×
08.07.2018
218.016.6e1b

Результат интеллектуальной деятельности: Способ получения поликристаллических ферритов-гранатов

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим пучком быстрых электронов с выдержкой при температуре спекания в течение 30-90 минут под непрерывным электронным пучком. Обеспечивается улучшение качества феррита-граната и повышение его эксплуатационных характеристик. 4 ил., 2 табл., 4 пр.

Изобретение относится к порошковой металлургии (в частности, к технологии поликристаллических ферритов), а также к радиоэлектронике, а именно - к области технологии материалов радиоэлектроники.

Существует способ получения поликристаллических ферритов-гранатов методом классической керамической (стандартной) технологии, включающий термическое спекание на воздухе при температуре 1500°С в течение 8,0-10,0 часов (см.: А.Г. Налогин, М.Г. Семенов, В.Г. Костишин, В.В. Иванов, А.С. Семенов, А.В. Бакланов. Феррогранаты для подложек микрополосковых ферритовых приборов Х-диапазона. Электронная техника, сер. 1, СВЧ-техника, вып. 4(531), 2016. - С. 56-64).

Недостаток данного способа - использование высокой температуры, длительность процесса спекания. Данные факторы приводят к высокой энергоемкости технологии, быстрому износу оборудования. Еще один недостаток - невысокое качество изделий, получаемых данным способом.

Наиболее близким аналогом (прототипом) является способ получения поликристаллических ферритов-гранатов методом радиационно-термического спекания (РТС), включающий спекание на воздухе в проникающем пучке быстрых электронов при температуре 1300°С в течение времени 1,0 час (см.: А.Г. Налогин, М.Г. Семенов, В.Г. Костишин, В.В. Иванов, А.С. Семенов, А.В. Бакланов. Феррогранаты для подложек микрополосковых ферритовых приборов Х-диапазона. Электронная техника, сер. 1, СВЧ-техника, вып. 4(531), 2016. - С. 56-64).

Недостаток настоящего способа - низкий уровень качества поликристаллических ферритов-гранатов.

Техническим результатом представленного изобретения является снижение энергоемкости процесса получения поликристаллических ферритов-гранатов, а также повышение качества получаемых ферритов-гранатов.

Технический результат достигается тем, что в предложенном изобретении спекание заготовок проводится путем их нагрева до температуры спекания 1350-1450°С облучением проникающим пучком быстрых электронов с выдержкой при температуре спекания в течение 30-90 минут под непрерывным электронным пучком.

Изображения поясняются фигурами. На фигуре 1 представлена характерная петля гистерезиса поликристаллов Y3Fe5O12, полученных методом РТС при температуре спекания Т=1350°С и времени спекания t=60 мин. На фигуре 2 представлена характерная петля гистерезиса поликристаллов Y3Fe5O12, полученных методом РТС при температуре спекания Т=1400°С и времени спекания t=45 мин. На фигуре 3 представлена характерная петля гистерезиса поликристаллов Y3Fe5O12, полученных методом РТС при температуре спекания Т=1450°С и времени спекания t=30 мин. На фигуре 4 представлен характерный вид поликристаллов Y3Fe5O12, полученных методом РТС при температуре спекания Т=1500°С и времени спекания t=8 мин. Где Н - напряженность магнитного поля [А/м], В - магнитная индукция [Тл].

Способ реализуется следующим образом. Производят навеску исходных компонентов, далее их смешивание в процессе мокрого помола в шаровой мельнице при соотношении шихты : шаров : деионизованной воды =1:2:1 в течение 24 ч, сушку при комнатной температуре до полного высыхания. Высушенную шихту просеивают через сито, брикетируют, после чего закладывают в печь, где происходит процесс ферритизации. Выдерживается шихта в печи в течение 5 часов при температуре 1200°С-1250°С.

Цель брикетирования - придать шихте более компактную форму и обеспечить более полное, качественное протекание реакций, которые происходят на последующей стадии технологического процесса - стадии предварительного обжига (ферритизации).

После ферритизации шихта подвергается мокрому помолу в шаровой мельнице при соотношении шихты : шаров : деионизованной воды =1:2:1 в течение 96 ч. Такая продолжительность помола должна обеспечивать получение порошка со средним размером частиц порядка 0,3÷0,5 мкм. Шихта в фарфоровом барабане промывается деионизованной водой и выливается в свободную емкость. Полученная суспензия порошка феррита-граната отстаивается в течение суток при комнатной температуре, после чего удаляется излишек воды. Далее проводится сушка порошка, после чего в него вводится пластификатор (например, поливиниловый спирт). Влажность суспензии при прессовке должна составлять 30÷35%. Далее происходит прессование (формование) феррит-гранатовых заготовок под давлением 200 МПа. Таким образом получают сырые заготовки. Далее проводят спекание сырых заготовок методом РТС путем их нагрева до температуры спекания 1350-1450°С проникающим пучком быстрых электронов в ускорителе электронов и дальнейшую выдержку при температуре спекания в течение 30-90 минут.

Сущность изобретения состоит в следующем. При спекании ферритов в пучке быстрых электронов действуют два фактора: поток быстрых электронов и температура, обусловленная процессами соударений быстрых электронов с ионным остовом кристаллической решетки, каскадами смещений и соударений ионов. Оба эти фактора порождают интенсивную радиационно-стимулированную диффузию, ускоряющую процесс спекания.

К факторам, ускоряющим процесс спекания, следует также отнести следующие:

1. Диффузия кислорода. РТС ускоряет процесс диффузии кислорода из атмосферы в феррит, при этом увеличиваются коэффициенты зернограничной и объемной диффузии кислорода. Увеличение диффузионной подвижности кислорода происходит как за счет взаимодействия излучения с ферритом, так и за счет ионизации атмосферы излучением.

2. Неравновесность дефектности частиц порошка. Существенным фактором, обеспечивающим эффективность РТС ферритовой керамики, является сохранение исходной неравновесной дефектности порошинок вследствие высоких скоростей нагрева материалов электронным пучком.

Ферриты, полученные методом РТС, характеризуются повышенной степенью химической гомогенности, пониженным уровнем упругих микронапряжений и интегральной дефектности, что обеспечивает получение более высокого уровня механических и электромагнитных параметров.

Границы температурного диапазона в предложенном техническом решении выбраны из следующих соображений. При температуре РТС<1350°С ферриты-гранаты обладают пониженными значениями магнитной индукции и магнитной проницаемости, а также повышенным значением коэрцитивной силы и не пригодны для эксплуатации. При температуре РТС>1450°С уже после нескольких минут спекания имеет место разложение фазы граната, а после 5-7 минут спекания заготовка плавится.

Границы временного диапазона в предложенном техническом решении выбраны из следующих соображений. При РТС ферритов-гранатов при температуре 1350°С в течение времени <90 мин магнитные свойства образцов ферритов-гранатов обладают низкими значениями магнитных характеристик и не пригодны для эксплуатации в качестве рабочих сред приборов. При РТС ферритов-гранатов при температуре 1450°С в течение времени <30 мин магнитные свойства образцов ферритов-гранатов обладают заниженными значениями магнитных характеристик, их использование в качестве рабочих сред приборов является нецелесообразным.

Таким образом, отличительными признаками предложенного технического решения является:

1. РТС сырых заготовок осуществляется путем их нагрева до температуры спекания (1350-1450)°С облучением проникающим пучком быстрых электронов.

2. Выдержка при температуре спекания (1350-1450)°С составляет 30-90 минут.

Использование совокупности указанных признаков для достижения поставленной цели (энергоэффективного получения поликристаллических ферритов-гранатов с улучшенными характеристиками) авторам неизвестно.

Пример 1. Сырые заготовки образцов ферритов-гранатов изготавливались по классической керамической (стандартной) технологии. Процесс изготовления более детально указан в описании изобретения. Далее сырые заготовки подвергали радиационно-термическому спеканию на воздухе пучком быстрых электронов с энергией 2,5 МэВ в электронном ускорителе ИЛУ-6. Температура спекания составляла 1350°С, время выдержки - 60 минут. На фигуре 1 изображена характерная петля гистерезиса для одного из образцов, полученных при данных условиях. Можем наблюдать, что образец при данной температуре и времени выдержки обладает высокой коэрцитивной силой и низкой магнитной проницаемостью.

Из той же партии исходного сырья были изготовлены сырые заготовки для получения образцов по классической керамической технологии (спекание на воздухе, температура спекания - 1500°С, выдержка составляла 10 ч.)

В таблице 1 представлена сравнительная характеристика свойств образцов, выполненных по двум технологиям.

Как видно из таблицы, характеристики поликристаллов Y3Fe5O12, полученных методом РТС при температуре спекания Т=1350°С и времени спекания t=60 мин, являются существенно ниже характеристик образцов Y3Fe5O12, полученных по классической керамической технологии при температуре спекания Т=1500°С и времени спекания t=10 час.

Пример 2. Сырые заготовки образцов ферритов-гранатов изготавливались по классической керамической (стандартной) технологии. Процесс изготовления более детально указан в описании изобретения. Далее сырые заготовки подвергали радиационно-термическому спеканию на воздухе пучком быстрых электронов с энергией 2,5 МэВ в электронном ускорителе ИЛУ-6. Температура спекания составляла 1400°С, время выдержки - 45 минут. На фигуре 2 представлена петля гистерезиса при данных условиях. Значения магнитных характеристик соответствует стандартным значениям для данного материала.

Пример 3. Сырые заготовки образцов ферритов-гранатов изготавливались по классической керамической (стандартной) технологии. Процесс изготовления более детально указан в описании изобретения. Далее сырые заготовки подвергали радиационно-термическому спеканию на воздухе пучком быстрых электронов с энергией 2,5 МэВ в электронном ускорителе ИЛУ-6. Температура спекания составляла 1450°С, время выдержки - 30 минут. На фигуре 3 представлена петля гистерезиса при данных условиях. Исходя из полученных данных можно сделать вывод, что предложенный режим позволяет получить образцы с высокими значениями магнитных характеристик.

Пример 4. Сырые заготовки образцов ферритов-гранатов изготавливались по классической керамической (стандартной) технологии. Процесс изготовления более детально указан в описании изобретения. Далее сырые заготовки подвергали радиационно-термическому спеканию на воздухе пучком быстрых электронов с энергией 2,5 МэВ в электронном ускорителе ИЛУ-6. Температура спекания составляла 1500°С, время выдержки - 8 минут. На фигуре 4 показано, что при данных условиях образец подвергается разрушению. Температура 1500°С и время выдержки в течение 5 минут не подходят для спекания ферритов-гранатов методом РТС.

Из той же партии исходного сырья были изготовлены сырые заготовки для получения образцов по классической керамической технологии (спекание на воздухе, температура спекания - 1500°С, выдержка составляла 10 ч).

В таблице 2 представлена сравнительная характеристика свойств образцов, полученных по двум технологиям.

Значения свойств образцов незначительно отличаются друг от друга, что нам позволяет сделать вывод о пригодности технологии РТС для производства поликристаллов Y3Fe5O12.

Способ получения поликристаллических ферритов-гранатов, включающий синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания проникающим пучком быстрых электронов с выдержкой при температуре спекания, отличающийся тем, что температура спекания составляет 1350-1450°С, а время спекания - 30-90 минут.
Способ получения поликристаллических ферритов-гранатов
Способ получения поликристаллических ферритов-гранатов
Источник поступления информации: Роспатент

Показаны записи 61-70 из 322.
25.08.2017
№217.015.a97e

Способ получения органо-минерального полимера на основе сапропеля

Изобретение относится к сельскому хозяйству. Способ получения органо-минерального полимера из сапропеля включает измельчение сапропеля естественной влажности до гомогенного состояния, определение его влажности и показателя pH, механохимическую активацию полученной смеси при помощи добавления к...
Тип: Изобретение
Номер охранного документа: 0002611816
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aa74

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Мокрое измельчение стехиометрической смеси карбоната стронция и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при...
Тип: Изобретение
Номер охранного документа: 0002611814
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.abde

Способ получения наноразмерных частиц гексаферрита стронция

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002612289
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b2ab

Способ получения покрытий из нанолистов нитрида бора

Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину 1-10 нм и характерный линейный размер от 100 нм до 5 мкм, которые могут применяться в качестве носителя катализаторов, а также для...
Тип: Изобретение
Номер охранного документа: 0002613996
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b2fc

Способ контроля работы воздушной фурмы доменной печи с теплоизоляцией со стороны дутьевого канала

Изобретение относится к области металлургии и может быть использовано при эксплуатации воздушных фурм доменных печей с теплоизоляцией со стороны дутьевого канала. В способе контроля состояния теплоизоляции со стороны дутьевого канала воздушной фурмы доменной печи определяют разность расходов...
Тип: Изобретение
Номер охранного документа: 0002613834
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b2fd

Способ контроля работы воздушной фурмы доменной печи с теплоизоляцией со стороны дутьевого канала

Изобретение относится к области металлургии и может быть использовано при эксплуатации воздушных фурм доменных печей с теплоизоляцией со стороны дутьевого канала. В способе контроля состояния теплоизоляции со стороны дутьевого канала воздушной фурмы доменной печи определяют разность расходов...
Тип: Изобретение
Номер охранного документа: 0002613834
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b34b

Композиционный материал на основе нитинола

Изобретение относится к области металлургии, преимущественно к композиционным материалам на основе нитинола, и предназначено для изготовления деталей микромашин и механизмов, медицинских инструментов. Композиционный материал на основе нитинола содержит, ат. %: Cu - 5-10, Zr - 5-10, Ti - 36-44,...
Тип: Изобретение
Номер охранного документа: 0002613835
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b394

Способ дефосфорации железных руд и концентратов

Изобретение относится к черной металлургии и может быть использовано в процессах получения чугуна из окисленного железосодержащего сырья. В способе осуществляют расплавление в печи железорудного концентрата и дефосфорацию оксидного железосодержащего расплава. При этом доводят температуру...
Тип: Изобретение
Номер охранного документа: 0002613833
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b435

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Мокрое измельчение стехиометрической смеси карбоната бария и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при следующем...
Тип: Изобретение
Номер охранного документа: 0002614005
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b43e

Способ получения нанопористого нитрида бора

Изобретение относится к способам получения нанопористых керамических материалов, в частности из нитрида бора, применяемых для очистки газов или жидкостей от вредных примесей, а также для сорбции и хранения водорода. Сущность изобретения состоит в том, что готовят реакционную смесь из борной...
Тип: Изобретение
Номер охранного документа: 0002614007
Дата охранного документа: 22.03.2017
Показаны записи 51-60 из 60.
20.03.2019
№219.016.e7bd

Способ изготовления изделий из ферритового материала для интегральных устройств свч

Изобретение относится к области электротехники, в частности к способу изготовления изделий из ферритового материала на основе параметрического ряда литиевой феррошпинели для интегральных устройств СВЧ. Способ включает приготовление шихты на основе оксидов упомянутого ферритового материала и...
Тип: Изобретение
Номер охранного документа: 0002420821
Дата охранного документа: 10.06.2011
29.03.2019
№219.016.f785

Безэховая камера

Изобретение относится к области радиотехники и звукотехники и может использоваться при строительстве и оборудовании безэховых камер (помещений с радио- и звукоизоляцией), которым предъявляются повышенные требования, и которые могут найти применение при проверке и сертификации...
Тип: Изобретение
Номер охранного документа: 0002447551
Дата охранного документа: 10.04.2012
29.04.2019
№219.017.445a

Способ получения радиопоглощающего магний-цинкового феррита

Изобретение относится к технологии получения радиопоглощающего магний-цинкового феррита, который может найти широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры. Техническим результатом изобретения является получение дешевого...
Тип: Изобретение
Номер охранного документа: 0002454747
Дата охранного документа: 27.06.2012
29.04.2019
№219.017.4662

Устройство для поворота ахроматических пучков заряженных частиц

Изобретение относится к области физики пучков заряженных частиц и ускорительной техники. Устройство для поворота ахроматических пучков заряженных частиц состоит из двух одинаковых магнитных зеркал, расположенных в плоскости поворота так, что каждое из них поворачивает пучок на половинный (по...
Тип: Изобретение
Номер охранного документа: 0002463749
Дата охранного документа: 10.10.2012
09.05.2019
№219.017.4f56

Композиция бетулина с биосовместимыми носителями и способ ее получения

Изобретение относится к фармацевтической и пищевой промышленности, в частности к способу получения композиции бетулина с биосовместимым носителем путем механической обработки смеси бетулина и полимерного водорастворимого носителя в мельнице-активаторе при определенных условиях. Композиция,...
Тип: Изобретение
Номер охранного документа: 0002401118
Дата охранного документа: 10.10.2010
19.06.2019
№219.017.89a3

Сверхширокодиапазонный поглотитель электромагнитных волн для безэховых камер и экранированных помещений

Изобретение относится к радиофизике, антенной технике и может найти применение при создании поглотителей электромагнитных волн, используемых для оснащения сверхширокодиапазонных многофункциональных безэховых камер (БЭК) и экранированных помещений, обеспечивающих проведение радиотехнических...
Тип: Изобретение
Номер охранного документа: 0002453953
Дата охранного документа: 20.06.2012
29.06.2019
№219.017.9f95

Способ получения гамма-глицина из растворов

Изобретение относится к области фармацевтической и пищевой промышленности, конкретно к способу получения гамма-глицина, имеющего широкое применение в качестве биологически активной добавки. Способ заключается в том, что гамма-глицин получают из водных растворов глицина в присутствии малоновой...
Тип: Изобретение
Номер охранного документа: 0002470913
Дата охранного документа: 27.12.2012
29.06.2019
№219.017.a187

Способ получения гамма-глицина из растворов

Изобретение относится к области химико-фармацевтической и пищевой промышленности, конкретно к способу получения гамма-глицина, имеющего широкое применение в медицине и пищевой промышленности в качестве биологически активной добавки. Способ заключается в перекристаллизации глицина в водном...
Тип: Изобретение
Номер охранного документа: 0002462452
Дата охранного документа: 27.09.2012
08.11.2019
№219.017.df51

Способ изготовления анизотропных гексагональных ферритов типа м

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры. Изготовление анизотропных гексаферритов типа М включает...
Тип: Изобретение
Номер охранного документа: 0002705201
Дата охранного документа: 06.11.2019
06.12.2019
№219.017.ea1d

Устройство для перемотки кабельных изделий (трубок)

Устройство состоит из ведущего и ведомого барабанов, при помощи которых производится перемотка кабельных изделий и термоусаживаемых трубок в двух плоскостях, расположенных с зазором одна относительно другой. Особенность описываемого устройства заключается в способе реализации смещения витков...
Тип: Изобретение
Номер охранного документа: 0002707966
Дата охранного документа: 03.12.2019
+ добавить свой РИД