×
09.06.2018
218.016.5b4f

Результат интеллектуальной деятельности: Многозонный термопреобразователь

Вид РИД

Изобретение

Аннотация: Изобретение относится к области газовой динамики и может быть использовано для измерения поля температуры газового потока, движущегося с большой скоростью, в частности, в газотурбинных установках и в стендовых системах. Известный многозонный термопреобразователь, содержащий не менее трех кабельных термопар в виде рабочих спаев термоэлектродов, каждая из термопар установлена в защитный чехол и соединена в сборку, закрепленную на кронштейне, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии, по предложению для измерения поля высокотемпературного газового потока он снабжен дополнительными трубчатыми корпусами, каждая кабельная термопара в защитном чехле заключена в трубчатый корпус, корпуса последовательно соединены в одной плоскости в сборку, а на боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены отверстия по направлению потока газа, при этом отношение расстояния между отверстиями к диаметру трубчатого корпуса равно 3-7, а расстояние между защитным чехлом термопары и трубчатым корпусом не более 0,3 мм. Трубчатые корпуса со стороны рабочего спая могут быть заглушены, термопреобразователь в качестве кабельных термопар содержит спаи в виде хромель-алюмелевых термоэлектродов, а трубчатые корпуса выполнены из стали 23ХН18 или ХН78Т. Технический результат - расширение высокотемпературного интервала измерений до температуры 1450°С, повышение точности измерений, увеличение срока безотказной работы свыше 2 лет при многократном использовании для измерения поля температур высокотемпературного газового потока. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области газовой динамики и может быть использовано для измерения поля температуры газового потока, движущегося с большой скоростью, в частности, в газотурбинных установках и в стендовых системах.

Наиболее близким аналогом предлагаемого изобретения по технической сущности и достигаемому результату является известный многозонный термопреобразователь, содержащий не менее трех кабельных термопар в виде рабочих спаев термоэлектродов, каждая из термопар установлена в защитный чехол и соединена в сборку, закрепленную на кронштейне, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии.

/ТП 0199 (многозонные термопреобразователи) - ООО "Биакс"

http://biaksnn.ru/tp-O 199-mllogozollllye- termopreobrazovateli/ 26.01.2017 16:08:27/

Недостатком известного термопреобразователя (с кабельными термопарами типа КТХА, КТНН) является нестабильность измерения из-за их недостаточного интервала устойчивого измерения при высоких температурах. Это справедливо в случае использования известного термопреобразователя при измерении температуры газового потока, движущегося с большой скоростью в газотурбинных установках, где температура потока достигает температуры до 1400°С. Точность и достоверность измерения снижается, стойкость неохлаждаемого термопреобразователя становится незначительной, повторное использование его затруднительно.

Задача настоящего изобретения заключается в разработке неохлаждаемой гребенки термопар для измерения поля температур высокотемпературного газового потока, движущегося с большой скоростью на выходе из камеры сгорания газотурбинной установки.

Ожидаемый технический результат - расширение высокотемпературного интервала измерений, увеличение точности измерений, повышение срока службы, за счет возможности многократного использования для измерения поля температур газового потока на выходе из камеры сгорания.

Ожидаемый технический результат достигается тем, что известный многозонный термопреобразователь, содержащий не менее трех кабельных термопар в виде рабочих спаев термоэлектродов, каждая из термопар установлена в защитный чехол и соединена в сборку, закрепленную на кронштейне, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии, по предложению, для измерения поля высокотемпературного газового потока, он снабжен дополнительными трубчатыми корпусами, каждая кабельная термопара в защитном чехле заключена в трубчатый корпус, корпуса последовательно соединены в одной плоскости в сборку, а на боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены отверстия по направлению потока газа, при этом отношение расстояния между отверстиями к диаметру трубчатого корпуса равно 3-7, а расстояние между защитным чехлом термопары и трубчатым корпусом не более 0,3 мм. Трубчатые корпуса со стороны рабочего спая могут быть заглушены, термопреобразователь в качестве кабельных термопар содержит спаи в виде хромель-алюмелевых термоэлектродов, а трубчатые корпуса выполнены из стали 23ХН18 или ХН78Т.

Для повышения стойкости от воздействия высоких температур термопреобразователь снабжен дополнительными трубчатыми корпусами, которые последовательно соединены в одной плоскости в сборку (гребенку).

Термопары в защитном чехле заключены в трубчатые корпуса сборки, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии. В местах размещения спаев в трубчатых корпусах выполнены отверстия. Отверстия выполнены по направлению потока газа, преимущественно со стороны боковой поверхности сборки, что позволяет уменьшить нарушения сплошности измеряемого потока и уменьшить его влияние на достоверность измеряемой температуры. Расстояние между отверстиями устанавливают в зависимости от наружного диаметра трубчатого корпуса по установленному экспериментально отношению расстояния между отверстиями к диаметру трубчатого корпуса, которое равно 3-7. При отношении менее 3, для условий высокотемпературного потока газотурбинного двигателя, расстояние между отверстиями или спаями становится очень незначительным, что приводит к излишним измерениям и не влияет на увеличение достоверности сведений о температуре потока, а при расстоянии между отверстиями при отношении более 7 наблюдается значимое снижение достоверности сведений о температуре потока. Расстояние между защитным чехлом термопары и внутренней стенкой трубчатого корпуса не должно превышать 0,3 мм. В этом случае количество поступающего между корпусами газа практически не влияет на достоверность измерения температуры. При увеличении расстояния более 0,3 мм газ, набегающего потока, поступает между корпусами и начнет оказывать влияние на значение измеряемой температуры, а при величине расстояния более 1 мм, его влияние на результаты измерений станет неприемлемым. Трубчатые корпуса со стороны рабочего спая могут быть заглушены, в частности запаяны или закрыты пробками. Корпуса могут быть изготовлены из стали 23ХН18 или ХН78Т, обеспечивающей достаточные жаростойкие свойства.

На приведенных чертежах показана конструкция многозонного термопреобразователя.

На фиг. 1 - схема многозонного термопреобразователя в сборе.

На фиг. 2 - узел А расположение отверстий на сборке многозонного термопреобразователя.

Многозонный термопреобразователь содержит трубчатые корпуса 1, кабельные термопары с рабочим спаем в защитном чехле 2, хомуты 3, соединяющие трубчатые корпуса в одной плоскости в сборку, кронштейн 4, фиксирующий сборку, переходную втулку 5 и удлинительные провода 6. На боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены отверстия 7 по направлению потока газа, отношение расстояния (n) между отверстиями к диаметру (d) трубчатого корпуса n/d=3-7.

По предложению, многозонный термопреобразователь, в зависимости от условий испытаний, может комплектоваться термопарами типа КТХА, КТНН, защитными трубчатыми корпусами 1 различных наружных диаметров, изготовленными из жаропрочных или жаростойких сталей, и соединительными хомутами 3. При комплектации учитываются требования по расстоянию между отверстиями и зависимость расстояния от диаметра трубчатого корпуса. Учитываются требования по величине расстояния между защитным чехлом термопары и внутренней стенкой трубчатого корпуса, которое не должно превышать 0,3 мм.

Комплектация многозонного термопреобразователя и его работа в приведенной комплектации

В комлектации использована кабельная термопара типа КТХА, которая установлена в трубчатый корпус из стали марки ХН78Т с внешним диаметром 3 мм и внутренним диаметром 2 мм, а расстояние между защитным чехлом термопары и трубчатым корпусом составляло 0,2 мм. На боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены приемные отверстия диаметром 1 мм. Трубчатые корпуса с кабельными термопарами типа КТХА с помощью хомутов из фольги ХН78Т толщиной 0,2 мм соединены со сдвигом в одной плоскости в сборку из шести корпусов. Расстояние между отверстиями (рабочими спаями) составляло n=6×3=18 мм. Для фиксирования сборки в нужном положении относительно газового потока на сборку установлен кронштейн из стали марки ХН78Т. Кабельные термопары типа КТХА с помощью переходных втулок соединены с удлинительными проводами хромель-алюмель (ХА) 0,5 мм2 в кремнеземной оплетке и показывающими приборами.

С помощью кронштейна перед началом измерения температурного поля потока газа устанавливали сборку в радиальном направлении к потоку, при этом отверстия в боковой поверхности ориентировали навстречу потоку газа. Измеряли температуру термопарами и производили ее фиксирование. Поворачивали сборку относительно оси потока и продолжали измерять и фиксировать температуру по окружности потока. Полученные данные позволяли регулировать подачу топлива для сжигания в различных участках камеры сгорания для получения одинаковой температурной структуры газового потока. Сборку использовали несколько раз. Продолжительность безотказной работы сборки составила более 16000 рабочих часов, что соответствовало II группе условий эксплуатации.

Приведенная комплектация сборки не является единственной. В рамках предложения могут быть скомплектованы и другие варианты сборок.

Предложенная конструкция сборки (гребенки) позволяет расширить высокотемпературный интервал измерений до температуры 1450°С, повысить точность измерений, увеличить срок безотказной работы свыше 2 лет при многократном использовании для измерения поля температур высокотемпературного газового потока.


Многозонный термопреобразователь
Многозонный термопреобразователь
Многозонный термопреобразователь
Источник поступления информации: Роспатент

Показаны записи 71-80 из 110.
09.08.2019
№219.017.bd20

Способ управления двухвальным газотурбинным двигателем с регулируемыми направляющими аппаратами компрессора и вентилятора

Изобретение относится к авиадвигателестроению, а именно к управлению двухвальным газотурбинным двигателем с регулируемыми направляющими аппаратами. Способ управления двухвальным газотурбинным двигателем с регулируемыми направляющими аппаратами компрессора и вентилятора включает управление...
Тип: Изобретение
Номер охранного документа: 0002696516
Дата охранного документа: 02.08.2019
10.08.2019
№219.017.bd61

Поворотное осесимметричное сопло турбореактивного двигателя

Изобретение относится к турбореактивным двигателям для авиационной техники, в частности к конструкции реактивных сопел. Поворотное осесимметричное сопло турбореактивного двигателя содержит неподвижный корпус, подвижный корпус, управляющие гидроцилиндры, а также пневмоцилиндры. Неподвижный...
Тип: Изобретение
Номер охранного документа: 0002696833
Дата охранного документа: 06.08.2019
10.08.2019
№219.017.bd88

Кольцевой объёмный оптический резонатор

Изобретение к лазерной технике. Кольцевой объемный оптический резонатор содержит ограниченную наружной и внутренней стенками кольцевую замкнутую полость с впускным отверстием для активной среды и отводным отверстием, образующую коаксиальные поверхности, систему зеркал, установленных вдоль...
Тип: Изобретение
Номер охранного документа: 0002696944
Дата охранного документа: 07.08.2019
10.08.2019
№219.017.bd93

Компрессор двухконтурного газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции компрессоров высокого давления двухконтурного газотурбинного двигателя. Компрессор двухконтурного газотурбинного двигателя содержит корпус регулируемых направляющих аппаратов, промежуточный корпус, механизм...
Тип: Изобретение
Номер охранного документа: 0002696839
Дата охранного документа: 06.08.2019
12.09.2019
№219.017.ca6b

Охлаждаемая турбина двухконтурного газотурбинного двигателя

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок, и может быть использовано при разработке энергоустановок с охлаждением масла в замкнутой циркуляционной системе и для...
Тип: Изобретение
Номер охранного документа: 0002699870
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca79

Роторная машина объемного типа

Изобретение относится к области энергетического и транспортного машиностроения и может быть использовано для привода потребителей механической энергии, а также в качестве составной части двигателя внутреннего сгорания, в том числе и газотурбинных двигателей. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002699864
Дата охранного документа: 11.09.2019
02.10.2019
№219.017.d132

Двухконтурный газотурбинный двигатель

Изобретение относится к газотурбинным двигателям, а именно к системам наддува опор. Известный двухконтурный газотурбинный двигатель, содержащий систему наддува опор, включающую полости наддува опор и предмасляные полости компрессора низкого давления и компрессора высокого давления, полость...
Тип: Изобретение
Номер охранного документа: 0002700110
Дата охранного документа: 12.09.2019
12.10.2019
№219.017.d555

Газотурбинный двигатель

Изобретение относится к области газотурбинного двигателестроения, а именно к системам наддува опор газотурбинных двигателей. Газотурбинный двигатель, содержащий компрессор низкого давления с опорами, компрессор высокого давления с опорой, турбину высокого давления и турбину низкого давления с...
Тип: Изобретение
Номер охранного документа: 0002702713
Дата охранного документа: 09.10.2019
12.10.2019
№219.017.d559

Способ управления турбокомпрессорной установкой

Изобретение относится к способам управления работой турбокомпрессорных установок и может быть использовано для управления процессом возникновения критических нестационарных автоколебаний компрессора нагнетателя, возникающих при испытаниях преимущественно авиационных газотурбинных двигателей...
Тип: Изобретение
Номер охранного документа: 0002702714
Дата охранного документа: 09.10.2019
15.10.2019
№219.017.d59f

Газотурбинный двигатель

Изобретение относится к области эксплуатации газотурбинных двигателей в промышленности в качестве привода газоперекачивающих агрегатов, в частности к дополнительным устройствам, обеспечивающим очистки проточных частей и внутренних каналов газотурбинных двигателей от загрязнений и топливных...
Тип: Изобретение
Номер охранного документа: 0002702782
Дата охранного документа: 11.10.2019
+ добавить свой РИД