×
18.07.2018
218.016.71fa

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ПРИ ОПРЕДЕЛЕНИИ УГЛОВ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ СУДНА В УСЛОВИЯХ НАРУШЕНИЯ СТРУКТУРЫ ПРИНИМАЕМЫХ СИГНАЛОВ ГНСС СУДОВОЙ ИНФРАСТРУКТУРОЙ

Вид РИД

Изобретение

№ охранного документа
0002661336
Дата охранного документа
16.07.2018
Аннотация: Изобретение относится к способам повышения точности определения углов пространственной ориентации по сигналам глобальных навигационных спутниковых систем (ГНСС) путем компенсации влияния отраженных от объектов инфраструктуры судна с использованием геометрической модели отражений сигналов ГНСС на объекте (судне). Достигаемый технический результат – защита от негативного влияния многолучевости. Указанный результат достигается путем построения пространственной модели влияния отраженных от корпусных конструкций судна радиосигналов глобальных навигационных спутниковых систем (ГНСС) на изменение разностей фаз радиосигналов в приемных пространственно разнесенных антеннах, параметры пространственной модели определяются с учетом положения навигационных спутников ГНСС относительно корпуса судна и используются для коррекции разностей фаз от пространственно разнесенных приемных антенн ГНСС. 2 ил.

Изобретение относится к способам повышения точности при определении углов пространственной ориентации судна (курса, крена и дифферента) по сигналам глобальных навигационных спутниковых систем (ГНСС). Предлагаемый способ может быть использован в мультиантенных системах ГНСС - судовых спутниковых компасах (при количестве приемных антенн ГНСС не менее трех), определяющих в реальном времени углы пространственной ориентации судна на основе разностных уравнений фазовых измерений с разрешением фазовой неоднозначности.

Спутниковый компас состоит, по крайней мере, их трех приемных антенн ГНСС, трех приемников ГНСС, формирующих измерения по фазе несущей, и вычислителя для решения задачи пространственной ориентации судна.

В качестве опорной системы координат для определения пространственной ориентации судна используют топоцентрическую систему координат (ТЦСК), которая связана с судном, и ее оси направлены соответственно: ось Y вдоль по местному меридиану, ось X дополняет систему до правой системы координат и направлена на восток по горизонтали, ось Z направлена вертикально вверх. Тогда углы пространственного положения судна относительно ТЦСК - курс, дифферент, крен, - определяются следующим образом: курс - угол вращения вокруг оси Z, дифферент - угол вращения вокруг оси X, крен - угол вращения вокруг оси Y.

В процессе решения задачи по разностям фазовых измерений ГНСС определяют координаты векторов, по крайней мере, двух антенных баз (векторов, соединяющих фазовые центры приемных антенн ГНСС) в прямоугольной геоцентрической системе координат, путем решения системы линеаризованных уравнений с оценкой фазовой неоднозначности в области целых чисел:

где , - вектора положения антенн А и В в прямоугольной геоцентрической системе координат (ГЦСК);

ΔtAB - расхождение шкал времени приемников ГНСС А и В;

NAB - целое число циклов первых разностей фазовых неоднозначностей;

nAB - шумовая составляющая погрешности фазовых измерений.

Затем вычисляют проекции базовых линий в ТЦСК с помощью матрицы перехода:

где ϕ, λ - значения широты и долготы, соответствующие началу отсчета ТЦСК и системы координат, связанной с объектом (в общем случае - фазовый центр антенны А).

Аналогичным образом определяется вектор между фазовыми центрами антенн А и С для второй антенной базы.

Углы пространственной ориентации судна определяются из взаимной ориентации векторов антенных баз соответственно в ТЦСК, и в системе координат ОСК, связанной с судном (определяется конфигурацией антенной системы) из соотношения

где R(K, Θ, Ψ) - матрица последовательных вращений вокруг оси Z (по часовой стрелке) и вокруг осей Y и X (против часовой стрелки).

Инфраструктура судна, как правило, не позволяет обеспечить при установке приемных антенн ГНСС полностью открытое для приема спутниковых сигналов верхнее полупространство. Расположение вблизи антенной системы ГНСС мачт, труб и иных объектов является типичным для условий судна и вызывает так называемый эффект многолучевости, заключающийся в приеме суперпозиции прямого и отраженного от объекта инфраструктуры сигнала ГНСС. Эффект многолучевости может оказывать существенное негативное влияние на точность и надежность навигационных определений, особенно сильно это влияние может сказаться на качестве прецизионных дифференциальных решений на основе технологий обработки измерений ГНСС по фазе несущей (лежащих в основе алгоритмов определения курса, крена и дифферента мультиантенной системой ГНСС). Искажение фазового сигнала приводит не только к снижению точности вырабатываемых угловых навигационных параметров, но и к неприемлемому увеличению времени старта спутникового компаса, ложным фазовым решениям, срывам решения в контуре определения угловых параметров.

Несущая частота отраженного сигнала близка к несущей частоте прямого сигнала. Разность их частот невелика и вызвана разницей доплеровских сдвигов в точках прямого приема и отражения. Эта небольшая разность частот вызывает медленноменяющийся сдвиг фазы отраженного сигнала относительно прямого.

На фиг. 1 показано внесение сдвига фазы при отражении сигнала от объекта вблизи приемной антенны ГНСС: а) прямой фазовый сигнал, б) сдвиг фазы при сложении прямого сигнала с отраженным. Периодичность этого фазового сдвига оценивается единицами - десятками (до сотен) секунд. Фазовый сдвиг почти линейно нарастает во времени с указанной выше периодичностью переходов через 2π. При этом ошибки по фазе несущей, вызванные многолучевостью, лежат в пределах -4…4 см, а интервал корреляции данной погрешности для неподвижных объектов может составлять до нескольких часов, что затрудняет ее фильтрацию. В условиях судна низкочастотный характер многолучевой погрешности также не позволяет выполнить эффективное усреднение на малых интервалах времени.

Согласно проведенному патентному поиску по информационным базам ФГБУ ФИПС, WIPO и USPTO, выявлены следующие основные методы уменьшения ошибки многолучевости:

а) сглаживание измерений (RU 2432585);

б) аппаратная защита приемных антенн ГНСС от нижних и боковых лучей (RU 2008148669, RU 2010148760);

в) построение корреляторов следящих систем ФАП и ССЗ, отсекающих запаздывающий отраженный сигнал (US 6541950).

Предлагаемый способ защиты от негативного влияния многолучевости на основе построения и дальнейшего использования пространственной модели переотражений спутниковых сигналов от объектов инфраструктуры в окрестности установки антенной системы ГНСС не требует модернизации аппаратуры СНС и использует серийные мультиантенные спутниковые навигационные системы (спутниковые компасы), обеспечивает построения пространственной модели отражения радиосигналов ГНСС от инфраструктуры судна с помощью мультиантенных систем, непосредственно установленных на судне. Отличие предложенного способа от описанного в US 20080082266 в том, что в компенсации погрешностей используется построенная пространственная модель многолучевости судна и может быть реализована как в спутниковых компасах, так и в интегрированных навигационных системах с глубокой и слабой интеграцией.

Устройство, к которому относится заявленный способ, содержит три (или более) приемных антенны ГНСС, три приемника ГНСС, формирующих измерения полной фазы несущей, и вычислитель, в котором по фазовым измерениям определяются углы пространственной ориентации судна, а также строится модель, определяющая величины погрешности, вносимой в фазовые измерения ГНСС при отражении спутниковых сигналов от объектов, окружающих антенную систему. Параметрами модели является пространственное направление прихода сигнала спутника на антенну.

В основе рассматриваемого способа лежит предположение о том, что при относительной неподвижности приемной антенны ГНСС и отражающего предмета друг относительно друга спутниковый сигнал, приходящий в различные моменты времени с одного и того же направления, вносит одну и ту же погрешность в измерительную информацию оборудования ГНСС.

Принцип построения пространственной модели переотражений заключается в построении зависимостей ошибки многолучевости от направления прихода спутникового радиосигнала в некоторой системе координат, жестко связанной с приемной антенной ГНСС и отражающим предметом:

δ(Z)=ƒ(ϕ, θ),

где Z - измеренный параметр ГНСС;

ϕ - азимут источника радиосигнала в связанной с судном системе координат;

θ - угол возвышения источника радиосигнала в связанной с судном системе координат.

В качестве измеренного параметра Z в предлагаемом способе рассматриваются «первые фазовые разности» - разности фазовых измерений на двух антеннах по одному и тому же спутнику ГНСС.

где, - вектора положения антенн А и В в геоцентрической системе координат (ГЦСК);

ΔtAB - расхождение шкал времени приемников А и В;

NAB - целое число циклов первых разностей фазовых неоднозначностей;

δ(Z) - погрешность, вызванная влиянием многолучевости;

nAB - шумовая составляющая погрешности фазовых измерений.

Соответственно оцениваемый параметр δ(Z) представляет разность погрешностей, вызванных отраженным сигналом, на антеннах А и В.

Построение модели осуществляется путем калибровки, заключающейся в оценке величины погрешности δ(Z), вызванной переотражением сигналов, приходящих с различных направлений и выявлением закономерностей приведенного выше вида.

Продолжительное наблюдение всех видимых спутников ГНСС с фиксацией погрешности переотражения на каждую эпоху наблюдений позволяет построить сетку с минимально возможным шагом на верхней полусфере, связанной с антенной и отражающим объектом системы координат, и определить значения калибровочных поправок за влияние многолучевости в узлах этой сетки.

Модель строится на основе определения остаточных нескомпенсированных погрешностей в первых разностях фазовых измерений, получаемых после оценки и исключения из этих измерений геометрических дальностей до спутников ГНСС, целочисленных фазовых неоднозначностей и расхождения шкал времени ГНСС и приемников. В предположении отсутствия иных погрешностей остаточные значения полагаются вызванными влиянием переотражений спутникового сигнала от окружающих предметов.

При построении модели каждому значению нескомпенсированной погрешности сопоставляется положение спутника на небесной полусфере в горизонтной системе координат (ГСК):

δ(ΔФАВ)←(ϕГСК, θГСК),

где ϕГСК - азимут спутника, с которого получен сигнал;

θГСК - угол возвышения спутника над горизонтом;

δ(ΔФАВ) - нескомпенсированная погрешность первых разностей фазовых измерений для антенн А и В.

Ориентация объектовой системы координат (жестко связанной с судном) относительно ГСК однозначно определяется тремя углами пространственной ориентации объекта (K, Θ, Ψ) - курсом, креном и дифферентом, которые также определены с высокой точностью штатными средствами спутникового компаса.

Значения δ(ΔФАВ), полученные по всем спутникам ГНСС за время проведения наблюдений, затем подвергаются обработке с целью формирования двумерного массива значений погрешностей многолучевости на полусферической сетке с основанием, совпадающим с плоскостью палубы судна, и заданным шагом Δ, определяемым длительностью наблюдений.

Значения в узлах сетки определяются по методу наименьших квадратов на основе всей накопленной информации. Путем анализа выявляются области, значения погрешности в которых превосходят по модулю 0,1 фазового цикла (и, соответственно, могут оказывать негативное влияние на точность навигационных определений). Для каждой из выявленных областей строится пространственная модель многолучевости в виде разложения в двумерный ряд Тейлора:

δ(ϕ, θ)=а0+а1ϕ+а2θ+а3ϕ2+а4θ25ϕθ,

где ϕ, θ - азимут и угол возвышения НКА в объектовой (связанной с судном) системе координат;

а 0… а 5 - параметры модели.

Погрешность δ(ϕ, θ) является функцией азимута и угла возвышения спутника ГНСС в объектовой (связанной с судном) системе координат (ОСК). Указанные направления прихода спутникового сигнала могут быть определены из значений азимута и угла возвышения спутника в ГСК с учетом текущих значений параметров полной пространственной ориентации судна:

(ϕ, θ)=ƒ(ϕГСК, θГСК, K, Θ, Ψ),

где K, Θ, Ψ - курс, крен и дифферент судна соответственно;

ϕГСК _ азимут спутника в ГСК;

θГСК - угол возвышения спутника в ГСК.

Таким образом, учет калибровочных поправок модели в разностных уравнениях позволит компенсировать негативное влияние многолучевости в спутниковом компасе вне зависимости от ориентации судна относительно спутников ГНСС и его динамики.

Заявляемая модель изобретения пояснена на чертежах:

на фиг. 1 показано внесение сдвига фазы при отражении сигнала от объекта вблизи приемной антенны ГНСС: а) прямой фазовый сигнал, б) сдвиг фазы при сложении прямого сигнала с отраженным.

на фиг. 2.А схематично изображен прием отраженных от судовой инфраструктуры спутниковых сигналов; на фиг. 2.Б схематично изображена антенная система из трех антенн ГНСС, используемая при определении углов пространственной ориентации.

На фиг. 2.А, фиг. 2.Б введены следующие обозначения позиций: 1 - узлы сетки для построения пространственной модели; 2 - отражающий объект судовой инфраструктуры; 3 - отраженный спутниковый сигнал; 4 - прямой спутниковый сигнал; 5 - спутник ГНСС; 6 - приемная антенна ГНСС; 7 - определяемые антенны антенной системы ГНСС; 8 - базовая антенна антенной системы ГНСС.

Способ определения курса, крена и дифферента судна по радиосигналам глобальных навигационных спутниковых систем (ГНСС) путем измерения в реальном времени разностей фаз с разрешением фазовой неоднозначности радиосигналов от трех (и более) пространственно разнесенных антенн, расположенных на открытых для приема спутниковых радиосигналов частях судна в произвольной геометрической конфигурации, отличающийся тем, что строится пространственная модель влияния отраженных от корпусных конструкций судна радиосигналов на изменение разностей фаз радиосигналов в приемных пространственно разнесенных антеннах, параметры пространственной модели определяются с учетом положения навигационных спутников ГНСС относительно корпуса судна и используются для коррекции разностей фаз от пространственно разнесенных приемных антенн ГНСС.
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ПРИ ОПРЕДЕЛЕНИИ УГЛОВ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ СУДНА В УСЛОВИЯХ НАРУШЕНИЯ СТРУКТУРЫ ПРИНИМАЕМЫХ СИГНАЛОВ ГНСС СУДОВОЙ ИНФРАСТРУКТУРОЙ
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ПРИ ОПРЕДЕЛЕНИИ УГЛОВ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ СУДНА В УСЛОВИЯХ НАРУШЕНИЯ СТРУКТУРЫ ПРИНИМАЕМЫХ СИГНАЛОВ ГНСС СУДОВОЙ ИНФРАСТРУКТУРОЙ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 19.
10.12.2013
№216.012.8899

Керамический материал

Изобретение относится к материалам электронной техники и может быть использовано в производстве термостабильных керамических резонаторов, подложек, фильтров и изделий СВЧ-техники. Предлагаемый керамический материал дополнительно содержит оксид празеодима при следующем соотношении компонентов,...
Тип: Изобретение
Номер охранного документа: 0002500651
Дата охранного документа: 10.12.2013
10.05.2014
№216.012.c071

Электромеханический привод закрылка самолета

Изобретение относится к авиастроению и может быть применено в приводе подвижной аэродинамической поверхности самолета, в частности в устройстве выдвижения закрылка. Привод закрылков самолета содержит две рычажные системы, имеющие шатуны, соединенные через кривошип с секционным основным валом,...
Тип: Изобретение
Номер охранного документа: 0002515014
Дата охранного документа: 10.05.2014
20.07.2014
№216.012.de11

Электромеханический привод предкрылка самолета

Изобретение относится к авиастроению и касается приводов предкрылков самолета. Электромеханический привод содержит два выдвижных рельса с зубчатыми секторами, разделенный на секции основной вал, разъемные муфты, соединяющие между собой секции основного вала, два электромеханических привода...
Тип: Изобретение
Номер охранного документа: 0002522635
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de14

Электромеханический привод интерцептора крыла самолета

Изобретение относится к электротехнике и может быть применено в приводах аэродинамических поверхностей летательных аппаратов. Устройство электромеханического привода интерцептора крыла самолета установлено на оси поворота, закрепленной в каркасе крыла, и имеет приводное звено многозвенного...
Тип: Изобретение
Номер охранного документа: 0002522638
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de19

Устройство электромеханического привода дискового тормоза колеса основной опоры шасси самолета

Изобретение относится к области авиационного транспорта, в частности к электромеханическим приводам тормозов летательных аппаратов. Устройство состоит из двух модулей, установленных на фланце, закрепленном на оси колеса. Каждый из модулей имеет корпус, нажимной плунжер, расположенный в корпусе...
Тип: Изобретение
Номер охранного документа: 0002522643
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de1c

Электромеханический линейный привод

Изобретение относится к авиастроению и может быть применено в приводах подвижных аэродинамических поверхностей самолета, в частности предкрылков, закрылков, элеронов. Электромеханический линейный привод состоит из корпуса, расположенного внутри него электродвигателя с ротором, соединенным через...
Тип: Изобретение
Номер охранного документа: 0002522646
Дата охранного документа: 20.07.2014
20.01.2015
№216.013.1ebd

Способ контроля уровня безопасности морской перевозки разжижающихся навалочных грузов

Изобретение относится к морской перевозке грузов и может быть использовано для определения (контроля) уровня безопасности морской перевозки разжижающихся навалочных грузов, в частности рудных концентратов. Способ определения уровня безопасности морской перевозки разжижающихся навалочных грузов...
Тип: Изобретение
Номер охранного документа: 0002539310
Дата охранного документа: 20.01.2015
10.08.2015
№216.013.6d70

Измеритель электростатического потенциала и заряда тела человека

Изобретение относится к измерительной технике и может быть использовано в медицине в диагностических целях. Техническим результатом является расширение функциональных возможностей устройства за счет измерения электрического заряда тела человека. Устройство содержит контактный электрод для...
Тип: Изобретение
Номер охранного документа: 0002559574
Дата охранного документа: 10.08.2015
10.02.2016
№216.014.c41a

Способ лазерной резки стекла

Изобретение относится к способу лазерной резки хрупких прозрачных неметаллических материалов, например стекла, и может быть использовано в стекольной, авиационной, автомобильной и других отраслях промышленности. Сущность изобретения состоит в том, что разделяемый материал подвергается...
Тип: Изобретение
Номер охранного документа: 0002574634
Дата охранного документа: 10.02.2016
20.05.2016
№216.015.3f84

Способ получения радиационно-сшиваемой композиции на основе фторуглеродного полимера

Изобретение относится к получению радиационно-сшиваемой композиции на основе фторуглеродного полимера и предназначено для создания однородной в объеме композиции с высокими вязкоупругими свойствами, обладающей высокой технологичностью и термической стойкостью без сшивок с однородной ровной...
Тип: Изобретение
Номер охранного документа: 0002584738
Дата охранного документа: 20.05.2016
Показаны записи 1-3 из 3.
02.03.2019
№219.016.d19b

Способ определения осадки судна

Изобретение относится к области судостроения, а именно к средствам для определения осадки судна. Предложен способ определения осадки судна, заключающийся в замерах в нескольких точках судна параметров для определения высоты подводного борта судна, при этом замеры осуществляют с помощью...
Тип: Изобретение
Номер охранного документа: 0002680944
Дата охранного документа: 28.02.2019
19.07.2019
№219.017.b6a2

Система определения отметок донной и водной поверхности при мониторинге водных объектов

Изобретение относится к гидрометрии и гидрологии, используется при мониторинге береговой полосы водных объектов. Система содержит высотную сеть в виде спутниковой системы навигации, антенну приемника спутниковой системы навигации, устройство определения отметок дна в виде параметрического...
Тип: Изобретение
Номер охранного документа: 0002694702
Дата охранного документа: 16.07.2019
24.07.2020
№220.018.36b6

Альтиметрический способ выполнения морской высотометрии с определением уклонения отвесной линии и устройство для его осуществления

Группа изобретений относится к области радиотехнических измерений и может быть использована для определения уклонений отвесной линии (УОЛ), уточнения параметров вращения Земли и для решения других геодезических задач на акваториях. В способе, включающим этапы: приема антенной с диаграммой...
Тип: Изобретение
Номер охранного документа: 0002727584
Дата охранного документа: 22.07.2020
+ добавить свой РИД