×
08.11.2019
219.017.df51

Способ изготовления анизотропных гексагональных ферритов типа М

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры. Изготовление анизотропных гексаферритов типа М включает изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок. При прессовании используют ферритизированный порошок гексаферрита в виде наночастиц размером 60-140 нм, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц. Величина магнитного поля при прессовании составляет 6-7 кЭ, при этом степень магнитной текстуры полученных гексагональных ферритов 89-91%. Изобретение позволяет получать гексагональные поликристаллические ферриты бария и стронция с высокой степенью магнитной текстуры при использовании меньших значений магнитного поля. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры.

Известны способы получения поликристаллических гексагональных ферритов бария и стронция, включающие смешивание оксида бария (оксида стронция) с оксидом железа в соответствующих пропорциях, сухой и мокрый помол, ферритизацию порошка, прессование заготовок из измельченной шихты и спекание (см. Летюк Л.М., Костишин В.Г., Гончар А.В. Технология ферритовых материалов магнитоэлектроники. - М.: МИСиС, 2005. - 352 с.). Указанные способы не позволяют изготовлять анизотропные гексаферриты бария и стронция.

Наиболее близким к предложенному техническому решению является «Способ изготовления анизотропного стронциевого феррита» (см. Андреев В.Г., Гончар А.В., Летюк Л.М., Меньшова С.Б. и Егоров Р.Н. Патент РФ №2256534. Опубликовано 20.07.2005 г. Бюл. №20). Однако указанный способ требует высоких магнитных полей и не всегда позволяет получить требуемое значение степени магнитной текстуры.

Техническим результатом изобретения являлось получение гексагональных поликристаллических ферритов бария и стронция с высокой степенью магнитной текстуры при использовании меньших значений магнитного поля.

Технический результат достигается следующим образом.

Способ изготовления анизотропных гексагональных ферритов типа М, включающий изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок, отличающийся тем, что при прессовании используют ферритизированный порошок гексаферрита, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц, а величина магнитного поля при прессовании составляет 6-7 кЭ.

Изобретение поясняется фигурами, где фиг. 1 - фотографии порошка гексаферрита бария, полученного методом химического соосаждения при различных увеличениях, и фиг. 2 - фотографии порошка гексаферрита стронция, полученного методом химического соосаждения при различных увеличениях.

Сущность изобретения состоит в следующем. Метод химического соосаждения позволяет получить порошок гексаферрита в виде наночастиц размером 60-140 нм. При прессовании заготовки в магнитном поле частицы гексаферрита, имея вид пластинок в виде гексагонов, ориентируются в магнитном поле, создавая таким образом магнитную текстуру в образце. Наноразмерные частицы для полной ориентации в магнитном поле требуют существенно меньшие значения магнитного поля.

Изобретение реализуется следующим образом.

Из порошков гексаферритов прессовали сырые заготовки с формами шайб диаметром 10 мм и толщиной 3,0 мм. Давление прессования составляло 8 МПа. Благодаря технологии химического соосаждения полученные наночастицы требуют меньшие значения магнитного поля, поэтому намагничивающее поле в конце прессования составляет 6-7 кЭ, а не 10 кЭ и выше, как при классической технологии. Дополнительное воздействие на порошок ультразвуком в ходе прессования в постоянном магнитном поле обеспечивает повышение степени ориентации частиц гексаферрита. При интенсивных колебаниях наноразмерных частиц 60-140 нм в интервале частот 0,5-2,0 МГц снижается межчастичное взаимодействие. После прессования сырые заготовки сушились в естественных условиях, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Степень магнитной текстуры образцов оценивалась по формуле:

где: D - степень магнитной текстуры в процентах; и Br// - остаточная магнитная индукция поперек и вдоль оси текстуры соответственно.

Частотный диапазон ультразвука используемого ультразвука выбран, исходя из следующих соображений. При использовании частоты ультразвука меньше 0,5 МГц получаемые образцы обладают пониженными значениями магнитных параметров. При использовании ультразвука с частотой больше 2,0 МГц падает степень магнитной текстуры полученных образцов.

Пример 1. Порошок бариевого гексаферрита был получен методом химического соосаждения. Методика получения нанопорошка описана в работах

(см.: 1. Костишин В.Г., Тимофеев А.В., Читанов Д.Н. Особенности получения наноразмерных порошков гексаферритов бария BaFe12O19 методом прекурсора в полимере. Химическая технология, 2018, №1. - С. 11-15.

2. Костишин В.Г., Тимофеев А.В., Налогин А.Г., Кожитов Л.В., Козлов В.В. Способ получения наноразмерных частиц гексаферрита бария. Патент РФ №2611442. Опубликовано 22.02.2017 г. Бюллетень №6).

Для порошка бариевого гексаферрита, полученного методом химического соосаждения характерна правильная пластинчатая форма частиц и небольшой их разброс по размерам (фиг. 1).

На основе имеющегося порошка BaFe12O19 была спрессована сырая заготовка. Она имела форму шайбы диаметром 10 мм и толщиной 3,0 мм. Используемое давление прессования равнялось 8 МПа, величина намагничивающего поля в конце прессования составляла 6,7 кЭ с дополнительным воздействием ультразвука частотой 0,5 МГц. После прессования сырая заготовка сушилась в естественных условиях в течение двух суток, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Как видно из результатов табл. 1, технология химического соосаждения является весьма эффективной по сравнению с традиционной керамической технологией для получения пластин гексаферритов с высокой степенью магнитной текстуры. На основе порошков гексаферритов, полученных методом химического соосаждения, в пластинах гексаферритов удается достичь магнитной текстуры ~ 91%, что на 22% выше, чем при тех же условиях и на том же оборудовании позволяет достичь традиционная керамическая технология.

Пример 2. Порошок стронциевого гексаферрита был получен методом химического соосаждения. Методика получения нанопорошка описана в работах

(см.: 1. Kostishyn V.G., Timofeev A.V., Chitanov D.N. Obtaining of nanostructured powders of barium and strontium hexaferrite by the polymer precursor method. Journal of Nano-and Electronic Physics, 2015, vol. 7, Issue 4. - P. 04066.

2. Костишин В.Г., Тимофеев А.В., Налогин А.Г., Панина Л.В. Способ получения наноразмерных частиц гексаферрита стронция. Патент РФ №2612289. Опубликовано 06.03.2017 г. Бюллетень №7).

Для порошка стронциевого гексаферрита, полученного методом химического соосаждения характерна правильная пластинчатая форма частиц и небольшой их разброс по размерам (фиг. 2).

Порошок SrFe12O19 был спрессован в сырую заготовку. Она представляла собой шайбу диаметром 10 мм и толщиной 3 мм. Используемое давление прессования равнялось 8 МПа, величина намагничивающего поля в конце прессования составляла 6,5 кЭ с дополнительным воздействием ультразвука частотой 1,1 МГц. После прессования сырая заготовка сушилась в естественных условиях в течение двух суток, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Как видно из результатов табл. 2, технология химического соосаждения является весьма эффективной по сравнению с традиционной керамической технологией для получения пластин гексаферритов с высокой степенью магнитной текстуры. На основе порошков гексаферритов, полученных методом химического соосаждения, в пластинах гексаферритов стронция удается достичь магнитной текстуры ~ 89%, что на 23% выше, чем при тех же условиях и на том же оборудовании позволяет достичь традиционная керамическая технология.

Способ изготовления анизотропных гексагональных ферритов типа М, включающий изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок, отличающийся тем, что при прессовании используют ферритизированный порошок гексаферрита в виде наночастиц размером 60-140 нм, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц, а величина магнитного поля при прессовании составляет 6-7 кЭ, при этом степень магнитной текстуры полученных гексагональных ферритов 89-91%.
Способ изготовления анизотропных гексагональных ферритов типа М
Способ изготовления анизотропных гексагональных ферритов типа М
Способ изготовления анизотропных гексагональных ферритов типа М
Источник поступления информации: Роспатент

Показаны записи 1-10 из 322.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Показаны записи 1-10 из 50.
27.01.2013
№216.012.2131

Радиопоглощающий феррит

Изобретение относится к технологии радиопоглощающих ферритов, которые находят все более широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры. Повышение радиопоглощающих свойств феррита в интервале частот от 30 МГц до 1000 МГц....
Тип: Изобретение
Номер охранного документа: 0002473998
Дата охранного документа: 27.01.2013
20.02.2014
№216.012.a1e0

Способ получения наночастиц магнетита, стабилизированных поливиниловым спиртом

Изобретение может быть использовано в магнитной наноэлектронике для магнитных регистрирующих сред с высокой плотностью записи, для магнитных сенсоров, радиопоглощающих экранов, а также в медицине. Способ получения наночастиц магнетита, стабилизированных поливиниловым спиртом, включает получение...
Тип: Изобретение
Номер охранного документа: 0002507155
Дата охранного документа: 20.02.2014
20.06.2014
№216.012.d4c4

Способ получения тонкопленочных полимерных нанокомпозиций для сверхплотной магнитной записи информации

Изобретение относится к области магнитной записи информации, конкретно к способу получения пленок для магнитной записи информации. Способ получения полимерных нанокомпозиций в виде тонких пленок для сверхплотной записи информации включает получение прекурсора, состоящего из поливинилового...
Тип: Изобретение
Номер охранного документа: 0002520239
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.dde8

Магнитооптический материал

Изобретение относится к области магнитной микроэлектроники, в частности к прикладной магнитооптике, и может быть использовано для записи информации как в цифровом, так и в аналоговом режимах. Магнитооптический материал представляет собой эпитаксиальную монокристаллическую пленку феррита-граната...
Тип: Изобретение
Номер охранного документа: 0002522594
Дата охранного документа: 20.07.2014
27.10.2014
№216.013.0313

Способ получения наноразмерных пленок bi-содержащих ферритов-гранатов

Изобретение относится к технологии получения пленок ферритов-гранатов и может быть использовано в прикладной магнитооптике для получения магнитооптических дисков, модуляторов, дефлекторов. Способ включает изготовление мишени заданного состава, обработку монокристаллической подложки галлиевого...
Тип: Изобретение
Номер охранного документа: 0002532185
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0315

Способ получения наноразмерных пленок феррита

Изобретение относится к технологии получения наноразмерных пленок мультиферроиков и может найти применение в производстве высокодобротных магнитооптических устройств обработки и хранения информации, магнитных сенсоров, емкостных электромагнитов, магнитоэлектрических элементов памяти, невзаимных...
Тип: Изобретение
Номер охранного документа: 0002532187
Дата охранного документа: 27.10.2014
20.12.2014
№216.013.11f7

Способ получения ферритовых изделий путем радиационно-термического спекания

Изобретение относится к порошковой металлургии, в частности к получению магнитомягких ферритовых материалов. Может использоваться в электронной и радиопромышленности. Готовят шихту из синтезированного ферритового материала и 0,01-0,05 мас.% легкоплавкой добавки, предварительно...
Тип: Изобретение
Номер охранного документа: 0002536022
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1278

Способ спекания радиопоглащающих магний-цинковых ферритов

Изобретение относится к порошковой металлургии, в частности к получению радиопоглощающих ферритов. Может использоваться в электронной и радиопромышленности. Ферритообразующие оксиды магния, цинка и железа смешивают и синтезируют ферритовый порошок в печах в воздушной среде. Затем измельчают,...
Тип: Изобретение
Номер охранного документа: 0002536151
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.171c

Способ спекания радиопоглощающих магний-цинковых ферритов

Изобретение относится к порошковой металлургии, в частности к получению радиопоглощающих ферритов. Может использоваться в электронной и радиопромышленности. Ферритообразующие оксиды магния, цинка и железа смешивают и синтезируют ферритовый порошок в печах в воздушной среде. Затем измельчают,...
Тип: Изобретение
Номер охранного документа: 0002537344
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.20bc

Спектральный эллипсометр с устройством магнитодинамических измерений

Изобретение относится к области in situ контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п....
Тип: Изобретение
Номер охранного документа: 0002539828
Дата охранного документа: 27.01.2015
+ добавить свой РИД