×
19.10.2018
218.016.93a8

Результат интеллектуальной деятельности: СПОСОБ УДАЛЕНИЯ ПЕРЕНАПЫЛЁННЫХ УГЛЕВОДОРОДНЫХ СЛОЁВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии очистки вакуумных камер и других элементов в вакууме, находящихся в труднодоступных для очистки местах, от перенапыленных углеводородных слоев и может быть использовано в установках с обращенными к плазме элементами из углеродных материалов и в технологических установках. Сущность способа заключается в создании вакуума в рабочем объеме, зажигании ВЧ плазмы в атмосфере рабочего газа при давлении, достаточном для генерации плазмы. Используемую для удаления перенапыленных углеводородных слоев, ВЧ плазму создают с помощью электронного пучка в продольном магнитном поле не менее 1000 Гс, направленного на приемный электрод с коэффициентом вторичной эмиссии >1. При этом на приемный электрод подают напряжение смещения, необходимое для перехода разряда в автоколебательный режим. После перехода разряда в автоколебательный режим в примыкающих к разряду стенках наводятся высокочастотные токи. А в полостях и щелях возникают сильные переменные поля, способствующие появлению химически активных радикалов как в прилегающих к стенкам областях, так и в щелях и затененных от плазмы областях. Взаимодействие химически активных радикалов с углеводородными пленками приводит к появлению летучих соединений и соответственно очистке поверхности. Изобретение обеспечивает расширение возможностей по удалению углеводородных пленок в местах, где это практически невозможно сделать с использованием известных на данный момент технологий. При этом способ можно использовать, когда есть необходимость очистки при низком давлении порядка 10-10 Па. 5 ил.

Изобретение относится к технологии очистки вакуумных камер и других элементов в вакууме, находящихся в труднодоступных для очистки местах, от перенапыленных углеводородных слоев и может быть использовано в установках с обращенными к плазме элементами из углеродных материалов и в технологических установках.

Известен способ плазменной очистки, заключающийся в создании вакуума в рабочем объеме, напуске рабочего газа, зажигании емкостного ВЧ разряда, с специальной системой для подвода потока химически активных частиц из плазмы на обрабатываемую поверхность [патент РФ №2037343].

Недостатком данного способа является невозможность использования его для очистки поверхности с неоднородным, заранее неизвестным рельефом, в котором имеется большое количество щелей, а также крупных поверхностей, таких как стенки камеры. Как следует из описания прототипа, обработка поверхности происходит не за счет прямого воздействия плазмы на очищаемую поверхность, а за счет потока химически активных частиц, образовавшихся в плазме и попадающих на обрабатываемую поверхность уже за счет конфигурации вакуумной системы, что в общем снижает эффективность метода.

Известен способ плазменной очистки углеводородных слоев, который был выбран в качестве прототипа, заключающийся в создании вакуума в рабочем объеме, напуске рабочего газа (кислород или оксид азота) до давления от 100 до 800 Па, в зависимости от того какую область надо очищать (стенки камеры или один из электродов), с последующим зажиганием емкостного ВЧ разряда между электродами с характерным расстоянием между ними порядка нескольких десятков мм [US патент 20070248767 А1]. В вакуумный объем может дополнительно напускаться или буферный инертный газ для изменения давления и, следовательно, свойств плазмы или же фторосодержащие соединения для изменения скорости очистки поверхности.

Недостатком данного способа является, во-первых, невозможность очистки углеводородных слоев в щелях, на неоднородных поверхностях, или же в затененных от плазмы областях, поскольку сам метод ориентирован на очистку гладких поверхностей, напрямую прилегающих к области горения ВЧ разряда. Также имеют место геометрические ограничения размеров и конфигурации обрабатываемой поверхности. Кроме того, данный способ неприменим в случае, когда поверхность необходимо очищать при низком давлении.

Технический результат изобретения направлен на расширение возможностей по удалению углеводородных пленок в местах, где это практически невозможно сделать с использованием известных на данный момент технологий, то есть способ можно использовать для обработки поверхностей различных размеров и конфигураций, в том числе, для очистки в щелях и затененных от плазмы областях, при этом очистка происходит за счет прямого воздействия плазмы на обрабатываемую поверхность. При этом способ можно использовать, когда есть необходимость очистки при низком давлении порядка 10-1-10-2 Па.

Технический результат достигается за счет того, что в предложенном способе удаления перенапыленных углеводородных слоев, включающем в себя создание вакуума в рабочем объеме, зажигание ВЧ плазмы в атмосфере рабочего газа при давлении достаточном для генерации плазмы, используемой для удаления перенапыленных углеводородных слоев, ВЧ плазму создают с помощью электронного пучка в продольном магнитном поле не менее 1000 Гс, направленного на приемный электрод с коэффициентом вторичной эмиссии >1, при этом на приемный электрод подают напряжение смещения, необходимое для перехода разряда в автоколебательный режим. После перехода разряда в автоколебательный режим в примыкающих к разряду стенках наводятся высокочастотные токи, а в полостях и щелях возникают сильные переменные поля, способствующие появлению химически активных радикалов как в прилегающих к стенкам областях, так и в щелях и затененных от плазмы областях. Взаимодействие химически активных радикалов с углеводородными пленками приводит к появлению летучих соединений и соответственно очистке поверхности.

Конкретнее, в предложенном способе плазма инициируется электронным пучком, источником которого может служить электронная пушка, в простейшем варианте состоящая из прямонакального катода и анода. Разряд зажигается в продольном магнитном поле не менее 1000 Гс, это необходимо для того, чтобы плазменный шнур равномерно распространялся вдоль линий магнитного поля. Электроны ускоряются приложенной между катодом и анодом разностью потенциалов в несколько кВ вдоль линий магнитного поля. Прохождение электронного пучка через рабочий газ приводит к появлению пучково-плазменного разряда, обеспечивающего присутствие высокоэнергетичных электронов и достижение требуемого порога по плотности для распространения волн внутри замагниченной плазмы. Приемником пучка является электрод с коэффициентом вторичной эмиссии выше единицы (это может быть охлаждаемый электрод из алюминия (вольфрама, тантала) с тонкой диэлектрической пленкой на поверхности). Вольт-амперная характеристика (ВАХ) такого электрода при контакте с плазмой пучково-плазменного разряда, в котором присутствует высокоэнергетичная группа электронов, будет иметь N-образную форму (Фиг. 1). На приемный электрод с блока питания подается отрицательное смещение, которое изменяет рабочую точку. С ростом величины отрицательного смещения, увеличивается ток разряда, а после достижения порогового значения, которое соответствует началу области отрицательного дифференциального сопротивления (ОДС) N-образной ВАХ (это значение зависит от материала, из которого изготовлен приемный электрод) происходит переход от устойчивого режима к неустойчивому. При дальнейшем увеличении смещения (до значений, соответствующих середине области ОДС участка N-образной ВАХ) устанавливается автоколебательный режим.

Мощность вкладывается в разряд через поддерживаемый источником напряжения смещения ток вторичных электронов с приемного электрода, который играет роль холодного катода, а также за счет возникновения переменных полей и ускорения ионов в приповерхностном слое. В автоколебательном режиме величина среднего тока с приемного электрода в несколько раз превышает величину тока в режиме без колебаний. Плазменный шнур транспортируется вдоль магнитного поля, заполняя весь промежуток от электронной пушки до приемного электрода. Наличие переменных полей в плазме повышает эффективность передачи энергии, приводя к возрастанию плотности плазмы.

На Фиг. 2 показано схематичное изображение токов, электрических и магнитных полей, возбуждаемых в разряде в автоколебательном режиме. Радиус плазменного шнура будет определяться размерами приемного электрода. Примыкание к плазме проводящей поверхности не влияет на автоколебательный режим. При этом в примыкающих к разряду областях наводятся высокочастотные токи, которые генерируют химически активные радикалы. В полостях и щелях примыкающих элементов возникает сильное переменное электромагнитное поле, которое также приводит к появлению химически активных радикалов. Таким способом решается проблема доставки радикалов как к очищаемым от перенапыленных слоев углеводородов прилегающим стенкам, так и к щелям и затененным от плазмы областям. Взаимодействие химически активных радикалов с углеводородными пленками приводит к появлению летучих соединений и соответственно очистке поверхности.

Пример конкретной реализации предложенного способа очистки был продемонстрирован на установке ПР-2 (НИЯУ МИФИ) (Фиг. 3) [K.М. Gutorov et al. // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, June 2016, Vol. 10, No. 3, pp. 612-616] состоящей из вакуумного объема 1, системы откачки 2, системы газонапуска 3, служащей для напуска рабочего газа до давления 10-2-10-1 Па, катушек магнитного поля 4, создающих продольное магнитное поле более 1000 Гс, электронной пушки 5, алюминиевого охлаждаемого приемного электрода 6.

Для проверки эффективности способа очистки из молибденовых пластин, покрытых 15 мкм углеводородной пленкой, была сделана следующая сборка (Фиг. 4), которая имитировала щелевые и затененные от плазмы области. Сборка помещалась в рабочий объем, после чего вакуумная камера откачивалась до давления 10-5 Па. Через систему газонапуска в рабочий напускался кислород до давления 10-2 Па. С помощью электронной пушки в рабочем объеме зажигался пучково-плазменный разряд (который является частным случаем ВЧ разряда) в магнитном поле порядка 1000 Гс. Перевод разряда в автоколебательный режим осуществляется подачей отрицательного напряжения на приемный электрод до достижения порогового значения. Автоколебательный режим поддерживался в течение 15 минут.

По прошествии 15 минут сборка вынималась и с помощью сканирующего электронного микроскопа VEGA 3 SBH Tescan с системой рентгеновского энергодисперсионного микроанализа с безазотным детектором INCA X-Act анализировалась толщина углеводородной пленки. Указанная система позволила оценить элементный состав поверхностного слоя образца толщиной несколько десятков микрометров. Для целей данного исследования достаточно отслеживать величину сигнала углерода при постоянных условиях анализа, которая будет пропорциональна толщине углеводородной пленки на поверхности молибдена. После оценки толщины исследуемая сборка помещалась обратно в камеру, после чего вышеуказанный процесс повторялся.

На Фиг. 5 показана зависимость относительного сигнала пиков углерода в щелях от времени очистки в автоколебательном разряде. В вышеописанном режиме достигается полное удаление углеводородных пленок толщиной 15 мкм за 60 минут в щелях и за 30 минут на открытых поверхностях.

Таким образом, из вышесказанного следует, что предлагаемый способ позволяет эффективно удалять перенапыленные углеводородные слои в частности в щелях и затененных от плазмы областях. При этом способ можно использовать, когда есть необходимость очистки при низком давлении порядка 10-1-10-2 Па.

Способ удаления перенапыленных углеводородных слоев, включающий в себя создание вакуума в рабочем объеме, зажигание ВЧ плазмы в атмосфере рабочего газа при давлении, достаточном для генерации плазмы, используемой для удаления перенапыленных углеводородных слоев, отличающийся тем, что ВЧ плазму создают с помощью электронного пучка в продольном магнитном поле не менее 1000 Гс, направленного на приемный электрод с коэффициентом вторичной эмиссии >1, при этом на приемный электрод подают напряжение смещения, необходимое для перехода разряда в автоколебательный режим.
СПОСОБ УДАЛЕНИЯ ПЕРЕНАПЫЛЁННЫХ УГЛЕВОДОРОДНЫХ СЛОЁВ
СПОСОБ УДАЛЕНИЯ ПЕРЕНАПЫЛЁННЫХ УГЛЕВОДОРОДНЫХ СЛОЁВ
СПОСОБ УДАЛЕНИЯ ПЕРЕНАПЫЛЁННЫХ УГЛЕВОДОРОДНЫХ СЛОЁВ
Источник поступления информации: Роспатент

Показаны записи 511-520 из 592.
03.07.2019
№219.017.a41f

Одновибратор

Изобретение относится к импульсной технике. Технический результат изобретения заключается в повышении стабильности длительности формируемого импульса. Одновибратор содержит токоограничивающий резистор, стабилитрон, диод, опорный резисторный делитель, интегрирующую RC-цепь, дифференциальный...
Тип: Изобретение
Номер охранного документа: 0002693182
Дата охранного документа: 01.07.2019
05.07.2019
№219.017.a649

Носитель для диагностики, направленной доставки и контролируемого высвобождения лекарственных средств

Изобретение относится к области медицины, представляет собой носитель для диагностики, направленной доставки и контролируемого высвобождения лекарственных средств, представляющий собой микрокапсулу, содержащую лекарственные средства, отличающийся тем, что оболочка микрокапсулы состоит из трех и...
Тип: Изобретение
Номер охранного документа: 0002693485
Дата охранного документа: 03.07.2019
10.07.2019
№219.017.a9ec

Устройство периодического действия для свч-обработки материалов

Изобретение относится к атомной энергетике, может быть использовано в радиохимической отрасли промышленности для получения порошка смешанных оксидов при переработке ядерного топлива. Устройство периодического действия для СВЧ-обработки материалов, состоящее из СВЧ-генератора, реакционной...
Тип: Изобретение
Номер охранного документа: 0002693820
Дата охранного документа: 08.07.2019
19.07.2019
№219.017.b63b

Гетерогенный канальный ядерный реактор на тепловых нейтронах

Изобретение относится к конструкции энергетических гетерогенных канальных реакторов на тепловых нейтронах. Активная зона реактора состоит из технологических каналов с ядерным топливом, теплоносителем и слоем теплоизолирующего материала, прилегающим к внутренней поверхности трубы...
Тип: Изобретение
Номер охранного документа: 0002694812
Дата охранного документа: 17.07.2019
23.07.2019
№219.017.b718

Программно-аппаратный комплекс "тонкий клиент"

Изобретение относится к области вычислительной техники. Техническим результатом является обеспечение обмена данными между сервером и удаленными оконечными устройствами, в которых отсутствуют накопители информации, предназначенные для постоянного хранения информации, с очисткой всех видов памяти...
Тип: Изобретение
Номер охранного документа: 0002695055
Дата охранного документа: 18.07.2019
03.08.2019
№219.017.bbce

Способ растворения диоксида плутония с получением концентрированного раствора

Изобретение относится к способу растворения диоксида плутония или смешанных оксидов актиноидов, содержащих диоксид плутония, любых других оксидов с окислительно-восстановительным потенциалом положительнее потенциала пары Ag/Ag(-1,98 В). Способ включает загрузку в электролизер с пульсационной...
Тип: Изобретение
Номер охранного документа: 0002696475
Дата охранного документа: 01.08.2019
12.08.2019
№219.017.bea6

Плазменный ускоритель

Изобретение относится к плазменным ускорителям, конкретно к приборам, в которых плазма ускоряется под действием поля пондеромоторных сил, формируемых в скрещенных электромагнитных полях, создаваемых в рабочем объеме прибора. Такие приборы используются в качестве космических двигателях и в...
Тип: Изобретение
Номер охранного документа: 0002696975
Дата охранного документа: 08.08.2019
12.08.2019
№219.017.bf09

Диэлектрический стержневой излучатель

Изобретение относится к антенной технике миллиметрового диапазона длин волн и может быть использовано в зондирующих устройствах радиоинтерферометров для измерения кинематических параметров движения поверхностей в диагностируемых замкнутых объемах, а также в качестве облучателей длиннофокусных...
Тип: Изобретение
Номер охранного документа: 0002696661
Дата охранного документа: 05.08.2019
20.08.2019
№219.017.c1b2

Система ультразвукового контроля надзонного пространства ядерного реактора

Изобретение относится к атомной технике. Система ультразвукового контроля надзонного пространства ядерного реактора с жидкометаллическим теплоносителем включает отражатель ультразвука и сканирующий ультразвуковой механизм с приводами, включающий несущую штангу с герметичными ультразвуковыми...
Тип: Изобретение
Номер охранного документа: 0002697664
Дата охранного документа: 16.08.2019
01.09.2019
№219.017.c5b2

Способ дистанционного определения термодинамической температуры быстропротекающего процесса, развивающегося в радиопрозрачном объекте, устройство для его осуществления, способы калибровки устройства и генератора шума в составе этого устройства

Изобретение относится к технике радиофизических измерений и может быть использовано для измерения в миллиметровом участке спектра собственного теплового излучения разнообразных быстропротекающих газодинамических процессов, развивающихся в радиопрозрачных объектах. Заявлен способ...
Тип: Изобретение
Номер охранного документа: 0002698523
Дата охранного документа: 28.08.2019
Показаны записи 1-6 из 6.
13.01.2017
№217.015.6842

Устройство для подачи приработочной присадки в камеру сгорания двс

Изобретение относится к двигателестроению, в частности к области обкатки двигателей внутреннего сгорания (ДВС). Предложено устройство для подачи приработочной присадки в камеру сгорания ДВС, содержащее емкость с присадкой 9; впускной коллектор 1, во входной части которого установлен распылитель...
Тип: Изобретение
Номер охранного документа: 0002591368
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.8fbf

Декодер с обработкой списка базового кластера

Изобретение относится к технике связи и может использоваться при проектировании новых и модернизации существующих систем передачи дискретной информации. Технический результат изобретения заключается в повышении достоверности приема информации и скорости обработки данных. Декодер позволяет...
Тип: Изобретение
Номер охранного документа: 0002605365
Дата охранного документа: 20.12.2016
04.04.2018
№218.016.36c9

Способ мягкого когнитивного декодирования систематических блоковых кодов

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении скорости декодирования. В способе декодирования символы принятой кодовой комбинации V систематического (n,k)-кода по основному алгоритму упорядочиваются по убыванию их мягких решений символов и на...
Тип: Изобретение
Номер охранного документа: 0002646372
Дата охранного документа: 02.03.2018
14.11.2018
№218.016.9d32

Перестановочный декодер с памятью

Изобретение относится к области связи и может быть использовано в системах обмена данными. Техническим результатом является сокращение объема памяти для хранения эталонных матриц. Устройство содержит блок приема, блок мягких решений символов, накопитель оценок, блок упорядочения оценок, блок...
Тип: Изобретение
Номер охранного документа: 0002672300
Дата охранного документа: 13.11.2018
01.11.2019
№219.017.dc8a

Перестановочный декодер с обратной связью

Изобретение относится к технике связи и может использоваться при проектировании новых и модернизации существующих систем обмена данными. Техническим результатом является сокращение объема памяти для хранения эталонных матриц. Перестановочный декодер с обратной связью содержит: блок приема,...
Тип: Изобретение
Номер охранного документа: 0002704722
Дата охранного документа: 30.10.2019
31.07.2020
№220.018.39fd

Свч установка с усеченным коническим резонатором для отделения пуха от шкурок кроликов в периодическом режиме

Изобретение относится к сельскому хозяйству и может быть использовано в кролиководческих хозяйствах для отделения пуха от шкурок кроликов. СВЧ установка с усеченным коническим резонатором для отделения пуха от шкурок кроликов в периодическом режиме содержит вертикально расположенный конический...
Тип: Изобретение
Номер охранного документа: 0002728462
Дата охранного документа: 29.07.2020
+ добавить свой РИД