирования (между дорожками) 2,5 мм/с, расход порошка 0,8 г/с, потом слой никеля толщиной 100 мкм (10 на фиг. 1) при скорости потока 650 м/с.скорости сканирования 15 мм/с, шаг между дорожками 2,5 мм/с (шаг сканирования 6 на фиг. 1), расход порошка 0,7 г/с. Далее весь процесс повторяется до получения общей толщины 600 мкм. В результате послойного напыления методом ХГН получается шихтовый состав покрытия (2 на фиг. 1) Ni-Al (87:13 масс. %). После нанесения покрытия методом ХГН производят обработку лазером (5 на фиг. 1). Мощность лазера 300 Вт, с диаметром пучка 300 мкм и длиной волны 1070 нм, скорость сканирования 16 мм/с, шаг сканирования 250 мкм. В результате совместных операций формируется покрытие с интерметаллидной структурой Ni3Аl (3 на фиг. 1).

ПРИМЕР 2. Получение интерметаллидного покрытия NiTi.

Для нанесения покрытия используются два дозатора. В дозатор 1 (3 на фиг. 1) помещают порошок титана марки ПТОМ-1, а в дозатор 2 (8 на фиг. 1) порошок никеля марки ПН. Материал подложки Ст-3 (1 на фиг. 1). В начале методом ХГД (4 на фиг. 1) напыляется слой титана толщиной 100 мкм (9 на фиг. 1) при скорости потока 610 м/с, скорости сканирования 10 мм/с, шаг дорожками 2,5 мм/с (шаг сканирования 6 на фиг. 1), расход порошка 0,8 г/с, потом слой никеля толщиной 60 мкм (10 на фиг. 1) при скорости потока 650 м/с. скорости сканирования 15 мм/с, шаг между дорожками 2,5 мм/с, расход порошка 0,7 г/с.Далее весь процесс повторяется до получения общей толщины 640 мкм. В результате послойного напыления методом ХГН получается шихтовый состав покрытия (2 на фиг. 1) Ni-Ti (55:45 масс. %). После нанесения покрытия методом ХГН производят обработку лазером. Мощность лазера 300 Вт, с диаметром пучка 300 мкм и длиной волны 1070 нм, скорость сканирования 16 мм/с, шаг сканирования 250 мкм. В результате совместных операций формируется покрытие с интерметаллидной структурой NiTi (3 на фиг. 1).


Способ получения покрытий с интерметаллидной структурой
Способ получения покрытий с интерметаллидной структурой
Источник поступления информации: Роспатент

Показаны записи 1-10 из 25.
26.08.2017
№217.015.e0f9

Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в...
Тип: Изобретение
Номер охранного документа: 0002625511
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e127

Способ микродугового оксидирования прутков из титановой проволоки для выполнения износостойких наплавок

Изобретение относится к области гальванотехники и может быть использовано для микродугового оксидирования (МДО) сварочной проволоки из титановых сплавов, применяемой при изготовлении изделий судовой арматуры и механизмов, изделий химического машиностроения и др. Способ МДО прутков из титановой...
Тип: Изобретение
Номер охранного документа: 0002625516
Дата охранного документа: 14.07.2017
20.01.2018
№218.016.1345

Литейный сплав на основе титана

Изобретение относится к области цветной металлургии, в частности к свариваемым литейным сплавам на основе титана, и предназначено для изготовления фасонных отливок, используемых в ответственных сварно-литых конструкциях энергомашиностроения при температуре до 450°С. Литейный свариваемый сплав...
Тип: Изобретение
Номер охранного документа: 0002634557
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1400

Износостойкий сплав для высоконагруженных узлов трения

Изобретение относится к износостойким сплавам для высоконагруженных узлов трения. Сплав включает связующую матрицу эвтектического состава в количестве от 24,8 до 26,8 мас.% от массы сплава и карбонитрид титана TiCN. Матрица эвтектического состава состоит из никеля, вольфрама, молибдена, хрома,...
Тип: Изобретение
Номер охранного документа: 0002634566
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.18bd

Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной...
Тип: Изобретение
Номер охранного документа: 0002636269
Дата охранного документа: 21.11.2017
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
28.07.2018
№218.016.7606

Аустенитная жаропрочная и коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к составам аустенитных жаропрочных и коррозионно-стойких сталей, используемых в атомной энергетике, энергомашиностроении, машиностроении в установках, работающих длительное время при температурах 500÷650°С. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002662512
Дата охранного документа: 26.07.2018
20.12.2018
№218.016.a96d

Способ производства листового проката с регулируемым пределом текучести из стали унифицированного химического состава

Изобретение относится к области производства высокопрочных сталей улучшенной свариваемости для применения в судостроении, строительстве морских сооружений, транспортном и тяжелом машиностроении и др. отраслях промышленности. Получение проката унифицированного химического состава в листах...
Тип: Изобретение
Номер охранного документа: 0002675441
Дата охранного документа: 19.12.2018
25.01.2019
№219.016.b41a

Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах

Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их...
Тип: Изобретение
Номер охранного документа: 0002678045
Дата охранного документа: 22.01.2019
20.02.2019
№219.016.bc14

Носитель катализатора на металлической основе

Изобретение относится к области нефтехимии, а именно к носителям катализаторов, которые могут быть использованы для процессов паровой конверсии. Описан носитель катализатора, включающий металлическую основу и нанесенную на него многослойную композицию, в которой по крайней мере один слой...
Тип: Изобретение
Номер охранного документа: 0002680144
Дата охранного документа: 18.02.2019
Показаны записи 1-10 из 43.
27.02.2013
№216.012.2b51

Износостойкий сплав на основе никеля для нанесения износо- и коррозионно-стойких покрытий на конструкционные элементы микроплазменным или сверхзвуковым газодинамическим напылением

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым в качестве материала для получения износо- и коррозионно-стойких покрытий на функционально- конструкционных элементах методом микроплазменного или сверхзвукового холодного газодинамического...
Тип: Изобретение
Номер охранного документа: 0002476616
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2b5c

Способ нанесения покрытий на титан и его сплавы методом электроискрового легирования в водных растворах при повышенных давлениях

Изобретение относится к области гальванотехники и может быть использовано в авиационной, судостроительной, нефте- и газодобывающей, перерабатывающей промышленности, приборостроении и медицинской технике. Способ включает микродуговое оксидирование (МДО) в электролите в герметичном сосуде путем...
Тип: Изобретение
Номер охранного документа: 0002476627
Дата охранного документа: 27.02.2013
10.07.2013
№216.012.5390

Способ получения композиционного катода

Изобретение относится к пайке и может быть использовано, в частности, для изготовления композиционного катода из тугоплавких материалов, используемого для вакуумного нанесения тонкопленочных покрытий различного функционального назначения в отраслях машиностроения, микроэлектроники,...
Тип: Изобретение
Номер охранного документа: 0002486995
Дата охранного документа: 10.07.2013
20.08.2013
№216.012.60a4

Способ получения градиентного каталитического покрытия

Изобретение относится к области нанесения покрытий, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, и может быть использовано при изготовлении электродных материалов. Способ получения градиентного каталитического покрытия на подложке из титана или его...
Тип: Изобретение
Номер охранного документа: 0002490372
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.66e8

Катализатор для разложения озона и способ его получения

Изобретение относится к области каталитической очистки воздуха от кислородсодержащих примесей, таких как озон, и может быть использовано, в частности, для удаления озона из воздуха. Описан катализатор для разложения озона на основе диоксида марганца, причем он выполнен из открытоячеистого...
Тип: Изобретение
Номер охранного документа: 0002491991
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.66ea

Каталитический блок на основе пеноникеля и его сплавов для очистки газов от органических соединений, включая бензпирены, диоксины, оксиды азота, аммиака, углерода и озона

Изобретение относится к катализаторам. Описан каталитический блок на основе пеноникеля и его сплавов для очистки газов от органических соединений, включая бензпирены, диоксины, оксиды азота, аммиака, углерода и озона в виде блока, состоящего из сборки отдельных пластин, выполненных из...
Тип: Изобретение
Номер охранного документа: 0002491993
Дата охранного документа: 10.09.2013
27.09.2013
№216.012.6e7b

Cпособ получения жаростойкого высокопористого проницаемого сплава

Изобретение относится к порошковой металлургии, в частности к получению жаростойких высокопористых проницаемых ячеистых сплавов. Может использоваться для получения блочных высокотемпературных носителей катализаторов, высокотемпературных фильтров газов и расплавов. Поверхность заготовки из...
Тип: Изобретение
Номер охранного документа: 0002493934
Дата охранного документа: 27.09.2013
20.11.2013
№216.012.8378

Способ создания пористого покрытия на металлическом электропроводящем носителе

Изобретение относится к способам создания пористых материалов для альтернативных источников энергии и может быть использовано в производстве химических водоактивируемых источников тока, систем очистки и опреснения воды, комплексов промышленной экологии. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002499332
Дата охранного документа: 20.11.2013
10.06.2014
№216.012.d0ff

Пиротехнический источник электрического тока

Изобретение относится к устройствам прямого преобразования химической энергии экзотермических композиций в электрическую энергию, в частности к высокотемпературным резервным источникам электрического тока одноразового действия, и может быть использовано, например, для автономного питания...
Тип: Изобретение
Номер охранного документа: 0002519274
Дата охранного документа: 10.06.2014
20.08.2014
№216.012.eaa4

Сплав на основе меди

Изобретение относится к прецизионным сплавам на основе меди для получения микро- и нанопроводов, а также тонких пленок и покрытий с отрицательным температурным коэффициентом сопротивления (ТКС). Сплав содержит, мас.%: марганец 18,0-22,0; никель 18,0-25,0; кремний 2,0-4,0; бор 1,5-4,0; германий...
Тип: Изобретение
Номер охранного документа: 0002525876
Дата охранного документа: 20.08.2014
+ добавить свой РИД