×
29.05.2018
218.016.5977

Результат интеллектуальной деятельности: Способ активации катализатора селективного гидрообессеривания бензина каталитического крекинга

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу активации катализатора селективного гидрообессеривания бензина каталитического крекинга. Данный способ сочетает в себе разделение процесса активации на две стадии: на первой стадии осуществляют сульфидирование катализатора путем пропускания через слой катализатора водородсодержащего газа и сероводорода с концентрацией HS в диапазоне 1-10% об. при нагревании от 120 до 400°С и давлении из диапазона 0,1-4,0 МПа; на второй стадии осуществляют модифицирование сульфидированного катализатора путем пропускания через слой катализатора растворенного в углеводородном сырье комплексного соединения металла IA и/или IIA группы в токе водородсодержащего газа при температуре из диапазона 100-300°С и давлении из диапазона 0,1-3,0 МПа. Технический результат заключается в увеличении селективности катализатора в отношении реакций обессеривания по сравнению с реакциями гидрирования в процессе селективной гидроочистки бензина каталитического крекинга и сохранении его октанового числа. 5 з.п. ф-лы, 2 табл., 9 пр.

Изобретение относится к области химии, в частности к способу активации катализатора селективной гидроочистки бензина каталитического крекинга и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Процесс гидроочистки нефтяных фракций, как правило, проводят на биметаллических Ni(Co)Mo(W) катализаторах, нанесенных на γ-Al2O3 или других носителях. При приготовлении данных каталитических систем активные компоненты наносятся из неорганических соединений с последующей сушкой/прокаливанием. Далее катализатор переводят из неактивной оксидной формы в активную - сульфидную - путем сульфидирования - пропускания через слой катализатора, загруженного в реактор, прямогонного сырья с добавлением избыточного количества серы из сероорганического соединения или газообразной смеси сероводорода и водорода [, В.S. Clausen, F.Е. Massoth, Hydrotreating catalysis. Science and technology, (J.R. Anderson and M. Boudart, Eds) Catalysis - Science and Technology Vol. 11. Springer - Verlag, Berlin, Heidelberg, New York, 1996, 310 p.].

Тип перерабатываемого сырья является определяющим фактором в выборе каталитической композиции для процесса его гидроочистки. Так, бензин каталитического крекинга (БКК) характеризуется большим содержанием серы и олефинов, обеспечивающих ему высокое октановое число. Поэтому традиционные катализаторы гидроочистки топлив не эффективны при переработке подобного сырья, так как наряду с реакциями удаления серосодержащих соединений протекает глубокое гидрирование непредельных углеводородов, которое приводит к значительным потерям октанового числа [Каминский Э.Ф., Хавкин В.А. Глубокая переработка нефти: технологические и экологические аспекты. М.: Техника, 2001]. Существует два основных приема, применяющихся при разработке катализаторов гидроочистки БКК, направленное формирование активной фазы с заданными характеристиками и подавление гидрирующей активности путем введения модифицирующих добавок на стадии синтеза. Известно, что способ сульфидирования оказывает значительное влияние на механизм формирования активной фазы, ее морфологию и, как результат, каталитические свойства.

Существующие варианты сульфидирования условно можно разделить на газофазное смесью H2S/H2 и жидкофазное в растворе сульфидирующего агента или сырьем с высоким содержанием серы (US 4149965, C10G 23/02, 17.04.1979; US 6197718 В1, B01J 27/02, B01J 27/047, B01J 27/051, C01G 45/04, C01G 45/60, 06.03.2001; US 2002/0139716 A1, C10G 45/06; C10G 45/08, 03.10.2002; US 7297252 B2, C10G 45/04, 20.11.2007).

Общим недостатком данных способов сульфидирования является формирование активных центров как для реакций обессеривания, так и для реакций гидрирования, в результате селективность подобных катализаторов не достаточно высока. Техническим решением настоящего изобретения является применение способов подавления гидрирующей активности путем модифицирования центров гидрирования с помощью щелочных и щелочноземельных добавок на стадии формирования активной фазы в процессе сульфидирования, а не в процессе синтеза оксидного предшественника, как это применяется для других катализаторов гидроочистки БКК (US 5348928, B01J 21/04, B01J 23/78, В01 23/88, B01J 37/04, 20.09.1994; US 5340466, C10G 45/60, C10G 45/08, 23.08.1994; US 5846406, C10G 45/04, 08.12.1998; US 5358633, C10G 45/08, 25.10.1994, US 5770046, C10G 45/04, 23.06.1998, US 5525211, C10G 45/08, B01J 23/24, 11.06.1996; US 5851382, C10G 45/04, 22.12.1998).

Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является способ активации катализатора гидроочистки бензина каталитического крекинга, описанный в патенте US 7297252 В2, C10G 45/04, 20.11.2007. Способ активации включает нагрев катализатора в присутствии смеси сероводорода и водорода при давлении из диапазона 790-3548 кПа, а также олефинсодержащего бензина до температуры из диапазона 177-232°С с последующей выдержкой и нагревом до температуры из диапазона 288-371°С. В качестве олефинсодержащего сырья используются бензиновые фракции процессов каталитического крекинга, коксования, гидрокрекинга, термического крекинга. При этом заявленное содержание непредельных углеводородов находится в диапазоне 5-50 мас. %.

Недостатком данного способа активации катализатора является то, что высокое содержание непредельных углеводородов в сульфидирующем сырье может привести к преждевременному закоксовыванию катализатора и, как результат, сокращению межрегенерационного пробега. Кроме того, недостатком данного способа активации также является то, что использование олефинсодержащего сырья не приводит к значительному снижению гидрирующей активности и росту селективности в отношении реакций удаления серы.

Техническим результатом настоящего изобретения является применение нового способа активации катализатора селективного гидрообессеривания бензина каталитического крекинга. Технический результат достигается за счет разделения процесса активации на две стадии: на первой стадии осуществляется сульфидирование катализатора путем пропускания через слой катализатора водородсодержащего газа и сероводорода с концентрацией H2S в диапазоне 1-10% об. при нагревании от 120 до 400°С и давлении из диапазона 0,1-4,0 МПа; на второй стадии осуществляется модифицирование сульфидированного катализатора путем пропускания через слой катализатора растворенного в углеводородном сырье комплексного соединения металла IA и/или IIA группы в токе водородсодержащего газа при температуре из диапазона 100-300°С и давлении из диапазона 0,1-3,0 МПа.

На первой стадии сероводород образуется путем пропускания через слой катализатора прямогонного бензина, содержащего органический сульфид и/или полисульфид с концентрацией серы в диапазоне 0,6-6% мас.

На второй стадии количество вносимого в прямогонный бензин металла IA и/или IIA группы составляет 500-5000 ppm, при этом комплексное соединение, из которого вносится металл IA и/или IIA группы, образовано из органического соединения, содержащего, по меньшей мере, 8-20 углеродных атомов и/или одну из следующих функциональных групп: гидроксильную-ОН, карбоксильную -СООН, полисульфидную >Sn. Катализатор выдерживают в контакте с прямогонным бензином, содержащим соединение металла IA и/или IIA группы, в течение 2-10 ч при объемном расходе 2,5-7,5 ч-1, объемном отношении водородсодержащий газ/бензин 100-800 нм33, объемном расходе бензина 1-10 ч-1.

На первой стадии процесса сульфидирования катализатор выдерживают в контакте с прямогонным бензином, содержащим органический сульфид и/или полисульфид, сначала при температуре из диапазона 200-250°С в течение 6-12 ч, а затем при температуре из диапазона 320-350°С в течение 6-10 ч. В качестве органического сульфида и/или полисульфида используют любое соединение из ряда диметилсульфид, диметилдисульфид, ди-трет-бутилполисульфид, ди-трет-нонилполисульфид.

Условия проведения активации катализатора и состав сульфидирующей смеси приведены в табл. 1.

Сущность изобретения иллюстрируется следующими примерами.

Для исследований был использован лабораторный СоМо/Al2O3 катализатор следующего состава: содержание Мо - 12% мас., Со - 4% мас., остальное - Al2O3. Оксидный образец катализатора загружался в трубчатый реактор в количестве 15 см3 в виде частиц размером 0,25-0,50 мм, приготовленных путем измельчения и рассеивания исходных гранул катализатора. Катализатора разбавлялся SiC до общего объема 30 см3. Далее образец активировался согласно одному из нижеприведенных примеров и испытывался в процессе гидроочистки бензина каталитического крекинга.

Пример 1

Активация катализатора согласно известному техническому решению - прототипу.

Катализатор нагревали в токе H2S + Н2 (10% об. H2S) и тяжелого бензина каталитического крекинга (фракция 110-220°С) с содержанием серы 1500 ppm при следующих технологических параметрах: давление 2,0 МПа, ОСПС 6,5 ч-1, кратность циркуляции Н2/сырье 300 нм33, скорость нагрева 25°С/ч. Катализатор выдерживали при двух температурах: в течение 8 ч при 205°С и в течение 6 ч при 340°С. Далее катализатор охлаждали до рабочей температуры и испытывали.

Примеры 2-9 иллюстрируют предлагаемое техническое решение.

Пример 2

На I стадии катализатор нагревали в токе H2S + Н2 (10% об. H2S) при следующих технологических параметрах: давление 1,0 МПа, объемный расход смеси 500 ч-1, скорость нагрева 25°С/ч, температура 400°С. Катализатор выдерживали при максимальной температуре в течение 2 ч. Далее на II стадии температуру снижали до 150°С и через катализатор пропускали смесь ПБФ и олеата магния Mg(C18H33O2)2 (2500 ppm магния) с объемным расходом 5,0 ч-1 в течение 3 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 3

На I стадии катализатор нагревали в токе H2S + Н2 (5% об. H2S) при следующих технологических параметрах: давление 1,5 МПа, объемный расход смеси 500 ч-1, скорость нагрева 50°С/ч, температура 380°С. Катализатор выдерживали при максимальной температура в течение 2 ч. Далее на II стадии температуру снижали до 250°С и через катализатор пропускали смесь ПБФ и калиевой соли липоевой кислоты K(C8H13O2S2) (1000 ppm калия) с объемным расходом 2,5 ч-1 в течение 4 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 4

На I стадии через катализатор пропускали смесь ПБФ и диметилсульфида с содержанием серы 2% мас. в токе водорода при следующих технологических параметрах: давление 3,0 МПа, ОСПС 5,0 ч-1, кратность циркуляции Н2/сырье 300 нм33, скорость нагрева 25°С/ч. Катализатор выдерживали при двух температурах: в течение 6 ч при 220°С и в течение 8 ч при 320°С. Далее на II стадии температуру снижали до 150°С и через катализатор пропускали смесь ПБФ и олеата магния Mg(C18H33O2)2 (500 ppm магния) с тем же расходом в течение 8 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 5

На I стадии через катализатор пропускали смесь ПБФ и диметилдисульфида с содержанием серы 6% мас. в токе водорода при следующих технологических параметрах: давление 3,0 МПа, ОСПС 2,5 ч-1, кратность циркуляции Н2/сырье 500 нм33, скорость нагрева 25°С/ч. Катализатор выдерживали при двух температурах: в течение 10 ч при 220°С и в течение 6 ч при 340°С. Далее на II стадии температуру снижали до 250°С и через катализатор пропускали смесь ПБФ и лаурата калия К(C12H23O2) (1000 ppm калия) с тем же расходом в течение 5 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 6

На I стадии через катализатор пропускали смесь ПБФ и ди-трет-бутилполисульфида с содержанием серы 2% мас. в токе водорода при следующих технологических параметрах: давление 1,5 МПа, ОСПС 2,5 ч-1, кратность циркуляции Н2/сырье 500 нм33, скорость нагрева 50°С/ч. Катализатор выдерживали при двух температурах: в течение 6 ч при 210°С и в течение 6 ч при 320°С. Далее на II стадии температуру снижали до 250°С и через катализатор пропускали смесь ПБФ и липолеата натрия Na(C18H31O2) (2500 ppm натрия) с тем же расходом в течение 6 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 7

На I стадии через катализатор пропускали смесь ПБФ и ди-трет-нонилполисульфида с содержанием серы 2% мас. в токе водорода при следующих технологических параметрах: давление 1,5 МПа, ОСПС 5,0 ч-1, кратность циркуляции Н2/сырье 300 нм33, скорость нагрева 25°С/ч. Катализатор выдерживали при двух температурах: в течение 6 ч при 230°С и в течение 8 ч при 340°С. Далее на II стадии температуру снижали до 250°С и через катализатор пропускали смесь ПБФ и стеарата кальция Ca(C18H35O2)2 (5000 ppm кальция) с тем же расходом в течение 3 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 8

На I стадии через катализатор пропускали смесь ПБФ и диметилсульфида с содержанием серы 6% мас. в токе водорода при следующих технологических параметрах: давление 3,0 МПа, ОСПС 7,5 ч-1, кратность циркуляции Н2/сырье 300 нм33, скорость нагрева 50°С/ч. Катализатор выдерживали при двух температурах: в течение 10 ч при 240°С и в течение 6 ч при 340°С. Далее на II стадии температуру снижали до 250°С и через катализатор пропускали смесь ПБФ и пальмитата натрия Na(C16H31O2) (1000 ppm натрия) с расходом 7,5 ч-1 в течение 2 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Пример 9

На I стадии через катализатор пропускали смесь ПБФ и диметилдисульфида с содержанием серы 6% мас. в токе водорода при следующих технологических параметрах: давление 1,5 МПа, ОСПС 2,5 ч-1, кратность циркуляции Н2/сырье 500 нм33, скорость нагрева 25°С/ч. Катализатор выдерживали при двух температурах: в течение 8 ч при 240°С и в течение 8 ч при 330°С. Далее на II стадии температуру снижали до 150°С и через катализатор пропускали смесь ПБФ и калиевой соли липоевой кислоты K(C8H13O2S2) (2500 ppm калия) с тем же расходом в течение 6 ч. Затем катализатор нагревали до рабочей температуры и испытывали.

Катализаторы испытывали в процессе гидроочистки БКК, выкипающего в пределах 114-221°С, с содержанием серы 0.013% мас. и олефинов 12.8% мас. и октановым числом 92.0 п. (по исследовательскому методу). Условия испытания: давление водорода 1,5 МПа, кратность циркуляции водорода 300 нл/л сырья, объемная скорость подачи сырья 3,2 ч-1, температура в реакторе 280°С.

Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали над прокаленным CaCl2. Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660, содержание олефиновых углеводородов - по ГОСТ 2070, фракционный состав - по ГОСТ 2177-99, октановое число - исследовательским методом по ГОСТ 8226.

Селективность катализаторов в отношении реакций гидрообессеривания оценивался по селективному фактору, рассчитанному по формуле:

где xS и хОУ - конверсия серосодержащих соединений и олефинов, соответственно %.

Результаты испытаний катализаторов представлены в табл. 2.

Заявляемые способы активации позволяют получить катализаторы, превосходящие по активности и селективности прототип. Показатели процесса при гидроочистке БКК позволяют сделать вывод о высокой эффективности заявляемых способов активации катализаторов.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 191.
26.08.2017
№217.015.d9b0

Способ компенсации оптических аберраций с использованием деформируемого зеркала

Изобретение относится к способам, которые обеспечивают компенсацию оптических аберраций с использованием деформируемого зеркала, и может быть использовано в активных и адаптивных оптических системах, предназначенных для компенсации аберраций волнового фронта светового излучения. Способ...
Тип: Изобретение
Номер охранного документа: 0002623661
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.df33

Способ приготовления кисломолочногопродукта

Изобретение относится к молочной промышленности. Подготовленное молоко подвергают действию электрического тока в катодном пространстве диафрагменного электролизера с плоскими электродами из нержавеющей стали 10Х17Н13М2Т при объемной плотности тока 2 А/см и катодной плотности тока 0,018 А/см в...
Тип: Изобретение
Номер охранного документа: 0002625030
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.f51a

Катализатор, способ его приготовления и процесс селективной гидроочистки бензина каталитического крекинга

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Заявляется катализатор селективной гидроочистки бензина каталитического...
Тип: Изобретение
Номер охранного документа: 0002637808
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f85d

Адсорбент для очистки сточных вод от ионов меди

Изобретение относится к охране окружающей среды. Предложен сорбент для очистки сточных вод от меди. Сорбент представляет собой отработанный в процессе фильтрации пива кизельгур, подвергнутый сушке при 50-200°C и последующей термохимической активации при 60-100°C. Активацию проводят в 2,0-2,5 М...
Тип: Изобретение
Номер охранного документа: 0002639803
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f8cd

Способ получения изопропилбензола

Изобретение относится к способу получения изопропилбензола алкилированием бензола пропиленом и переалкилированием полиалкилибензолов. Способ характеризуется тем, что реакции алкилирования и переалкилирования проводят раздельно, причем реакцию алкилирования проводят в жидкой фазе с применением...
Тип: Изобретение
Номер охранного документа: 0002639706
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.0516

Способ производства фруктового продукта в виде пластинок из груш, яблок и виноградного сырья

Изобретение относится к пищевой промышленности, в частности к изготовлению фруктового продукта в виде пластинок из груш, яблок и виноградного сырья. Пищевой продукт готовят путем подготовки груш и яблок. Удаляют несъедобные части и кожуру. Режут на ломтики толщиной 5-8 мм, обрабатывают в...
Тип: Изобретение
Номер охранного документа: 0002630702
Дата охранного документа: 12.09.2017
19.01.2018
№218.016.078f

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Способ включает пропитку алюмооксидного носителя раствором соединений металлов VIII, VI и V групп. При этом готовят совместный пропиточный раствор MoO и/или WO, не обязательно VO, от 0,33 до...
Тип: Изобретение
Номер охранного документа: 0002631424
Дата охранного документа: 22.09.2017
20.01.2018
№218.016.0f39

Способ получения 1н-бензо[f]хромен-2-ил(арил)кетонов

Изобретение относится к способу получения 1-бензо[ƒ]хромен-2-ил(арил)кетонов реакцией замещенных 1-[(диметиламино)метил]-2-нафтолов с 3-(диметиламино)-1-арил-проп-2-ен-1-онами. Полученные соединения являются перспективными исходными соединениями для синтеза фармакологически активных веществ....
Тип: Изобретение
Номер охранного документа: 0002633368
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f41

Расплавляемый электролит для химического источника тока

Изобретение относится к расплавляемому электролиту для химического источника тока, включающему при следующем соотношении компонентов, мас. %: фторид лития 1,57…1,63, хромат лития 64,59…66,29, хлорид калия 16,38…18,52, хромат калия 15,32…15,70. Технический результат – снижение температуры...
Тип: Изобретение
Номер охранного документа: 0002633360
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1152

Погружной скважинный генератор газопаровой смеси

Изобретение относится к области промышленной теплоэнергетики и может быть применено для генерирования газопаровой смеси с целью термической обработки скважин в нефтедобывающей промышленности. Техническим результатом изобретения является обеспечение надежного функционирования генератора...
Тип: Изобретение
Номер охранного документа: 0002633983
Дата охранного документа: 20.10.2017
Показаны записи 21-30 из 57.
08.11.2018
№218.016.9b0a

Способ переработки нефтяных остатков

Изобретение относится к способу переработки тяжелых нефтяных остатков, включающему вакуумную перегонку мазута с выделением прямогонного вакуумного дистиллята и гудрона, коксование гудрона с последующим разделением жидких продуктов коксования на бензиновую, дизельную фракции и тяжелую газойлевую...
Тип: Изобретение
Номер охранного документа: 0002671640
Дата охранного документа: 06.11.2018
29.12.2018
№218.016.ac84

Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления

Изобретение относится к катализатору селективного гидрообессеривания высокосернистого олефинсодержащего углеводородного сырья и способу его получения. Катализатор содержит как минимум один из следующих гетерополианионов [SiWO], [SiWO], [SiWO], [PWO], [PWO], [PWO], [Ni(OH)WO], [Fe(OH)WO] и...
Тип: Изобретение
Номер охранного документа: 0002676260
Дата охранного документа: 27.12.2018
20.02.2019
№219.016.bf71

Способ приготовления катализаторов для глубокой гидроочистки нефтяных фракций

Изобретение относится к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций. Описан способ приготовления катализатора для глубокой гидроочистки нефтяных фракций, включающий пропитку алюмооксидного носителя раствором соединений металлов VIII и VI групп,...
Тип: Изобретение
Номер охранного документа: 0002385764
Дата охранного документа: 10.04.2010
22.02.2019
№219.016.c5a2

Способ гидрогенизационной переработки углеводородного сырья

Изобретение относится к способу гидрогенизационной переработки углеводородного сырья и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа гидрогенизационной переработки углеводородного сырья, при котором сырье пропускают через реактор с неподвижным...
Тип: Изобретение
Номер охранного документа: 0002680386
Дата охранного документа: 20.02.2019
15.03.2019
№219.016.e0cc

Способ снижения содержания бензола в бензиновых фракциях

Изобретение относится к содержанию бензола в товарных бензинах. Заявлен способ снижения содержания бензола в бензиновых фракциях путем гидрирования и изомеризации в присутствии катализаторов при повышенных температуре и давлении сырья, состоящего из смеси фракции НК-85С стабильного риформата,...
Тип: Изобретение
Номер охранного документа: 0002322478
Дата охранного документа: 20.04.2008
29.04.2019
№219.017.4177

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Катализатор глубокой гидроочистки нефтяных фракций содержит оксид...
Тип: Изобретение
Номер охранного документа: 0002386476
Дата охранного документа: 20.04.2010
08.06.2019
№219.017.75b4

Способ получения канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины

Изобретение относится к области нефтепереработки, а более конкретно к производству канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины. Способ получения канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002690926
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.7646

Способ восстановления активности цеолитсодержащего катализатора

Изобретение относится к способу восстановления активности цеолитсодержащего катализатора процесса изодепарафинизации дизельного топлива в присутствии водородсодержащего газа и может быть использовано в нефтепереработке. Предлагается способ восстановления активности цеолитсодержащего...
Тип: Изобретение
Номер охранного документа: 0002690947
Дата охранного документа: 07.06.2019
13.06.2019
№219.017.8103

Способ приготовления каталитически-сорбционного материала для удаления хлора и способ удаления хлорорганических соединений

Настоящее изобретение относится к способу приготовления каталитически-сорбционного материала для удаления хлора, включающему синтез инертного носителя, его пропитку растворами нитрата никеля и ацетата магния, причем в качестве компонента носителя, повышающего структурные характеристики, такие...
Тип: Изобретение
Номер охранного документа: 0002691071
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.8107

Способ гидрогенизационного облагораживания углеводородного сырья

Изобретение относится к способам гидрогенизационной переработки углеводородного сырья в присутствии каталитической системы и может быть использовано в нефтеперерабатывающей промышленности. Предлагается способ гидрогенизационного облагораживания углеводородного сырья при повышенных температуре и...
Тип: Изобретение
Номер охранного документа: 0002691067
Дата охранного документа: 10.06.2019
+ добавить свой РИД