×
09.10.2019
219.017.d39d

Высокопрочный титановый сплав для корпусных конструкций атомного реактора с водяным теплоносителем

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к металлургии сплавов на основе титана, предназначенных для изготовления корпусных конструкций атомных энергетических установок с водяным теплоносителем. Высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным теплоносителем содержит, мас. %: алюминий 4,0-4,5; молибден 1,5-2,5; цирконий 18,0-21,0; хром ≤ 0,003; никель ≤ 0,005, кобальт ≤ 0,0008; железо ≤ 0,014; кремний ≤ 0,006; углерод ≤ 0,006; азот ≤ 0,005; кислород < 0,05; медь ≤ 0,005; титан - остальное. Суммарное содержание алюминия и циркония составляет 22,0-25,0 мас.%, суммарное содержание никеля, хрома, меди, кобальта и железа не превышает 0,02 мас.% и суммарное содержание углерода, кислорода и азота не превышает 0,05 мас.%. Сплав характеризуется высокой прочностью и пластичностью в исходном состоянии и после длительного нейтронного облучения. 3 табл.
Реферат Свернуть Развернуть

Изобретение относится к цветной металлургии, в частности металлургии титановых сплавов, обладающих высокой радиационной стойкостью и предназначенных для использования в атомной энергетике, в частности для изготовления корпусных конструкций реакторов стационарных атомных энергетических установок (АЭУ).

Титановые сплавы, благодаря своим уникальным свойствам: малоактивируемости, немагнитности, низкой плотности, высокой температуре плавления, хорошей коррозионной стойкости в различных средах, сохранению уровня механических свойств при нагреве до температуры 400°С, характерной для режимов эксплуатации водоохлаждаемых энергетических реакторов, предлагаются в настоящее время как конструкционные материалы для оборудования атомной энергетики.

Известен свариваемый высокопрочный сплав на основе титана, предназначенный для изготовления крупногабаритных сварных конструкций, используемых в судостроении и других отраслях промышленности [1] - сплав, содержащий мас. %: алюминий 4,5-6,2; ванадий 1,0-2,0; молибден 1,3-2,0; углерод 0,06-0,14; цирконий 0,05-<0,10; кислород 0,06-0,13; кремний 0,02-<0,10; железо 0,05-0,25; титан остальное, при выполнении следующих соотношений: [С]+[O2]≤0,25; [Mo]+0,5[V]≤3,0. Этот сплав имеет достаточно высокий уровень прочностных свойств на воздухе и в морской воде, но недостатком его являются низкие характеристики пластичности и ударной вязкости в исходном состоянии и после нейтронного облучения, а также довольно высокое содержание примесей Ni, Cu, Со, Cr, С, О, и N, присутствующих в титановом сплаве, которые приводят к охрупчиванию в условиях нейтронного облучения при флюенсе Ф≥1×1019 нейтрон/см2 с энергией тепловых нейтронов Е≥0,5 МэВ, что ограничивает срок службы сплава для корпусных конструкций атомного реактора.

Известен титановый сплав, предназначенный для использования при производстве оборудования и в корпусных конструкциях ядерных энергетических установок [2] - титановый сплав, содержащий в мас. %: алюминий 4,7-6,0; ванадий 1,0-2,0; молибден 0,8-2,0; вольфрам 0,01-0,10; цирконий 0,01-0,10; кремний 0,01-0,10; железо 0,10-0,25; церий 0,005-0,01; углерод 0,05-0,15; кислород 0,01-0,12; азот 0,01-0,04; титан - остальное, при этом суммарное содержание ванадия и молибдена не превышает 3,5%, суммарное содержание циркония и кремния не превышает 0,15%, суммарное содержание кислорода и азота не превышает 0,13%. Основным недостатком этого сплава является существенное упрочнение и значительное снижение вязкости разрушения в условиях нейтронного облучения за счет нестабильности его структурных составляющих. Известно, что при повреждающей дозе нейтронного облучения 0,3 СНА и более в сплавах титана, содержащих высокие концентрации Al и V, формируются наноразмерные кластеры, содержащие атомы алюминия до 8% и атомы ванадия до 22% [3,4], приводящие к снижению остаточной пластичности после облучения ≤ 2% и охрупчиванию сплава. При этом снижается работоспособность и эксплуатационная надежность реакторного оборудования в процессе длительной эксплуатации в составе АЭУ.

В качестве прототипа предложен малоактивируемый титановый сплав с высокой ударной вязкостью, предназначенный для ядерного реактора, содержащий мас. %: алюминий 3,5-5,5; ванадий 2,0-5,0; цирконий 2,0-5,0; хром 0,5-2,0; кремний 0,1-0,5; примеси включают никель не более 0,005; железо не более 0,03; кислород не более 0,15; углерод не более 0,02; медь не более 0,005; кобальт не более 0,0001 и водород не более 0,003 [6]. Для известного сплава отсутствуют сведения о прочностных и пластических свойствах сплава после нейтронного облучения. Не представлены данные по темпу снижения наведенной активности после нейтронного облучения, что делает необоснованным определение сплава как малоактивируемого. Содержание ванадия и хрома в составе сплава существенно ограничивают термическую стабильность, а также характеристики относительного удлинения и ударной вязкости разрушения при длительных сроках нейтронного облучения, из-за потери однородности первоначального твердого раствора α и β фаз, легированных ванадием. В сплаве также отсутствует регламентация содержания примесей, таких как азот, железо, кремний и углерод.

Техническим результатом является создание высокопрочного псевдо-α титанового сплава на основе композиции Ti-Al-Zr-Mo для изготовления корпусных конструкций атомных энергетических реакторов, обеспечивающего необходимый комплекс механических характеристик в исходном состоянии и после длительного нейтронного облучения.

Технический результат достигается за счет того, что высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным теплоносителем содержит алюминий, цирконий, молибден, железо, никель, кремний, хром, медь, кобальт, кислород, азот, углерод при следующем соотношении, мас. %:

Алюминий (Al) 4,0-4,5
Цирконий (Zr) 18,0-21,0
Молибден (Mo) 1,5-2,5
Железо (Fe) ≤0,014
Кремний (Cr) ≤0,006
Углерод (С) ≤0,006
Азот (N) ≤0,005
Кислород (О) ≤0,05
Никель (Ni) ≤0,005
Хром (Cr) ≤0,003
Медь (Cu) ≤0,005
Кобальт (Со) ≤0,0008
Титан (Ti) остальное

При этом суммарное содержание алюминия и циркония находится в пределах %Al+%Zr=22,0÷25,0 суммарное содержание никеля, хрома, меди, кобальта и железа не превышает 0,02 мас. %, суммарное содержание углерода, кислорода и азота не превышает 0,05 мас. %.

Способ получения заявляемого титанового сплава, включает в себя двойной переплав в вакуумной дуговой печи расходуемого электрода с расчетным шихтовым составом, включающим высокочистый губчатый титан, с суммарным содержанием никеля, хрома, меди и кобальта и железа не более 0,02% и твердостью (НВ) не более 85.

Содержание алюминия в заявляемых пределах 4,0-4,5% обеспечивает высокий уровень кратковременной и длительной прочности, теплостойкость при температурах от +20°С до +350°С, обеспечивает стабильность характеристик крупногабаритных полуфабрикатов, в том числе сварных конструкций. Повышение содержания алюминия в сплаве выше 4,5% при облучении приводит к формированию α2-фазы и образованию кластеров в α-твердом растворе, обогащенных алюминием [4,5]. Содержание алюминия ниже 4,0% не обеспечивает требований по уровню прочности сплава.

Содержание циркония в заявляемых пределах 18,0-21,0% в сочетании с алюминием обеспечивает необходимый уровень прочностных характеристик, в том числе повышает прочность и предел ползучести. Цирконий повышает пластичность сплава и, как следствие, технологичность при горячей деформации крупногабаритных поковок. Контролируемый диапазон легирования цирконием определяет структурную стабильность сплава при длительном нейтронном облучении.

Содержание молибдена в заявленных пределах 1,5-2,5% обеспечивает необходимое количество β-фазы в сплаве и гарантирует высокий уровень прочностных характеристик сплава при минимальной потере пластичности при повышенных температурах. Превышение содержания молибдена выше 2,5% приводит к образованию нестабильных фаз α' и α'' и снижению пластичности сварных соединений [7].

Суммарное содержание никеля, хрома, меди, кобальта и железа понижено до 0,02% по сравнению с известным сплавом для обеспечения термической стабильности сплава в условиях длительного температурного и радиационного воздействия, так как эти элементы ограничивают устойчивость твердого раствора α и псевдо-α титановых сплавов за счет образования сегрегаций на границе зерен [8].

Суммарное содержание примесей элементов внедрения углерода, кислорода и азота не превышает 0,05 мас. %, как элементов существенно влияющих на пластичность сплава при температурах от 200°С до 350°С.

Промышленную применимость изобретения подтверждает пример его конкретного выполнения. Для исследования механических характеристик были изготовлены слитки трех составов сплава композиции Ti-Al-Zr-Mo методом двойного вакуумно-дугового переплава с последующим изготовлением опытных поковок габаритом 100×100×250 мм. Для изготовления слитков были использованы следующие шихтовые материалы: губка титановая марки Эк-1; лигатура молибдена; чистый алюминий; чистый электролитический цирконий.

Термическая обработка (отжиг) поковок проводилась по режиму: температура нагрева (800±10)°С →выдержка 2 часа →охлаждение на воздухе.

Химический состав опытных поковок из заявляемого титанового сплава и механические характеристики при температурах испытания 20 и 350°С представлены в таблицах 1 и 2. Механические характеристики определялись при растяжении образцов с рабочей длиной 15 мм и диаметром рабочей части 3 мм в соответствии с ГОСТ 1497-84 и ГОСТ 9651-84. Результаты механических испытаний усреднены по 3-м образцам.

Образцы из опытных сплавов подвергались нейтронному облучению в исследовательском реакторе МИР (ГНЦ НИИ АР, Россия) до флюенса Ф=3×1020 нейтрон/см2 с энергией En≥0,5 МэВ при температуре облучения +270°С в водяном теплоносителе с рН25°C=9÷10,5. Испытания на растяжение проводились на установке Instron 1362 с жесткостью 450 кН/мм со скоростью перемещения активного захвата v=1,0 мм/мин в соответствие с требованиями ГОСТ 28840-90. Результаты испытаний облученных материалов (предел текучести и относительное удлинение) при температурах испытаний 20 и 350°С представлены в таблице 3.

Ожидаемый технико-экономический эффект применения заявляемого титанового сплава определяется радиационной стойкостью при флюенсе Ф=3×1020 н/см2, высоким расчетным темпом снижения наведенной активности с достижением уровня радиационной безопасности после облучении в реакторе типа ВВЭР в течение 40 лет. Высокопрочный титановый сплав предназначен для атомных энергетических установок малой мощности с водяным теплоносителем с расчетным сроком эксплуатации не менее 60 лет.

ЛИТЕРАТУРА

1. Патент RU 2393258 Сплав на основе титана

2. Патент RU 2367697 Титановый сплав для реакторного оборудования атомной и термоядерной энергетики

3. Tahtinen S., Moilanen P., Singh B.N. - Effekt jf displacement dose and irradiation temperature jn tensile and fracture toughness properties of titanium alloys. Journal of Nuclear Materials. 2007, Vol. 360-370, Part A, c. 627-632

4. S.V. Rogozhkin - Study of Nanostructure of Experimental Ti-5Al-4V-2Zr Alloy - S.V. Rogozhkin, I.A. Schastlivaya, V.P. Leonov, A.A. Nikitin, N.N. Orlov, M.A. Kozodaev, A.A. Vasiliev, A.S. Orekhov - Inorganic Materials: Applied Research, 2017, Vol. 8, No. 6, pp. 848-860

5.1. A. Schastlivaya - Investigation of Radiation Resistance and Structural Stability of Titanium α-and Pseudo-α Alloys - I.A. Schastlivaya V.P. Leonov, A.V. Khanzhin, A.V. Obukhov, O.Yu. Makarov, and Yu.S. Kudrin - Inorganic Materials: Applied Research, 2017, Vol. 8, No. 6, pp. 944-950

6. Патент CN 106521239 High-impact-toughness low-activation titanium alloy for nuclear reactor

7. И.И. Корнилов - Титан - M: Изд. Наука,. 1975, с. 92

8. С.С. Ушков, И.Г. Власова, Н.Х. Киевская - Особенности микросегрегаций примесных и легирующих элементов в а- сплавах титана. Физика металлов и металловедение, т. 57, вып. 1, 1984, с 194-197.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 25.
26.08.2017
№217.015.e0f9

Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в...
Тип: Изобретение
Номер охранного документа: 0002625511
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e127

Способ микродугового оксидирования прутков из титановой проволоки для выполнения износостойких наплавок

Изобретение относится к области гальванотехники и может быть использовано для микродугового оксидирования (МДО) сварочной проволоки из титановых сплавов, применяемой при изготовлении изделий судовой арматуры и механизмов, изделий химического машиностроения и др. Способ МДО прутков из титановой...
Тип: Изобретение
Номер охранного документа: 0002625516
Дата охранного документа: 14.07.2017
20.01.2018
№218.016.1345

Литейный сплав на основе титана

Изобретение относится к области цветной металлургии, в частности к свариваемым литейным сплавам на основе титана, и предназначено для изготовления фасонных отливок, используемых в ответственных сварно-литых конструкциях энергомашиностроения при температуре до 450°С. Литейный свариваемый сплав...
Тип: Изобретение
Номер охранного документа: 0002634557
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1400

Износостойкий сплав для высоконагруженных узлов трения

Изобретение относится к износостойким сплавам для высоконагруженных узлов трения. Сплав включает связующую матрицу эвтектического состава в количестве от 24,8 до 26,8 мас.% от массы сплава и карбонитрид титана TiCN. Матрица эвтектического состава состоит из никеля, вольфрама, молибдена, хрома,...
Тип: Изобретение
Номер охранного документа: 0002634566
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.18bd

Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной...
Тип: Изобретение
Номер охранного документа: 0002636269
Дата охранного документа: 21.11.2017
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
28.07.2018
№218.016.7606

Аустенитная жаропрочная и коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к составам аустенитных жаропрочных и коррозионно-стойких сталей, используемых в атомной энергетике, энергомашиностроении, машиностроении в установках, работающих длительное время при температурах 500÷650°С. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002662512
Дата охранного документа: 26.07.2018
20.12.2018
№218.016.a96d

Способ производства листового проката с регулируемым пределом текучести из стали унифицированного химического состава

Изобретение относится к области производства высокопрочных сталей улучшенной свариваемости для применения в судостроении, строительстве морских сооружений, транспортном и тяжелом машиностроении и др. отраслях промышленности. Получение проката унифицированного химического состава в листах...
Тип: Изобретение
Номер охранного документа: 0002675441
Дата охранного документа: 19.12.2018
25.01.2019
№219.016.b41a

Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах

Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их...
Тип: Изобретение
Номер охранного документа: 0002678045
Дата охранного документа: 22.01.2019
20.02.2019
№219.016.bc14

Носитель катализатора на металлической основе

Изобретение относится к области нефтехимии, а именно к носителям катализаторов, которые могут быть использованы для процессов паровой конверсии. Описан носитель катализатора, включающий металлическую основу и нанесенную на него многослойную композицию, в которой по крайней мере один слой...
Тип: Изобретение
Номер охранного документа: 0002680144
Дата охранного документа: 18.02.2019
Показаны записи 1-10 из 85.
20.02.2013
№216.012.25f1

Фармакологическая композиция, предназначенная для интраназального введения с целью доставки в мозг фармакологически активного компонента, и способ ее получения

Заявляемая группа изобретений относится к фармакологической композиции, предназначенной для интраназального введения с целью доставки в мозг, и способу получения указанной композиции. Заявленная композиция содержит основу-контейнер, образованную пористыми частицами карбоната кальция или...
Тип: Изобретение
Номер охранного документа: 0002475233
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2b5c

Способ нанесения покрытий на титан и его сплавы методом электроискрового легирования в водных растворах при повышенных давлениях

Изобретение относится к области гальванотехники и может быть использовано в авиационной, судостроительной, нефте- и газодобывающей, перерабатывающей промышленности, приборостроении и медицинской технике. Способ включает микродуговое оксидирование (МДО) в электролите в герметичном сосуде путем...
Тип: Изобретение
Номер охранного документа: 0002476627
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2d98

Способ изготовления слоистого композиционного материала титановый сплав-алюминид титана

Изобретение относится к области изготовления слоистого композиционного материала посредством диффузионной сварки листовых заготовок. Слоистый композиционный материал титановый сплав-алюминид титана служит для использования при изготовлении деталей авиационных и космических летательных...
Тип: Изобретение
Номер охранного документа: 0002477203
Дата охранного документа: 10.03.2013
20.08.2013
№216.012.6084

Способ брикетирования металлической стружки

Изобретение относится к области брикетирования металлической стружки и может быть использовано преимущественно при изготовлении брикет-электродов для электрошлакового переплава (ЭШП). Металлическую стружку дробят до получения элементов двух фракций, смешивают фракции, осуществляют очистку смеси...
Тип: Изобретение
Номер охранного документа: 0002490340
Дата охранного документа: 20.08.2013
20.09.2013
№216.012.6aab

Способ изготовления заготовки обечайки активной зоны корпуса реактора типа ввэр

Изобретение относится к металлургии и может быть использовано при изготовлении крупногабаритных обечаек корпусов реакторов типа ВВЭР-1000. Изготавливают цельнокованую заготовку длиной не менее длины обечайки с учетом технологических припусков. Толщина стенки заготовки превышает толщину стенки...
Тип: Изобретение
Номер охранного документа: 0002492958
Дата охранного документа: 20.09.2013
27.10.2013
№216.012.7a16

Система защиты от эрозионно-коррозионного разрушения корпусов морских судов и сооружений

Изобретение относится к системам защиты от эрозионно-коррозионного разрушения подводной поверхности корпусов морских судов, морских сооружений освоения шельфа замерзающих морей, например морских стационарных и плавучих буровых платформ, и может быть использовано в другой морской технике,...
Тип: Изобретение
Номер охранного документа: 0002496916
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.9106

Сплав на основе титана

Изобретение относится к металлургии, а именно к сплавам на основе титана с высокой коррозионной стойкостью против щелевой и питтинговой коррозии в агрессивных средах, и может быть использовано в свариваемых элементах оборудования: химических производств, оффшорной техники и судостроения. Сплав...
Тип: Изобретение
Номер охранного документа: 0002502819
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.920b

Тестовый объект для калибровки просвечивающих электронных микроскопов

Изобретение относится к области калибровки просвечивающих электронных микроскопов (ПЭМ) при измерениях в нано- и субнанометровом диапазонах. Тестовый объект выполнен в виде держателя образцов с несколькими местами крепления исследуемых объектов, в одном из которых расположена эталонная...
Тип: Изобретение
Номер охранного документа: 0002503080
Дата охранного документа: 27.12.2013
10.07.2014
№216.012.dc6a

Способ модификации оболочек полиэлектролитных капсул наночастицами магнетита

Изобретение относится к способу модификации оболочек полиэлектролитных капсул наночастицами магнетита. Заявленный способ включает получение матрицы-контейнера, в качестве которой используют пористые микрочастицы карбоната кальция, формирование оболочки полиэлектролитных капсул путем...
Тип: Изобретение
Номер охранного документа: 0002522204
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc9a

Способ изготовления тонких листов

Изобретение относится к обработке металлов давлением, а именно к способам изготовления тонких листов из псевдо-альфа титановых сплавов. Способ изготовления тонких листов из псевдо-альфа титановых сплавов включает деформацию слитка в сляб, механическую обработку сляба, многопроходную прокатку...
Тип: Изобретение
Номер охранного документа: 0002522252
Дата охранного документа: 10.07.2014
+ добавить свой РИД