×
16.06.2018
218.016.63a6

Результат интеллектуальной деятельности: СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам извлечения ионов тяжелых металлов сорбцией. Способ извлечения ионов тяжелых металлов из водных растворов заключается в пропускании раствора через неподвижный слой набухшего гранулированного адсорбента, полученного из целлюлозосодержащего материала (ЦСМ), выбранного из древесных опилок или короткого льняного волокна фракции 0,5-1 мм. ЦСМ подвергают высушиванию до постоянной массы, обработке 2-3%-ным раствором соляной кислоты, отмывке от раствора кислоты дистиллированной водой до рН 5, отжиму до влажности 50%. Далее проводят последовательную обработку полученной массы раствором хитозана в уксусной кислоте, раствором глутарового альдегида и раствором аминоуксусной кислоты, осуществляемой при мольном соотношении ЦСМ:хитозан:глутаровый альдегид:аминоуксусная кислота, равном 1:(0,3-0,4):(0,2-0,3):(0,05-0,1). Полученную смесь гранулируют. Техническим результатом является предотвращение разрушения гранул набухшего адсорбента, улучшение фильтруемости слоя адсорбента в процессе очистки воды, увеличение времени защитного действия слоя адсорбента. 1 табл., 6 пр.

Изобретение относится к способам извлечения ионов тяжелых металлов сорбцией на природных целлюлозосодержащих сорбентах из растворов различного состава, образующихся в результате проведения разнообразных технологических процессов, и может быть использовано в водоподготовке при разработке технологий утилизации ионов тяжелых металлов из водных растворов и сточных вод.

Известен способ очистки сточных вод от ионов тяжелых металлов, включающий фильтрование через слой сорбента, представляющего из себя измельченную корковую часть коры хвойных пород древесины, предварительно проэкстрагированную горячей водой, а очистку воды ведут при температуре 25-38°С и при скорости потока 0,2-0,35 м/ч [Патент РФ №2176617. МПК C02F 1/28; B01J 20/24. Способ очистки сточных вод от ионов тяжелых металлов // Гелес И.С.; заявитель и патентообладатель Гелес И.С. - №2000108508/12; заявл. 05.04.00; опубл. 10.12.01]. В качестве основы для получения сорбентов могут применяться целлюлозосодержащие материалы (ЦСМ), представляющие собой отходы промышленного производства - древесные опилки, стружка и щепа из древесины, древесная пыль, солома злаковых культур, шелуха гречихи [Осокин В.М., Соломин В.А. Исследования по получению новых сорбентов из растительного сырья для очистки воды // Ползуновский вестник. - 2013. - №1. - С.280-282], короткое льняное волокно [Патент РФ №2351548. МПК C02F 1/62, 1/28, 101/20; B01J 20/24, 20/32. Способ извлечения ионов тяжелых металлов из водных растворов // Никифорова Т.Е., Козлов В.А., Одинцова О.И. Кротова М.Н.; заявитель и патентообладатель Ивановский гос. хим.-технол. ун-т. – N 2007139465/15; заявл. 24.10.07; опубл. 10.04.09. Бюл. №10; - 6 с.: ил.] и другие отходы [Sud D., Mahajan G., Kaur M.P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review // Bioresource Technology. - 2008. - V. 99. - P. 6017-6027].

Недостатком аналога является плохая фильтруемость раствора через слой адсорбента и унос мелких частиц адсорбента с фильтратом.

Известен способ очистки водных растворов от ионов тяжелых металлов гранулированным композиционным адсорбентом на основе хитозана с добавлением термообработанной шелухи проса в количестве 20%, которая является отходом сельскохозяйственной продукции [Тарановская Е.А., Собгайда Н.А., Маркина Д.Ю., Морев П.А. Технология получения и использования композиционных материалов из хитозана и шелухи проса для очистки стоков от ионов тяжелых металлов // Вестник Пермского национального исследовательского политехнического университета. Прикладная экология. Урбанистика. - 2016. - №1 (21). - С. 50-62].

Недостатком данного способа является разрушение гранул адсорбента, загрязнение очищенной воды мелкими частицами адсорбента и хитозаном из-за растворения хитозана в разбавленных кислых водных растворах.

Известен способ очистки водных растворов от ионов тяжелых металлов адсорбентами, полученными под действием сдвиговых деформаций из смесей целлюлоза-хитозан-фталевый ангидрид, целлюлоза-хитозан-янтарный ангидрид при соотношении полисахаридов 1:1. Фталевый и янтарный ангидриды применятся в качестве сшивающих агентов [Роговина С.З., Акопова Т.А., Вихорева Г.А. и др. Получение целлюлозно-хитозановых смесей под действием сдвиговых деформаций в присутствии сшивающих агентов // Высокомолекулярные соединения. Серия А. - 2000. - Т. 42, №9. - С. 1489-1494]. В качестве сшивающего агента используется глутаровый альдегид, позволяющий проводить сшивку в мягких условиях при низкой температуре и физиологических значениях pH среды [Meade S., Miller А., Gerrard J. The role of decarbonyl compounds in non-enzymatic crosslinking. / Meade S., Miller A., Gerrard J. // Bioorg. Med. Chem. - 2003. - Is.11. - P. 853-862].

Недостатком известных способов является вторичное загрязнение очищаемой воды токсичными непрореагировавшими сшивающими агентами, поступающими из адсорбента.

Наиболее близким по технической сущности и достигаемому результату, то есть прототипом, является способ очистки сточных вод от ионов хрома (III) и (VI), включающий пропускание воды через неподвижный слой набухшего сорбента на основе целлюлозосодержащих материалов (древесных опилок, целлюлозы, льнотресты, костры) фракцией 0,5-5 мм, модифицированными путем пропитки водным раствором смеси карбамида и фосфорной кислоты, при массовом соотношении указанных компонентов в пропиточном растворе 1:(0,5-2), при температуре 90-95°С в течение 0,3-1 ч, при этом массовое соотношение твердой фазы и жидкой составляет 1:(4,5-5,4) с последующей термообработкой при 140-160°С в течение 0,3-1 ч, отмывкой от избытка модифицирующих веществ до значения pH промывных вод, равного 6,0, и сушкой полученного сорбционного материала при температуре 90-105°С [Патент РФ №2291113. МПК C02F 1/28; B01J 20/30. Способ очистки сточных вод от ионов хрома (III) и (VI) // Жукова И.Л., Орехова С.Е., Ашуйко В.А., Хмылко Л.И.; заявитель и патентообладатель Белорусский гос. технологич. ун-т. -2005122996/15; заявл. 19.07.05; опубл. 10.01.07. Бюл. №1. - с. 5: ил.].

Недостатком известного способа является плохая фильтруемость раствора через слой адсорбента и унос мелких частиц адсорбента с фильтратом.

Техническим результатом изобретения является предотвращение разрушения гранул набухшего адсорбента и улучшение фильтруемости слоя адсорбента в процессе очистки воды, предотвращение загрязнения очищаемой воды токсичным непроререагировавшим глутаровым альдегидом, поступающим из адсорбента, увеличение времени защитного действия слоя адсорбента.

Указанный результат достигается тем, что в способе извлечения ионов тяжелых металлов из водного раствора, заключающемся в пропускании раствора через неподвижный слой набухшего модифицированного природного адсорбента на основе ЦСМ, в частности древесных опилок или короткого льняного волокна, предварительно высушенных до постоянной массы, согласно изобретению в качестве адсорбента используют гранулированный адсорбент, а модифицирование ЦСМ фракцией 0,5-1 мм осуществляют обработкой 2-3%-ным раствором соляной кислоты с последующей отмывкой сорбента от раствора соляной кислоты дистиллированной водой до pH 5, отжимом сорбента от избытка раствора до влажности в среднем 50%, обработкой растворами хитозана, глутарового альдегида и аминоуксусной кислоты при мольном соотношении ЦСМ:хитозан:глутаровый альдегид:аминоуксусная кислота, равном 1:(0,3-0,4):(0,2-0,3):(0,05-0,1), и формованием полученной смеси влажностью 70-75% экструзией в гранулы.

Глутаровый альдегид используется в качестве сшивающего агента. Аминоуксусная кислота используется для нейтрализации раствора соляной кислоты и непрореагировавших молекул глутарового альдегида, а также прививки к полисахаридам функциональных аминогрупп, что увеличивает ионообменную емкость адсорбента и, следовательно, время защитного действия слоя адсорбента. Обработка ЦСМ раствором соляной кислоты с концентрацией выше 3% приводит к разрушению структуры целлюлозы. Растворы с концентрацией соляной кислоты менее 2% не могут удалить из ЦСМ все кислоторастворимые компоненты. Отмывка ЦСМ от соляной кислоты дистиллированной водой со значением pH>5 приводит после смешения влажного ЦСМ с раствором хитозана к выпадению хитозана в осадок. Отмывка ЦСМ от раствора соляной кислоты дистиллированной водой со значением pH<5 нецелесообразна из-за повышенного расхода аминоуксусной кислоты на нейтрализацию соляной кислоты. Применение мольного соотношения ЦСМ:хитозан менее 1:0,3 не позволяет получить достаточно прочные гранулы набухшего адсорбента. Использование мольного соотношения ЦСМ:хитозан более 1:0,4 приводит к плохому набуханию гранул адсорбента в воде. Использование мольного соотношения ЦСМ:глутаровый альдегид ниже 1:0,2 неэффективно из-за недостаточного сшивания хитозана. Применение мольного соотношения ЦСМ:глутаровый альдегид более 1:0,3 приводит к излишнему расходу альдегида. Использование мольного соотношения ЦСМ:аминоуксусная кислота ниже 1:0,05 недостаточно для нейтрализации раствора соляной кислоты и непрореагировавших молекул глутарового альдегида, а также прививки к полисахаридам функциональных аминогрупп. Применение мольного соотношения ЦСМ:аминоуксусная кислота выше 1:0,1 неэффективно из-за повышенного расхода кислоты. Применение влажности формовочной смеси менее 70% затрудняет формовку гранул адсорбента. Применение влажности формовочной массы более 75% неэффективно из-за слабой прочности сформованных гранул и повышенного расхода теплоты на их сушку. Сушка гранул адсорбента до влажности менее 4% приводит к повышенному расходу теплоты.

Технический результат достигается за счет отсутствия разрушения гранул набухшего адсорбента и улучшения фильтруемости слоя адсорбента в процессе очистки воды, предотвращения загрязнения очищаемой воды токсичным непроререагировавшим глутаровым альдегидом, поступающим из адсорбента, и увеличения времени защитного действия слоя адсорбента.

Для осуществления заявляемого способа извлечения ионов тяжелых металлов из водных растворов используют следующие реагенты:

- кислота соляная [ГОСТ 3118-77. Кислота соляная. Технические условия];

- глутаровый альдегид [ТУ 6-09-37-1125-91. Глутаровый альдегид, 25%-ный раствор чистый];

- аминоуксусная кислота [ГОСТ 5860-75. Кислота аминоуксусная. Технические условия];

В качестве сорбентов использовали:

- хитозан [ТУ 6-09-05-397-75];

- древесные опилки - отход деревообрабатывающей промышленности (состав, % от абсолютно сухой древесины: целлюлоза - 31,0-52,5; лигнин - 19,5-30,9; пентозаны - 5,3-28,3; маннан - 1,3-11,3; галактан - 0,7-14,4; уроновые кислоты - 2,9-8,6; вещества, экстрагируемые горячей водой - 1,4-22,6; вещества, экстрагируемые этиловым эфиром - 0,7-4,6; зола - 0,2-1,0) [Никитин В.М., Оболенская А.В., Щеголев В.П. Химия древесины и целлюлозы. М.: Лесная промышленность, 1978. - 368 с.];

- короткое льняное волокно, представляющее собой вторичный продукт переработки льняной промышленности следующего состава, %: целлюлоза (75…78), гемицеллюлоза (9,4…11,9), лигнин (3,8), пектиновые вещества (2,9…3,2), воскообразные вещества (2,7), азотсодержащие вещества в расчете на белки (1,9…2,1), минеральные вещества (1,3…2,8) [Кричевский Г.Е., Корчагин М.В., Сенахов А.В. Химическая технология текстильных материалов. М., 1985, 640 с.].

Изобретение осуществляют следующим образом.

Пример 1.

10 г сухих измельченных древесных опилок с размером частиц 0,5-1 мм заливают 200 мл (модуль 20) 2%-ного раствора соляной кислоты, перемешивают полученную массу в течение 60 мин, отжимают опилки от избытка раствора соляной кислоты, отмывают опилки от раствора соляной кислоты дистиллированной водой до значения pH 5, отжимают опилки до влажности 50%, добавляют к влажным опилкам 12 мл 12%-ного раствора хитозана в 2%-ном растворе уксусной кислоты, смешивают полученную массу в течение 30 мин, добавляют в полученную массу 2,3 мл 25%-ного раствора глутарового альдегида, смешивают полученную массу в течение 30 мин, добавляют в полученную массу 0,9 мл 13%-ного раствора аминоуксусной кислоты, смешивают полученную массу в течение 30 мин, гранулируют полученную формовочную массу влажностью 70% путем ее продавливания через поливинилхлоридную трубку диаметром 2 мм с одновременной нарезкой гранул металлическим ножом, полученные гранулы сушат при температуре 70°С до влажности 4%. Мольное соотношение ЦСМ:хитозан:глутаровый альдегид:аминоуксусная кислота составляет 1:0,3:0,2:0,05. Затем 5 г гранулированного сухого адсорбента помещают в ионообменную колонку с внутренним диаметром 18 мм и высотой 400 мм, где адсорбент набухает в дистиллированной воде в течение 30 мин. Через ионообменную колонку пропускают в течение 1 ч водный раствор с объемным расходом 200 мл/ч, содержащий 5,2 ммоль/л ионов меди, pH 4. Фильтраты собирают отдельными порциями по 10 мл в мерные колбы и в каждой пробе определяют содержание ионов меди. На основании полученных данных устанавливают время «проскока» ионов меди в фильтрате и рассчитывают динамическую обменную емкость адсорбента при равенстве концентраций ионов меди в фильтрате и исходном растворе. При набухании адсорбента и проведении процесса ионного обмена гранулы адсорбента не разрушаются. Раствор хорошо фильтруется через слой адсорбента. В фильтрате мелкие частицы адсорбента и глутаровой альдегид не обнаружены.

Результаты опытов представлены в таблице.

Пример 2.

10 г сухих измельченных древесных опилок с размером частиц 0,5-1 мм заливают 200 мл (модуль 20) 3%-ного раствора соляной кислоты, перемешивают полученную массу в течение 60 мин, отжимают опилки от избытка раствора соляной кислоты, отмывают опилки от раствора соляной кислоты дистиллированной водой до значения pH 5, отжимают опилки до влажности 50%, добавляют к влажным опилкам 16 мл 12%-ного раствора хитозана в 2%-ном растворе уксусной кислоты, смешивают полученную массу в течение 30 мин, добавляют в полученную массу 3,5 мл 25%-ного раствора глутарового альдегида, смешивают полученную массу в течение 30 мин, добавляют в полученную массу 1,8 мл 13%-ного раствора аминоуксусной кислоты, смешивают полученную массу в течение 30 мин, гранулируют полученную формовочную массу влажностью 75% путем ее продавливания через поливинилхлоридную трубку диаметром 2 мм с одновременной нарезкой гранул металлическим ножом, полученные гранулы сушат при температуре 50°С до влажности 8%. Мольное соотношение ЦСМ:хитозан:глутаровый альдегид:аминоуксусная кислота составляет 1:0,4:0,3:0,1. Затем 5 г гранулированного сухого адсорбента помещают в ионообменную колонку с внутренним диаметром 18 мм и высотой 400 мм, где адсорбент набухает в дистиллированной воде в течение 30 мин. Через ионообменную колонку пропускают в течение 1 ч водный раствор с объемным расходом 200 мл/ч, содержащий 5,2 ммоль/л ионов меди, pH 4. Фильтраты собирают отдельными порциями по 10 мл в мерные колбы и в каждой пробе определяют содержание ионов меди. На основании полученных данных устанавливают время «проскока» ионов меди в фильтрате и рассчитывают динамическую обменную емкость адсорбента при равенстве концентраций ионов меди в фильтрате и исходном растворе. При набухании адсорбента и проведении процесса ионного обмена гранулы адсорбента не разрушаются. Раствор хорошо фильтруется через слой адсорбента. В фильтрате мелкие частицы адсорбента и глутаровой альдегид не обнаружены.

Результаты опытов представлены в таблице.

Пример 3.

Способ осуществляли аналогично примеру 1, но в качестве ЦСМ использовали короткое льняное волокно. Результаты опытов представлены в таблице.

Пример 4.

Способ осуществляли аналогично примеру 2, но в качестве ЦСМ использовали короткое льняное волокно. Результаты опытов представлены в таблице.

Пример 5.

Способ осуществляли аналогично примеру 1, но адсорбент не обрабатывался раствором аминоуксусной кислоты. При проведении процесса ионного обмена гранулы адсорбента не разрушаются. Раствор хорошо фильтруется через слой адсорбента. В фильтрате обнаружен глутаровый альдегид. Результаты опытов представлены в таблице.

Пример 6.

Способ осуществляли аналогично примеру 3, но адсорбент не обрабатывался раствором аминоуксусной кислоты. При проведении процесса ионного обмена гранулы адсорбента не разрушаются. Раствор хорошо фильтруется через слой адсорбента. В фильтрате обнаружен глутаровый альдегид. Результаты опытов представлены в таблице.

Таким образом, из приведенных в таблице данных видно, что предлагаемым способом динамическая обменная емкость адсорбента на основе древесинных опилок находится в интервале 0,12-0,21 моль/кг, а на основе короткого льняного волокна - 0,16-0,2 моль/кг. При этом время защитного действия слоя адсорбента на основе древесинных опилок составляет 29-52 мин, а на основе короткого льняного волокна - 38-48 мин. Обработка адсорбента раствором аминоуксусной кислоты нейтрализует остатки раствора соляной кислоты и непрореагировавшие молекулы глутарового альдегида, а также увеличивает время защитного действия слоя адсорбента.

Способ извлечения ионов тяжелых металлов из водных растворов, заключающийся в пропускании раствора через неподвижный слой набухшего гранулированного адсорбента, полученного из целлюлозосодержащего материала (ЦСМ), выбранного из древесных опилок или короткого льняного волокна фракции 0,5-1 мм, которое подвергают высушиванию до постоянной массы, обработке 2-3%-ным раствором соляной кислоты, отмывке от раствора кислоты дистиллированной водой до рН 5, отжиму до влажности 50%, последовательной обработке полученной массы раствором хитозана в уксусной кислоте, раствором глутарового альдегида и раствором аминоуксусной кислоты, осуществляемой при мольном соотношении ЦСМ:хитозан:глутаровый альдегид:аминоуксусная кислота, равном 1:(0,3-0,4):(0,2-0,3):(0,05-0,1), и гранулированию полученной смеси с влажностью 70-75% путем экструзии.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 67.
25.08.2017
№217.015.be26

Теплообменный аппарат

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах для рекуперации тепла, а также для разделения компонентов жидких промышленных отходов в различных отраслях народного хозяйства. В теплообменном аппарате, содержащем корпус с патрубками подвода и отвода...
Тип: Изобретение
Номер охранного документа: 0002616737
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.cbcd

Тетра-4-[4-(1-метил-1-фенилэтил)фенокси]тетра-5-нитрофталоцианины кобальта и никеля

Изобретение относится к тетра-4-[4-(1-метил-1-фенилэтил)фенокси]тетра-5-нитрофталоцианинам кобальта и никеля общей формулы Соединения обладают красящей способностью по отношению к полистиролу и капрону и могут быть использованы в качестве исходных соединений для синтеза металлокомплекса...
Тип: Изобретение
Номер охранного документа: 0002620270
Дата охранного документа: 24.05.2017
25.08.2017
№217.015.cbee

Способ получения синтез-газа для производства метанола

Изобретение относится к области переработки природного газа, а именно к способу получения синтез-газа для производства метанола, а также может быть использовано на предприятиях химической и нефтехимической промышленности, производящих метанол. Способ заключается в двухступенчатой...
Тип: Изобретение
Номер охранного документа: 0002620434
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cc24

4-[4-(1-метил-1-фенилэтил)фенокси]-5-нитрофталонитрил

Изобретение относится к новому производному фталонитрила, а именно к 4-[4-(1-метил-1-фенилэтил)фенокси]-5-нитрофталонитрилу указанной ниже формулы, которое может найти применение в синтезе фталоцианинов и их металлокомплексов, проявляющих жидкокристаллические и красящие свойства, а также...
Тип: Изобретение
Номер охранного документа: 0002620381
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cc82

1-[(5-амино-1,2,4-тиадиазол-3-ил)имино]-2,3-дигидро-3-имино-2-фенил-1h-инден-2-сульфокислота, обладающая свойством кислотного красителя для шелка, шерсти и капрона

Изобретение относится к новому гетероциклическому соединению формулы: которое может быть использовано в качестве кислотного красителя для окрашивания шелка, шерсти, капрона в различные оттенки красного цвета. 3 ил., 4 пр.
Тип: Изобретение
Номер охранного документа: 0002620382
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cc89

Способ получения синтетического гранулированного цеолита

Изобретение относится к получению цеолитов. Предложен способ получения гранулированного без связующего цеолита со структурой PHI, имеющего атомное соотношение Al:Si = 1:(2÷3). Способ включает смешение исходных компонентов, формование гранул, их сушку, термоактивацию и гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002620431
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.ce4c

Способ получения теплоизоляционного материала

Изобретение относится к технологии получения неорганических термостойких, антикоррозионных строительных материалов, используемых в качестве теплоизоляции при возведении промышленных зданий, сооружений. В способе получения теплоизоляционного материала, заключающемся в смешивании неорганического...
Тип: Изобретение
Номер охранного документа: 0002620676
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ced3

Сырьевая смесь для изготовления керамического кирпича

Изобретение относится к области производства строительных материалов и может быть использовано для производства керамического кирпича. Сырьевая смесь для изготовления керамического кирпича, включающая глину, кварцевый песок модулем крупности 2,0-2,2, выгорающую добавку, дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002620677
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d0d8

Сорбент для газовой хроматографии

Изобретение относится к сорбентам для газовой хроматографии. Предложенный сорбент состоит из твердого носителя и медного комплекса в качестве стационарной фазы. В качестве медного комплекса сорбент содержит тетра(1',7',7'-триметилбицикло[2.2.1]гептано[2',3'-b]пиразинопорфиразин меди....
Тип: Изобретение
Номер охранного документа: 0002621337
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.d3e8

Способ получения комплексов лантаноидов с 5, 15-дифенилтетрабензопорфином

Изобретение относится к способу получения комплексов лантаноидов с 5,15-дифенилтетрабензопорфином. Способ включает взаимодействие фталимида с ацетатом цинка при температуре 230-240°C в течение 20-30 мин, сплавление полученного 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-он с...
Тип: Изобретение
Номер охранного документа: 0002622292
Дата охранного документа: 14.06.2017
Показаны записи 11-20 из 52.
20.08.2015
№216.013.7145

Способ введения целевых молекул в клетки

Изобретение относится к области биохимии. Предложен способ введения целевых молекул в клетки. Способ включает закрепление на культуральной подложке в питательной среде массива рабочих клеток, а также введение целевых молекул в массив рабочих клеток путем прокола клеточной мембраны. Целевые...
Тип: Изобретение
Номер охранного документа: 0002560567
Дата охранного документа: 20.08.2015
20.04.2016
№216.015.3533

Способ оценки различий цветопередачи

Изобретение относится к области колориметрических измерений и касается способа различий цветопередачи. Способ включает в себя снятие светочувствительными датчиками сигналов от разных источников света, имеющих спектры излучения I(λ) и I(λ). Полученные сигналы нормируются и сравниваются с помощью...
Тип: Изобретение
Номер охранного документа: 0002581740
Дата охранного документа: 20.04.2016
20.08.2016
№216.015.4b90

Способ получения ароматизированного текстильного материала

Изобретение относится к текстильной промышленности и касается способа получения ароматизированного текстильного материала. Способ заключается в обработке материала микроэмульсией, содержащей микрокапсулы, образованные полимерным соединением с инкапсулированными в них эфирными маслами, отжиме и...
Тип: Изобретение
Номер охранного документа: 0002594422
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.698b

Способ производства вафельных листов

Изобретение относится к пищевой промышленности. Предложен способ производства вафельных листов, предусматривающий смешивание молочной сыворотки, альгината натрия, гуммиарабика, каррагинана и воды, взятой в количестве 1/3 от расчетного, и набухание полученной белок-полисахаридной смеси в течение...
Тип: Изобретение
Номер охранного документа: 0002591464
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7209

Способ производства текстильного материала, содержащего нано- и микрокапсулированные биологически активные вещества с замедленным высвобождением (варианты)

Изобретение направлено на усиление и увеличение продолжительности лечебного воздействия биологически активных веществ на кожный покров пациента в области пораженных зон при лечении пролежней и ожогов. Указанный технический результат достигается тем, что текстильный материал обрабатывают нано- и...
Тип: Изобретение
Номер охранного документа: 0002596452
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.767a

Способ извлечения ионов тяжелых металлов из водных растворов

Изобретение относится к способам извлечения ионов тяжелых металлов сорбцией на природных целлюлозосодержащих сорбентах из растворов различного состава и может быть использовано для совершенствования мембранных и сорбционных технологий, в водоподготовке, при разработке технологий утилизации...
Тип: Изобретение
Номер охранного документа: 0002598483
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.910c

Способ получения фруктозо-глюкозного сиропа из клубней топинамбура

Изобретение относится к пищевой промышленности. Способ получения фруктозо-глюкозного сиропа из клубней топинамбура включает мойку и измельчение топинамбура, экстрагирование в течение 15-20 мин, отделение экстракта от твердой фазы, концентрирование и расфасовку. Причем после измельчения из...
Тип: Изобретение
Номер охранного документа: 0002605770
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9be5

Способ квч-фореза в реабилитации лиц с дегенеративно-дистрофическими изменениями опорно-двигательного аппарата на курортном этапе

Изобретение относится к медицине, а именно к физиотерапии, и может быть использовано в реабилитации лиц с дегенеративно-дистрофическими изменениями опорно-двигательного аппарата на курортном этапе. Осуществляют КВЧ-форез с применением минеральной азотно-кремнистой слаборадоновой термальной воды...
Тип: Изобретение
Номер охранного документа: 0002609998
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.a61c

Способ извлечения ионов тяжелых металлов из водных растворов

Изобретение относится к способам извлечения ионов тяжелых металлов сорбцией на природных целлюлозосодержащих сорбентах, из растворов различного состава, образующихся в результате проведения разнообразных технологических процессов, и может быть использовано для совершенствования мембранных и...
Тип: Изобретение
Номер охранного документа: 0002608029
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.aac5

Способ получения наночастиц серебра

Изобретение относится к области нанотехнологий. Для получения наночастиц серебра смешивают фруктозо-глюкозный сироп из клубней топинамбура с раствором нитрата серебра. Для получения фруктозо-глюкозного сиропа отжимают сок из клубней топинамбура и смешивают его с горячей водой в соотношении...
Тип: Изобретение
Номер охранного документа: 0002611520
Дата охранного документа: 27.02.2017
+ добавить свой РИД