×
29.05.2018
218.016.5407

Результат интеллектуальной деятельности: Способ автоматизированного определения теплового сопротивления переход - корпус силовых полупроводниковых приборов в корпусном исполнении

Вид РИД

Изобретение

№ охранного документа
0002653962
Дата охранного документа
15.05.2018
Аннотация: Использование: для измерения тепловых параметров силовых полупроводниковых приборов в корпусном исполнении. Сущность изобретения заключается в том, что способ автоматизированного определения теплового сопротивления переход-корпус силовых полупроводниковых приборов в корпусном исполнении для повышения быстродействия измерений и обеспечения стопроцентного контроля теплового сопротивления у всех СПП, подключают каждый СПП под номинальные напряжение, ток и частоту коммутации кратковременно на время, равное 0,02…0,05 постоянной времени теплового процесса прибора t=0,02…0,05 τ, затем отключают, измеряют термочувствительный параметр и сравнивают его с эталонным. Технический результат - обеспечение возможности быстрого определения теплового сопротивления переход-корпус диодов, тиристоров и транзисторов, более простая реализация тестера. 1 з.п. ф-лы.

Изобретение относится к технике измерения тепловых параметров силовых полупроводниковых приборов в корпусном исполнении и может быть использовано для контроля их качества.

Технический результат: возможность быстрого определения теплового сопротивления переход-корпус диодов, тиристоров и транзисторов, более простая реализация тестера.

Сущность: испытуемый прибор подключают на определенное время (tизм=0.02…0.05 τ) под номинальное напряжение и номинальный синусоидальный ток максимально допустимой частоты, затем подключают под постоянный измерительный ток, измеряют термочувствительный параметр - напряжение на кристалле, и сравнивают его с эталоном.

Известны два способа определения теплового сопротивления Rthjc в соответствии со стандартом ГОСТ 24461-80 [1]. В первом способе используются два токовых режима. Первый - режим нагрева силового полупроводникового прибора (СПП) постоянным греющим током до состояния теплового равновесия, второй - режим измерения термочувствительного параметра, при протекании через СПП измерительного тока, не влияющего на тепловое равновесие.

В качестве термочувствительного параметра рекомендуется использовать прямое напряжение uF для диодов или напряжение в открытом состоянии uT для тиристоров и симметричных тиристоров. Температура Tj определяется по градуировочной характеристике прибора. Градуируется ИП в термостате при протекании измерительного тока, не влияющего на тепловое равновесие.

Основными недостатками данных способов являются большие временные и энергетические затраты на процесс градуировки и испытания СПП. Данные обстоятельства определяют низкую производительность метода, поэтому этот метод практически не применим для определения теплового сопротивления Rthjc при автоматизированном контроле силовых полупроводниковых приборов.

Известен способ определения теплового сопротивления переход-корпус силовых полупроводниковых приборов в корпусном исполнении в соответствии с патентом №2300115 РФ, МПК7 G01R 31/26 [2]. В этом способе полупроводниковый прибор нагревают путем пропускания через него тока в состоянии высокой проводимости, на интервале нагревания измеряют и запоминают значения его термочувствительного параметра и температуру корпуса TC(t) прибора в выбранной точке, прекращают нагрев полупроводникового прибора при достижении температурой корпуса заданного значения и в режиме естественного охлаждения пропускают измерительный ток, не влияющий на тепловое равновесие испытуемого прибора, и запоминают значение термочувствительного параметра и температуру корпуса, при этом длительность интервала охлаждения выбирают из условия безусловного выполнения t>3 τ, где τ - тепловая постоянная конструкции прибора. Повторяя подобные операции, определяют тепловое сопротивления Rthjc по формуле.

Основными недостатками данного способа также являются большие временные и энергетические затраты на процесс градуировки и испытания СПП, поэтому этот способ практически не применим для определения теплового сопротивления Rthjc при автоматизированном контроле силовых полупроводниковых приборов.

Сокращение времени определения Rthjc достигается путем допущения того предположения, что градуировочные зависимости uF(T)(Tj) одинаковы для партии однотипных приборов. Для этого осуществляется градуировка нескольких приборов, по которым определяется усредненная характеристика, которая и применяется при определении Rthjc для всех приборов. Однако из-за технологических отклонений в процессе производства СПП, не достаточно качественной посадке кристалла в корпус прибора тепловые сопротивления различных СПП могут существенно отличаться от эталонного. Это может привести к перегреву и выходу из строя отдельных СПП при подключении их под номинальные напряжения, ток и частоту коммутаций.

Для устранения названных недостатков предлагается способ автоматизированного определения теплового сопротивления переход-корпус силовых полупроводниковых приборов в корпусном исполнении, отличающийся тем, что для повышения быстродействия измерений и обеспечения стопроцентного контроля теплового сопротивления у всех СПП подключают каждый СПП под номинальные напряжение, ток и частоту коммутации кратковременно на время, равное 0,02…0,05 постоянной времени теплового процесса прибора t=0,05 τ, затем отключают, измеряют термочувствительный параметр и сравнивают его с эталонным.

Этот способ использует свойство экспоненты быстро изменять почти по линейному закону свою величину на начальном участке. Так за время, равное 0,05 постоянной времени процесса t=0,05 τ, произойдет изменение начального значения любой величины, характеризующей этот процесс, примерно на 5%. Такое изменение любой величины вполне можно измерить в автоматизированной установке. Кроме того, поскольку постоянная времени тепловых процессов у большинства СПП измеряется несколькими минутами, то время измерений при контроле СПП этим способом оказывается невелико - измеряется несколькими секундами. Это также существенно для автоматизированного контроля СПП.

Для реализации способа и определения эталонного значения термочувствительного параметра определяют для одного или нескольких СПП конкретной партии величину теплового сопротивления Rthjc известными трудоемкими методами [1, 2 и др.]. Затем эталонный СПП подключают под номинальные напряжение, ток и частоту переменного сигнала. Через заданное время, например, равное t=0,05 τ - тепловой постоянной конструкции прибора, СПП отключают и измеряют термочувствительный параметр, в качестве которого используют прямое напряжение для диодов при заданном измерительном токе или напряжение в открытом состоянии для тиристоров и симметричных тиристоров. Числовое значение этого напряжения используют в качестве эталона при автоматизированном испытании остальных СПП данной партии. Если у испытуемого СПП величина термочувствительного параметра оказывается больше эталонной, то этот СПП уходит в брак - при дальнейшей эксплуатации при номинальных режимах он будет перегреваться и выйдет из строя. Чтобы исключить при проведении испытаний выход из строя дорогостоящих СПП, выполненных, например, на карбиде кремния, целесообразно проводить испытания сначала при 80% и затем 100% номинального тока.

Литература

1. ГОСТ 24461-80. Приборы полупроводниковые силовые. Методы измерений и испытаний.

2. ПАТЕНТ №2300115 РФ, МПК7 G01R 31/26. Способ определения теплового сопротивления переход-корпус силовых полупроводниковых приборов в корпусном исполнении / Н.Н. Беспалов (RU), М.В. Ильин (RU). - №200610336; заявл. 02.02.2006; опубл. 27.05.2007, бюл. №15. - 642 с.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 32.
25.08.2017
№217.015.ca12

Колесо зубчатое упругое

Изобретение относится к зубчатым колесам. Колесо зубчатое упругое содержит ступицу, венец с диском, смонтированный с возможностью поворота относительно ступицы, цилиндрические упругие элементы, установленные без зазора в гнездах, выполненных равномерно по окружности колеса. В диске венца...
Тип: Изобретение
Номер охранного документа: 0002619880
Дата охранного документа: 19.05.2017
17.02.2018
№218.016.2a30

Вагон для перевозки автомобилей

Изобретение относится к железнодорожным транспортным средствам для перевозки легковых автомобилей. Вагон для перевозки легковых автомобилей включает смонтированный на раме в зоне между опорными тележками поворотный на горизонтальной оси (3) настил (2) нижнего яруса погрузки и настил (7)...
Тип: Изобретение
Номер охранного документа: 0002643017
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.301f

Периферийное устройство для снижения утечек теплоносителя

Изобретение относится к области турбостроения и может быть использовано в необандаженных ступенях паровых и газовых турбин. Периферийное уплотнение необандаженных турбинных ступеней, содержащее на внешнем обводе винтовые канавки в области радиального зазора необандаженной турбинной ступени. В...
Тип: Изобретение
Номер охранного документа: 0002645100
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.4614

Устройство для снижения аэродинамического шума осевого компрессора и способ его осуществления

Изобретение относится к области турбостроения и может быть использовано во входных ступенях осевых компрессоров турбомашин. Устройство для снижения аэродинамического шума осевого компрессора содержит рабочее колесо первой ступени, а на внутренней поверхности корпуса осевого компрессора в зоне...
Тип: Изобретение
Номер охранного документа: 0002650241
Дата охранного документа: 11.04.2018
09.06.2018
№218.016.5b08

Подвеска осевого редуктора локомотива

Осевой редуктор одной стороной опирается на ось колесной пары, а другой стороной связан с рамой тележки посредством вертикальной тяги с резинометаллическими шарнирами на концах, причем вертикальная тяга связана с рамой тележки через балансир с резинометаллическим шарниром с осью, а конец...
Тип: Изобретение
Номер охранного документа: 0002655593
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5e75

Пассивный успокоитель качки плавающего средства

Изобретение относится к области судостроения, а именно к средствам уменьшения бортовой качки плавающих средств. Пассивный успокоитель качки плавающего средства содержит бортовые цистерны 1 левого и правого борта, частично заполненные жидкостью 2, соединенные между собой жидкостным 3 и воздушным...
Тип: Изобретение
Номер охранного документа: 0002656745
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5e82

Пассивный успокоитель качки плавающего средства

Изобретение относится к области судостроения, а именно к средствам уменьшения бортовой качки плавающего средства. Пассивный успокоитель качки плавающего средства содержит бортовые резервуары 1, частично заполненные ферромагнитной жидкостью 2 и связанные между собой жидкостным 3 и воздушным 4...
Тип: Изобретение
Номер охранного документа: 0002656744
Дата охранного документа: 06.06.2018
07.12.2018
№218.016.a490

Камера сгорания дизеля

Изобретение относится к двигателестроению. Камера сгорания двигателя внутреннего сгорания, ограниченная днищем поршня, головкой цилиндра и снабженная теплоизолирующим керамическим покрытием, на которое нанесен теплоаккумулирующий и теплопередающий слой, выполненный из высокотемпературного с...
Тип: Изобретение
Номер охранного документа: 0002674170
Дата охранного документа: 05.12.2018
26.12.2018
№218.016.ab69

Поршень форсированного дизельного двигателя

Изобретение относится к двигателестроению. Поршень форсированного дизельного двигателя состоит из нижнего (1) и верхнего (2) фрагментов, соединенных между собой. Фрагменты (1) и (2) образуют периферийную (3) и центральную (4) полости охлаждения поршня. Полости (3) и (4) сообщены основными (5) и...
Тип: Изобретение
Номер охранного документа: 0002675974
Дата охранного документа: 25.12.2018
17.02.2019
№219.016.bbef

Устройство измерения частоты в матричном приемнике

Изобретение относится к радиотехнической и электронной областям промышленности и может быть использовано в средствах радиотехнической разведки для снижения неоднозначности определения частоты при приеме двух и более совмещенных по времени разночастотных сигналов. Устройство измерения частоты...
Тип: Изобретение
Номер охранного документа: 0002680106
Дата охранного документа: 15.02.2019
Показаны записи 1-3 из 3.
10.02.2015
№216.013.2300

Преобразователь вибраций в элетрическое напряжение

Изобретение относится к электротехнике, к электромагнитным генераторам и может быть использовано для получения электрической энергии от любого вибрирующего тела, в том числе для электропитания устройств и подзарядки аккумуляторов во время движения транспортного средства (автомобиль,...
Тип: Изобретение
Номер охранного документа: 0002540413
Дата охранного документа: 10.02.2015
27.11.2015
№216.013.954f

Генератор возвратно-поступательного движения с самовозбуждением

Изобретение относится к электротехнике, к электромагнитным генераторам, которые служат автономными источниками питания. Технический результат состоит в упрощении конструкции при обеспечении неизменности магнитного потока. Генератор возвратно-поступательного движения содержит подвижный и...
Тип: Изобретение
Номер охранного документа: 0002569842
Дата охранного документа: 27.11.2015
01.09.2019
№219.017.c514

Способ автоматизированного контроля тепловых сопротивлений полупроводниковых приборов

Использование: для автоматизированного контроля теплового сопротивления различных диодов, транзисторов, импульсных преобразователей и других полупроводниковых устройств, имеющих с своей структуре р-n переходы. Сущность изобретения заключается в том, что способ автоматизированного контроля...
Тип: Изобретение
Номер охранного документа: 0002698512
Дата охранного документа: 28.08.2019
+ добавить свой РИД