×
09.06.2018
218.016.5b4f

Результат интеллектуальной деятельности: Многозонный термопреобразователь

Вид РИД

Изобретение

Аннотация: Изобретение относится к области газовой динамики и может быть использовано для измерения поля температуры газового потока, движущегося с большой скоростью, в частности, в газотурбинных установках и в стендовых системах. Известный многозонный термопреобразователь, содержащий не менее трех кабельных термопар в виде рабочих спаев термоэлектродов, каждая из термопар установлена в защитный чехол и соединена в сборку, закрепленную на кронштейне, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии, по предложению для измерения поля высокотемпературного газового потока он снабжен дополнительными трубчатыми корпусами, каждая кабельная термопара в защитном чехле заключена в трубчатый корпус, корпуса последовательно соединены в одной плоскости в сборку, а на боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены отверстия по направлению потока газа, при этом отношение расстояния между отверстиями к диаметру трубчатого корпуса равно 3-7, а расстояние между защитным чехлом термопары и трубчатым корпусом не более 0,3 мм. Трубчатые корпуса со стороны рабочего спая могут быть заглушены, термопреобразователь в качестве кабельных термопар содержит спаи в виде хромель-алюмелевых термоэлектродов, а трубчатые корпуса выполнены из стали 23ХН18 или ХН78Т. Технический результат - расширение высокотемпературного интервала измерений до температуры 1450°С, повышение точности измерений, увеличение срока безотказной работы свыше 2 лет при многократном использовании для измерения поля температур высокотемпературного газового потока. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области газовой динамики и может быть использовано для измерения поля температуры газового потока, движущегося с большой скоростью, в частности, в газотурбинных установках и в стендовых системах.

Наиболее близким аналогом предлагаемого изобретения по технической сущности и достигаемому результату является известный многозонный термопреобразователь, содержащий не менее трех кабельных термопар в виде рабочих спаев термоэлектродов, каждая из термопар установлена в защитный чехол и соединена в сборку, закрепленную на кронштейне, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии.

/ТП 0199 (многозонные термопреобразователи) - ООО "Биакс"

http://biaksnn.ru/tp-O 199-mllogozollllye- termopreobrazovateli/ 26.01.2017 16:08:27/

Недостатком известного термопреобразователя (с кабельными термопарами типа КТХА, КТНН) является нестабильность измерения из-за их недостаточного интервала устойчивого измерения при высоких температурах. Это справедливо в случае использования известного термопреобразователя при измерении температуры газового потока, движущегося с большой скоростью в газотурбинных установках, где температура потока достигает температуры до 1400°С. Точность и достоверность измерения снижается, стойкость неохлаждаемого термопреобразователя становится незначительной, повторное использование его затруднительно.

Задача настоящего изобретения заключается в разработке неохлаждаемой гребенки термопар для измерения поля температур высокотемпературного газового потока, движущегося с большой скоростью на выходе из камеры сгорания газотурбинной установки.

Ожидаемый технический результат - расширение высокотемпературного интервала измерений, увеличение точности измерений, повышение срока службы, за счет возможности многократного использования для измерения поля температур газового потока на выходе из камеры сгорания.

Ожидаемый технический результат достигается тем, что известный многозонный термопреобразователь, содержащий не менее трех кабельных термопар в виде рабочих спаев термоэлектродов, каждая из термопар установлена в защитный чехол и соединена в сборку, закрепленную на кронштейне, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии, по предложению, для измерения поля высокотемпературного газового потока, он снабжен дополнительными трубчатыми корпусами, каждая кабельная термопара в защитном чехле заключена в трубчатый корпус, корпуса последовательно соединены в одной плоскости в сборку, а на боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены отверстия по направлению потока газа, при этом отношение расстояния между отверстиями к диаметру трубчатого корпуса равно 3-7, а расстояние между защитным чехлом термопары и трубчатым корпусом не более 0,3 мм. Трубчатые корпуса со стороны рабочего спая могут быть заглушены, термопреобразователь в качестве кабельных термопар содержит спаи в виде хромель-алюмелевых термоэлектродов, а трубчатые корпуса выполнены из стали 23ХН18 или ХН78Т.

Для повышения стойкости от воздействия высоких температур термопреобразователь снабжен дополнительными трубчатыми корпусами, которые последовательно соединены в одной плоскости в сборку (гребенку).

Термопары в защитном чехле заключены в трубчатые корпуса сборки, при этом каждый последующий рабочий спай отстоит от предыдущего на одинаковом расстоянии. В местах размещения спаев в трубчатых корпусах выполнены отверстия. Отверстия выполнены по направлению потока газа, преимущественно со стороны боковой поверхности сборки, что позволяет уменьшить нарушения сплошности измеряемого потока и уменьшить его влияние на достоверность измеряемой температуры. Расстояние между отверстиями устанавливают в зависимости от наружного диаметра трубчатого корпуса по установленному экспериментально отношению расстояния между отверстиями к диаметру трубчатого корпуса, которое равно 3-7. При отношении менее 3, для условий высокотемпературного потока газотурбинного двигателя, расстояние между отверстиями или спаями становится очень незначительным, что приводит к излишним измерениям и не влияет на увеличение достоверности сведений о температуре потока, а при расстоянии между отверстиями при отношении более 7 наблюдается значимое снижение достоверности сведений о температуре потока. Расстояние между защитным чехлом термопары и внутренней стенкой трубчатого корпуса не должно превышать 0,3 мм. В этом случае количество поступающего между корпусами газа практически не влияет на достоверность измерения температуры. При увеличении расстояния более 0,3 мм газ, набегающего потока, поступает между корпусами и начнет оказывать влияние на значение измеряемой температуры, а при величине расстояния более 1 мм, его влияние на результаты измерений станет неприемлемым. Трубчатые корпуса со стороны рабочего спая могут быть заглушены, в частности запаяны или закрыты пробками. Корпуса могут быть изготовлены из стали 23ХН18 или ХН78Т, обеспечивающей достаточные жаростойкие свойства.

На приведенных чертежах показана конструкция многозонного термопреобразователя.

На фиг. 1 - схема многозонного термопреобразователя в сборе.

На фиг. 2 - узел А расположение отверстий на сборке многозонного термопреобразователя.

Многозонный термопреобразователь содержит трубчатые корпуса 1, кабельные термопары с рабочим спаем в защитном чехле 2, хомуты 3, соединяющие трубчатые корпуса в одной плоскости в сборку, кронштейн 4, фиксирующий сборку, переходную втулку 5 и удлинительные провода 6. На боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены отверстия 7 по направлению потока газа, отношение расстояния (n) между отверстиями к диаметру (d) трубчатого корпуса n/d=3-7.

По предложению, многозонный термопреобразователь, в зависимости от условий испытаний, может комплектоваться термопарами типа КТХА, КТНН, защитными трубчатыми корпусами 1 различных наружных диаметров, изготовленными из жаропрочных или жаростойких сталей, и соединительными хомутами 3. При комплектации учитываются требования по расстоянию между отверстиями и зависимость расстояния от диаметра трубчатого корпуса. Учитываются требования по величине расстояния между защитным чехлом термопары и внутренней стенкой трубчатого корпуса, которое не должно превышать 0,3 мм.

Комплектация многозонного термопреобразователя и его работа в приведенной комплектации

В комлектации использована кабельная термопара типа КТХА, которая установлена в трубчатый корпус из стали марки ХН78Т с внешним диаметром 3 мм и внутренним диаметром 2 мм, а расстояние между защитным чехлом термопары и трубчатым корпусом составляло 0,2 мм. На боковой поверхности каждого трубчатого корпуса в месте расположения рабочего спая выполнены приемные отверстия диаметром 1 мм. Трубчатые корпуса с кабельными термопарами типа КТХА с помощью хомутов из фольги ХН78Т толщиной 0,2 мм соединены со сдвигом в одной плоскости в сборку из шести корпусов. Расстояние между отверстиями (рабочими спаями) составляло n=6×3=18 мм. Для фиксирования сборки в нужном положении относительно газового потока на сборку установлен кронштейн из стали марки ХН78Т. Кабельные термопары типа КТХА с помощью переходных втулок соединены с удлинительными проводами хромель-алюмель (ХА) 0,5 мм2 в кремнеземной оплетке и показывающими приборами.

С помощью кронштейна перед началом измерения температурного поля потока газа устанавливали сборку в радиальном направлении к потоку, при этом отверстия в боковой поверхности ориентировали навстречу потоку газа. Измеряли температуру термопарами и производили ее фиксирование. Поворачивали сборку относительно оси потока и продолжали измерять и фиксировать температуру по окружности потока. Полученные данные позволяли регулировать подачу топлива для сжигания в различных участках камеры сгорания для получения одинаковой температурной структуры газового потока. Сборку использовали несколько раз. Продолжительность безотказной работы сборки составила более 16000 рабочих часов, что соответствовало II группе условий эксплуатации.

Приведенная комплектация сборки не является единственной. В рамках предложения могут быть скомплектованы и другие варианты сборок.

Предложенная конструкция сборки (гребенки) позволяет расширить высокотемпературный интервал измерений до температуры 1450°С, повысить точность измерений, увеличить срок безотказной работы свыше 2 лет при многократном использовании для измерения поля температур высокотемпературного газового потока.


Многозонный термопреобразователь
Многозонный термопреобразователь
Многозонный термопреобразователь
Источник поступления информации: Роспатент

Показаны записи 11-20 из 110.
17.02.2018
№218.016.2b11

Устройство для измерения акустического сигнала от деталей турбомашины

Изобретение относится к измерительным устройствам, в частности к устройствам диагностики технического состояния подшипниковых опор авиационных газотурбинных двигателей. Устройство для измерения акустического сигнала от деталей турбомашины содержит трубчатый полый корпус, установленный в...
Тип: Изобретение
Номер охранного документа: 0002642963
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3176

Способ испытания авиационного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний турбореактивных двигателей (ТРД). Способ испытания ТРД включает подогрев и наддув воздуха на входе в двигатель. Для двигателя, содержащего топливно-масляный теплообменник, предварительно создают математическую...
Тип: Изобретение
Номер охранного документа: 0002645066
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.392b

Устройство для сочленения наружной поверхности поворотного реактивного сопла турбореактивного двигателя и мотогондолы самолета

Изобретение относится к области авиадвигателестроения, а именно к конструкции поворотных сопел турбореактивных двигателей в месте сочленения поворотного устройства сопла с мотогондолой самолета. Устройство для сочленения наружной поверхности поворотного реактивного сопла турбореактивного...
Тип: Изобретение
Номер охранного документа: 0002647018
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3959

Способ управления газотурбинным двигателем

Изобретение относится к области авиационной техники, в частности к способам управления газотурбинным двигателем. В известном способе управления газотурбинным двигателем, включающим изменение расхода охлаждающего воздуха подаваемого на турбину в зависимости от режимов работы двигателя, воздух...
Тип: Изобретение
Номер охранного документа: 0002647017
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3ac5

Регулируемое сверхзвуковое сопло турбореактивного двигателя

Регулируемое сверхзвуковое сопло турбореактивного двигателя относится к области авиационного двигателестроения. Сопло содержит корпус, шарнирно прикрепленные к нему дозвуковые и внешние створки, сверхзвуковые створки, шарнирно прикрепленные к дозвуковым створкам и подвижно соединенные с...
Тип: Изобретение
Номер охранного документа: 0002647266
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3d2f

Способ испытания газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей (ГТД). Для типа двигателей, включающих противообледенительную систему, предварительно проводят испытания на выбранном режиме работы, измеряют параметры при выключенной и при...
Тип: Изобретение
Номер охранного документа: 0002648197
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.43f4

Устройство поворота плоского сопла турбореактивного двигателя

Изобретение относится к авиадвигателестроению, конкретно к реактивным плоским соплам газотурбинных двигателей маневренных летательных аппаратов. Устройство поворота плоского сопла турбореактивного двигателя содержит неподвижный корпус, плоское сопло, установленное на подшипнике с возможностью...
Тип: Изобретение
Номер охранного документа: 0002649723
Дата охранного документа: 04.04.2018
09.06.2018
№218.016.5cbf

Устройство для сочленения наружной поверхности поворотного реактивного сопла двигателя и мотогондолы самолёта

Изобретение относится к области авиационного двигателестроения, а именно к конструкции поворотных реактивных сопел авиационных турбореактивных двигателей в месте их сочленения с мотогондолой самолета. Устройство для сочленения наружной поверхности поворотного реактивного сопла двигателя и...
Тип: Изобретение
Номер охранного документа: 0002656172
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d00

Устройство для перекрытия газового потока в корпусе турбореактивного двигателя

Предлагаемое изобретение относится к авиационной технике, а именно к реверсивным устройствам турбореактивного двигателя (далее ТРД). Устройство для перекрытия газового потока в корпусе ТРД, содержащее закрылки, установленные по окружности в корпусе, радиальные оси, установленные вдоль...
Тип: Изобретение
Номер охранного документа: 0002656169
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d1b

Плоское сопло турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции плоских сопел турбореактивных двигателей. Плоское сопло турбореактивного двигателя содержит корпус с закрепленными на нем боковыми стенками, дозвуковые, сверхзвуковые и внешние створки, а также продольные...
Тип: Изобретение
Номер охранного документа: 0002656170
Дата охранного документа: 31.05.2018
+ добавить свой РИД