×
12.08.2019
219.017.bea6

ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к плазменным ускорителям, конкретно к приборам, в которых плазма ускоряется под действием поля пондеромоторных сил, формируемых в скрещенных электромагнитных полях, создаваемых в рабочем объеме прибора. Такие приборы используются в качестве космических двигателях и в плазменных технологиях. Плазменный ускоритель содержит генератор импульсов тока, источник плазмы и спиральный электрод с высотой h, первый вывод которого соединен с генератором импульса тока, а второй заземлен. В ускоритель дополнительно введены первый магнитопровод в виде цилиндра высотой h и радиусом R, расположенный соосно внутри спирального электрода с радиусом R, постоянный магнит в виде пустотелого цилиндра высотой h, с внутренним радиусом R и внешним радиусом R, намагниченный по высоте и расположенный соосно спиральному электроду, второй магнитопровод в виде пустотелого цилиндра с внутренним радиусом Rи с внешним радиусом R, соприкасающийся с правым торцом постоянного магнита и соосно охватывающий спиральный электрод, третий магнитопровод в виде диска с радиусом R и высотой h, соприкасающийся своей правой поверхностью с левыми торцами постоянного магнита и первого магнитопровода, третий магнитопровод имеет диэлектрический ввод для соединения первого вывода спирального электрода с генератором импульсов тока, а вышеуказанные размеры удовлетворяют соответствующим соотношениям. Технический результат - увеличение конечной скорости генерируемых плазменных потоков и увеличение энергетического КПД плазменного ускорителя. В результате предлагаемое устройство позволяет реализовать генерацию нейтронов при соударении ускоренной дейтеросодержащей плазмы с твердотельными мишенями, содержащими тяжелые изотопы водорода. 1 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к плазменным ускорителям, конкретно, к устройствам, в которых плазма ускоряется под действием поля пондеромоторных сил, формируемых в скрещенных электромагнитных полях, создаваемых в рабочем объеме прибора.

Такие устройства находят применение в качестве реактивных двигателей, используемых в космических аппаратах, а также при реализации ряда плазменных технологий (напыление пленок, ионная имплантация, обработка поверхностей, генерация нейтронов и т.д.).

Общий принцип действия плазменного ускорителя описан в работе [1], на примере плазменного двигателя, в рабочем объеме которого сформированы взаимно перпендикулярные электрическое и магнитное поля.

В работе [2] рассмотрены конструкции плазменных ускорителей с коаксиальной системой формирования поля пондеромоторных сил, ускоряющих плазму в продольном направлении. Общим недостатком этих устройств является сравнительно малая скорость (<106 м/с) ускоренных частиц плазмы, что не позволяет, например, их эффективно использовать для генерации нейтронов.

Этого недостатка лишен плазменный ускоритель, принцип действия которого описан в работе [3]. Это устройство может быть выбрано за прототип предлагаемого технического решения. Согласно прототипу плазменный ускоритель состоит из накопителя энергии в виде малоиндуктивного конденсатора, управляемого разрядника, спирального электрода, охватывающего лазерную мишень и импульсного лазера с системой синхронизации с управляемым разрядником. При работе устройства на спиральный электрод подается короткий, мощный импульс высокого напряжения, в результате чего формируются быстронарастающие скрещенные электромагнитные поля с радиальной составляющей магнитного поля и азимутальной составляющей электрического поля, создающие поле пондеромоторных сил, ускоряющих в продольном направлении плазму, образуемую при фокусировке лазерного излучения на твердотельную лазерную мишень.

Указанное устройство было изготовлено и исследовано. В результате его испытаний был выявлен существенный недостаток, связанный с низким КПД преобразования электрической энергии, запасаемой в емкостном накопителе генератора импульса тока, в кинетическую энергию ускоренной плазмы. И, как следствие, невысокая предельная скорость плазмы.

Техническим результатом предлагаемого устройства является увеличение конечной скорости ускоряемой плазмы и КПД преобразования запасаемой электрической энергии в кинетическую энергию плазмы.

Этот результат достигается тем, что плазменный ускоритель, содержащий генератор импульсов тока, источник плазмы и спиральный электрод с высотой hs, первый вывод которого соединен с генератором импульса тока, а второй заземлен, дополнительно содержит первый магнитопровод в виде цилиндра высотой h1 и радиусом R1, расположенный соосно внутри спирального электрода с радиусом Rs, постоянный магнит в виде пустотелого цилиндра высотой h4, с внутренним радиусом R2 и внешним радиусом R3, намагниченный по высоте и расположенный соосно спиральному электроду, второй магнитопровод в виде пустотелого цилиндра высотой h2 с внутренним радиусом R2 и с внешним радиусом R3, соприкасающийся с правым торцом постоянного магнита и соосно охватывающий спиральный электрод, третий магнитопровод в виде диска с радиусом R3, и высотой h3, соприкасающийся своей правой поверхностью с левыми торцами постоянного магнита и первого магнитопровода, при этом все указанные магнитопроводы заземлены, третий магнитопровод имеет диэлектрический ввод для соединения первого вывода спирального электрода с генератором импульсов тока, а вышеуказанные размеры удовлетворяют следующим соотношениям:

При этом источник плазмы плазменного ускорителя выполнен в виде шайбы из диэлектрика с внутренним радиусом R4 и внешним радиусом R5, охватывающей первый магнитопровод в области левого торца второго магнитопровода, при этом на правую поверхность шайбы из диэлектрика нанесены вставки из металла, занимающие 60-80% площади этой поверхности, при условии, что

Произведен компьютерный расчет плотности тока в плазме, величины радиальной компоненты магнитного поля между первым и вторым магнитопроводами, средней энергии ускоренных в плазме ионов. В результате расчета были выявлены возможные пределы изменения всех геометрических параметров магнитопроводов, спирального электрода постоянного магнита, отраженные в неравенствах (1). В неравенствах (2) отражены возможные пределы изменения радиальных размеров шайбы из диэлектрика с учетом рассчитанных пределов радиуса Дебая образующейся на поверхности шайбы плазмы и ларморовского радиуса электронов в зазоре между спиральным электродом и поверхностью плазмы в изолирующем электроны продольном магнитном поле спирального электрода.

Устройство со схематическими разрезами представлено на Фиг. 1. Плазменный ускоритель содержит следующие позиции: 1 - первый магнитопровод в виде цилиндра высотой h1, 2 - второй магнитопровод в виде цилиндрической трубы высотой h2, 3 - третий магнитопровод в виде диска высотой h3, 4 - постоянный магнит в виде отрезка трубы высотой h4, намагниченный по высоте, 5 - спиральный электрод, расположенный соосно между первым и вторым магнитопроводами, 6 - область ускорения плазмы в форме пустотелой трубы, 7 - шайба из диэлектрика со вставками из металла на поверхности шайбы, 8 - генератор импульса тока, 9 - электрический ввод от поз. 8 к поз. 5 через третий магнитопровод.

Устройство работает следующим образом. В результате срабатывания генератора импульса тока 8 в спиральном электроде 5 возбуждается электрический ток, создающий между первым и вторым магнитопроводами переменное продольное магнитное поле. Согласно закону электромагнитной индукции в пространстве между первым магнитопроводом и спиральным электродом возникает переменное азимутальное электрическое поле, вызывающее разряд по поверхности шайбы из диэлектрика 7 с образованием плазменного облака в области этого пространства, начиная с поверхности шайбы из диэлектрика 7 со вставками из металла до выхода из плазменного ускорителя в его правой части, и возбуждение азимутального электрического тока в образующейся плазме. При взаимодействии азимутального тока в плазме и радиальной составляющей поля постоянного магнита в зазоре между спиральным электродом и первым магнитопроводом возникает вдоль оси плазменного ускорителя возникает пондеромоторная сила ускоряющая плазму

В примере конкретной реализации плазменного ускорителя в малогабаритном варианте рассчитаны следующие геометрические и электротехнические параметры: R1=0.01 м, R2=0.025 м, R3=0.04 м, h1=0.1 м, hs=0.08 м, h2=0.07 м, h3=0.02 м, h4=0,02 м, начальное напряжение га спиральном электроде U0=50 кВ, волновое и активное сопротивление спирального электрода R=2 Ом, накопительная емкость генератора импульсов тока С0=6.10-8 Ф. В качестве ускоряемых микрочастиц рассматривались однозарядные ионы меди (А=64), начальная концентрация электронов плазмы выбиралась равной 1021 1/м3.

Компьютерный расчет дал для средней энергии иона на выходе из рабочего объема ускорителя значение Т≈1 МэВ. Характер набора энергии вдоль высоты плазменного ускорителя прослеживается из расчетной кривой, представленной на Фиг. 2. По оси x отложена относительная высота ускорителя вдоль его оси, по вертикали - средняя энергия иона в единицах кэВ.

Увеличение предельной скорости плазмы и КПД плазменного ускорителя позволит повысить эффективность технологий плазменной обработки материалов, маневровых двигателей космических аппаратов, а также открывает возможность создания генераторов нейтронов без применения средств высоковольтной техники на полное ускорительное напряжение.

Источники информации

1. Чен Ф. Введение в физику плазмы, М., Мир, 1987, с. 26.

2. Морозов А.И. Плазменные ускорители. Физический энциклопедический словарь. М., Советская энциклопедия, 1983, с. 541-542.

3. Шиканов А.Е., Козловский К.И., Вовченко Е.Д., Лисовский М.И., Плеханов А.А., Исаев А.А. Ускорение лазерной плазмы в сильном нестационарном магнитном поле. Сборник научных трудов IV Международной конференции «Лазерные, плазменные исследования и технологии» ЛАПЛАЗ-2018, М., НИЯУ МИФИ, 2018, с. 221-222.

4. Мельников Ю.А. Постоянные магниты электровакуумных СВЧ-приборов. М., Наука, 1986.


ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ
ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 38.
26.08.2017
№217.015.d5fd

Устройство для сжатия данных

Изобретение относится к области сжатия и распаковки данных без потерь. Технический результат - простота реализации с одновременным уменьшением времени передачи данных, повышение информационной вместимости без потерь информации за счет сокращения необходимого объема памяти для хранения...
Тип: Изобретение
Номер охранного документа: 0002622878
Дата охранного документа: 20.06.2017
29.12.2017
№217.015.f6c8

Способ биологической визуализации

Изобретение относится к медицине и может быть использовано для визуализации биологических объектов. Для этого осуществляют мечение анализируемых клеточных компонент, клеток, тканей или органов флуоресцентными зондами. Зонды состоят из биологических распознающих молекул и флуоресцентных...
Тип: Изобретение
Номер охранного документа: 0002639125
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.fd4b

Способ направленного разрушения раковых клеток

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для направленного разрушения раковых клеток. Для этого осуществляют их предварительную визуализацию путём введения в исследуемый объект комплекса, состоящего из объединенных молекул фотосенсибилизатора,...
Тип: Изобретение
Номер охранного документа: 0002638446
Дата охранного документа: 13.12.2017
29.12.2017
№217.015.fe4d

Способ получения аналитической тест-системы на основе суспензионных микрочипов для детекции маркеров заболеваний

Изобретение относится к медицине и может быть использовано для получения аналитической тест-системы на основе суспензионных микрочипов для детекции маркеров заболеваний. Для этого создают суспензионные микрочипы путем оптического кодирования микросфер различного диаметра флуоресцентными...
Тип: Изобретение
Номер охранного документа: 0002638787
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.0775

Способ повышения нефтеотдачи пласта с высоковязкой нефтью

Изобретение относится к области промысловой геофизики и может быть использовано для интенсификации добычи тяжелой высоковязкой нефти. Заявлен способ повышения нефтеотдачи пласта с высоковязкой нефтью, при котором погружают в скважину снаряд, содержащий спиральную линию, с помощью которой...
Тип: Изобретение
Номер охранного документа: 0002631451
Дата охранного документа: 22.09.2017
20.01.2018
№218.016.0ee3

Способ синтеза нанопроволок нитрида алюминия

Изобретение относится к технологии получения нанопроволок AlN для микроэлектроники и может быть использовано для улучшения рассеивания тепла гетероструктурами, для создания светильников, индикаторов и плоских экранов, работающих на матрице из нанопроволок и т.д. Проводят импульсное лазерное...
Тип: Изобретение
Номер охранного документа: 0002633160
Дата охранного документа: 11.10.2017
04.04.2018
№218.016.327c

Сканирующий зондовый нанотомограф с модулем оптического анализа

Изобретение относится к области зондовых измерений объектов после их микро- и нанотомирования. Сущность изобретения заключается в том, что в сканирующий зондовый нанотомограф с модулем оптического анализа, содержащий основание 1, на котором установлен блок пьезосканера 2, блок зонда 10 и блок...
Тип: Изобретение
Номер охранного документа: 0002645437
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.355b

Способ коллоидного синтеза фотолюминесцентных наночастиц сверхмалого размера структуры ядро/оболочка

Использование: для получения фотолюминесцентных наночастиц, или квантовых точек (КТ), сверхмалого размера. Сущность изобретения заключается в том, что в способе коллоидного синтеза фотолюминесцентных наночастиц сверхмалого размера структуры ядро/оболочка, включающем синтез ядер...
Тип: Изобретение
Номер охранного документа: 0002645838
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35a2

Способ финишной планаризации поверхности оптической стеклокерамики

Изобретение относится к способу финишной планаризации поверхности оптической стеклокерамики. Обработку поверхности оптической стеклокерамики проводят в две стадии. На первой стадии осуществляется обработка поверхности оптической стеклокерамики пучками ускоренных кластерных ионов аргона. Далее...
Тип: Изобретение
Номер охранного документа: 0002646262
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.4464

Способ подачи газа в сверхзвуковое сопло ускорителя газовых кластерных ионов

Изобретение относится к области ускорительной техники, в частности к системам подачи газа в сверхзвуковое сопло при формировании пучков ускоренных газовых кластерных ионов. Технический результат - расширение класса рабочих газов, в том числе слабо кластеризуемых, используемых в системах для...
Тип: Изобретение
Номер охранного документа: 0002649883
Дата охранного документа: 05.04.2018
Показаны записи 1-10 из 11.
27.05.2014
№216.012.cb5a

Способ определения состояния продуктивного пласта импульсным нейтронным методом

Использование: для определения состояния продуктивного пласта импульсным нейтронным методом. Сущность изобретения заключается в том, что перемещают каротажный прибор по стволу скважины, генерируют импульсно-периодический поток быстрых нейтронов в скважине, осуществляют временной анализ...
Тип: Изобретение
Номер охранного документа: 0002517824
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d7e8

Ускорительная нейтронная трубка

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями. Заявленное устройство содержит герметичный корпус, внутри которого соосно расположены цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002521050
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.df98

Импульсный генератор нейтронов

Заявленное изобретение относится к приборам для генерации нейтронов при ядерном взаимодействии ускоренных дейтронов с мишенями, содержащими тяжелые изотопы водорода. Заявленное устройство содержит вакуумную ускорительную трубку с анодом и катодом с мишенью, расположенной на его внутренней...
Тип: Изобретение
Номер охранного документа: 0002523026
Дата охранного документа: 20.07.2014
10.07.2015
№216.013.5fb1

Импульсный генератор нейтронов

Изобретение относится к области прикладной ядерной физики, конкретно, к устройствам для генерации импульсных нейтронных потоков, предназначенных для использования в прикладных задачах науки и техники, например, для геофизических применений. Импульсный генератор нейтронов состоит из...
Тип: Изобретение
Номер охранного документа: 0002556038
Дата охранного документа: 10.07.2015
25.08.2017
№217.015.c817

Способ ускорения ионов импульсным электронным потоком

Изобретение относится к технике ускорения заряженных частиц в сильных электрических полях, конкретно к методам коллективного ускорения ионов импульсными электронными потоками. Технический результат - увеличение тока ускоренных дейтронов при сохранении или уменьшении размеров дрейфового...
Тип: Изобретение
Номер охранного документа: 0002619081
Дата охранного документа: 11.05.2017
19.01.2018
№218.016.0775

Способ повышения нефтеотдачи пласта с высоковязкой нефтью

Изобретение относится к области промысловой геофизики и может быть использовано для интенсификации добычи тяжелой высоковязкой нефти. Заявлен способ повышения нефтеотдачи пласта с высоковязкой нефтью, при котором погружают в скважину снаряд, содержащий спиральную линию, с помощью которой...
Тип: Изобретение
Номер охранного документа: 0002631451
Дата охранного документа: 22.09.2017
19.07.2018
№218.016.72b9

Способ создания сенсорного элемента на основе микрорезонатора из пористого кремния для детекции паров взрывчатых веществ

Изобретение относится к области физики. Способ включает введение в микрорезонатор из пористого кремния органических полимеров класса полифениленвиниленов, причем микрорезонатор из пористого кремния размещают на дне металлической емкости, которую заполняют раствором органического полимера с...
Тип: Изобретение
Номер охранного документа: 0002661611
Дата охранного документа: 17.07.2018
13.10.2018
№218.016.9183

Способ генерации электрических квазигармонических колебаний в индуктивно-резистивной нагрузке

Изобретение относится к области электротехники и может быть использовано для питания током ультразвуковой частоты индукционных нагревателей, акустических излучателей или иных индуктивно-резистивных нагрузок, расположенных внутри нефтяных скважин. Заявлен способ генерации сигнала на базе...
Тип: Изобретение
Номер охранного документа: 0002669382
Дата охранного документа: 11.10.2018
05.04.2019
№219.016.fd78

Импульсный генератор термоядерных нейтронов

Изобретение относится к устройству для генерации импульсных нейтронных потоков. В устройстве предусмотрен импульсный источник напряжения, подключенный к двум идентичным диодам для ускорения протонов, размещенным внутри рабочего вакуумного объема напротив друг друга, электроды которых...
Тип: Изобретение
Номер охранного документа: 0002683963
Дата охранного документа: 03.04.2019
29.05.2019
№219.017.6a25

Ионный диод для генерации нейтронов

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии нуклидов тяжелого водорода. Сущность изобретения заключается в том, что в известном ионном диоде для генерации нейтронов, содержащем...
Тип: Изобретение
Номер охранного документа: 0002461151
Дата охранного документа: 10.09.2012
+ добавить свой РИД