×
29.05.2018
218.016.52c2

Результат интеллектуальной деятельности: Стенд для испытания агрегатов систем смазки на масловоздушной смеси

Вид РИД

Изобретение

№ охранного документа
0002653867
Дата охранного документа
15.05.2018
Аннотация: Изобретение относится к области испытательной техники, а именно к стендам для испытания агрегатов систем смазки на масловоздушной смеси, и может быть использовано при диспергировании смешиваемых фаз при испытании систем смазки авиационных двигателей. Сущность изобретения состоит в том, что распылитель масла выполнен в виде плоского перфорированного рассекателя, установленного в воздушной полости бака параллельно поверхности масла, а воздушный контур сообщен с масляным контуром и воздушной полостью бака. Технический результат заключается в реализации эффекта воздухововлечения при образовании масловоздушной смеси с равномерным распределением пузырьков газа. 1 ил.

Изобретение относится к области испытательной техники, а именно к стендам для испытания агрегатов систем смазки на масловоздушной смеси, и может быть использовано для диспергирования смешиваемых фаз при испытании авиационных двигателей.

В системах смазки авиационных двигателей воздушно-масляная смесь из опор роторов поступает в тракт суфлирования, а в тракт откачки, содержащий насос, фильтр, трубопроводы и другие агрегаты, поступает масловоздушная (жидкогазовая) смесь, в которой в масле взвешены пузырьки воздуха. Для определения характеристик агрегатов систем смазки при работе на масловоздушной смеси необходим другой принцип получения дисперсной смеси и, следовательно, другие схемы стендов. Для получения двухфазной смеси и определения характеристик агрегатов при работе на ней можно использовать эффект воздухововлечения в замкнутом контуре испытаний. Это позволяет решать задачу обеспечения испытаний агрегатов на жидкогазовой смеси с требуемым объемным газосодержанием, в которой пузырьки воздуха взвешены в жидкости.

Известно устройство для смешивания газа и жидкости, включающее жидкостной контур, содержащий цилиндрический корпус с жидкостной и воздушной полостями, магистрали для ввода и вывода жидкости и газа, и плоский перфорированный рассекатель жидкости, установленный в нижней жидкостной полости корпуса (патент RU 2035983, 1995).

В известном техническом решении смешивание жидкой и газовой фаз осуществляется в смесителе, выполненном в виде установленной в корпусе вертикальной трубы. При этом жидкая фаза под давлением подается в распылитель, размещенный в верхней части корпуса, и распыляется, создавая при этом скоростные потоки жидкости, которые позволяют засасывать газовую фазу из воздушной полости в смеситель. На выходе из смесителя газожидкостная смесь диспергируется (измельчается) в результате динамического удара о перфорированный рассекатель (диспергатор). При подаче газа в нижнюю часть корпуса под рассекателем (диспергатором) образуется газовая подушка, струи газа поступают через отверстия рассекателя (диспергатора) и взаимодействуют с газожидкостной смесью.

Существенным недостатком известного технического решения является сложность конструкции устройства, не обеспечивающего возможность использования его для испытаний агрегатов систем смазки авиационных двигателей с использованием масловоздушной смеси.

Известен стенд для испытания систем смазки, содержащий замкнутый рабочий контур, включающий бак, нижний объем которого представляет собой источник масла, источник воздуха и смеситель, сообщенные между собой при помощи трубопроводных магистралей с исполнительными органами («Трение и смазка в машинах и механизмах», 2015 г., №10, стр. 36-37, рис. 2).

В известном техническом решении источник воздуха выполнен в виде компрессора, а смеситель выполнен в виде масляной полости с размещенными в ней форсунками для подачи масла. На вход нагнетающего насоса из нижнего объема бака поступает масло без газовых включений и подается в распылитель, выполненный в виде форсунок, расположенных в масляной полости смесителя. Полость наддувается воздухом через магистраль воздушного контура, выполненного незамкнутым и сообщенного с атмосферой. В подшипниках масло дробится на мелкие капли и, перемешиваясь с поступающим воздухом, образует двухкомпонентную смесь. При этом воздушно-масляная компонента смеси поступает в верхнюю часть масляной полости смесителя и далее в систему суфлирования, а масловоздушная - в нижнюю часть и далее через замкнутый рабочий контур в бак.

Существенным недостатком известного технического решения является неуправляемость процесса распределения компонент смеси по высоте масляной полости смесителя, зависящего от случайных факторов, что затрудняет получение требуемого для испытаний объемного газосодержания смеси.

Наиболее близким по совокупности существенных признаков к заявляемому техническому решению является стенд для испытаний агрегатов систем смазки (суфлеров), включающий замкнутый рабочий контур, содержащий смеситель, с источниками масла и воздуха, и корпус для размещения испытуемого агрегата, сообщенные между собой при помощи трубопроводной магистрали с исполнительными органами (Трянов А.Е. и др. «Проектирование систем суфлирования масляных полостей авиационных двигателей», изд. СГАУ, Самара, 2006 г., стр. 21-22, рис. 15).

В известном техническом решении воздушный контур выполнен разомкнутым, масло из бака через трубопроводную магистраль замкнутого рабочего контура и воздух от источника давления поступают на двухкомпонентные газожидкостные форсунки смесителя, в котором происходит многократное разбиение компонентов на более мелкие капли как за счет направленного движения струй, так и за счет вихревого движения, и далее в корпус на испытуемый агрегат. После этого масло из корпуса откачивается в бак через магистраль замкнутого рабочего контура, а воздух через разомкнутый воздушный контур выпускается в атмосферу.

Основным недостатком известного технического решения является сложность конструкции стенда из-за необходимости иметь параллельные масляный и воздушный контуры, источник давления воздуха (компрессор или воздушную рампу) с коммуникациями для формирования воздушно-масляной смеси с взвешенными каплями масла в воздухе, смеситель с двухкомпонентными газожидкостными форсунками.

Техническая проблема, решение которой обеспечивается при осуществлении заявляемого изобретения, заключается в упрощении конструкции стенда.

Технический результат, достигаемый при осуществлении предлагаемого изобретения, заключается в реализации эффекта воздухововлечения при образовании масловоздушной смеси, в которой пузырьки воздуха взвешены в масле.

Эффект воздухововлечения при образовании масловоздушной смеси заключается в следующем. В замкнутом контуре циркуляции «бак-насос-бак» при возврате рабочей среды в свободный объем бака (в его верхнюю часть с воздухом) за счет действия сил гравитации поток распадается на струи и капли. При их соударении с поверхностью жидкостного объема бака в месте контакта реализуется эффект воздухововлечения. При этом на месте падения образуется вогнутость и в процессе вовлечения воздуха в жидкость преобладает явление защемления воздушных пузырьков между струей (каплей) и стенками вогнутости, а при разрушении стенок вовлечение происходит вследствие образования воздушных полостей и защемления воздуха около каждой отдельной капли падающей жидкости.

Заявленный технический результат достигается за счет того, что в стенде для испытания агрегатов систем смазки на масловоздушной смеси, включающем замкнутый рабочий контур, содержащий смеситель с источниками масла и воздуха, и корпус для размещения испытуемого агрегата, сообщенные между собой при помощи трубопроводной магистрали с исполнительными органами, смеситель выполнен в виде бака, нижний объем которого представляет собой источник масла, а верхний объем - источник воздуха, и плоского перфорированного рассекателя, установленного в баке параллельно поверхности масла, а стенд снабжен дополнительным контуром подготовки масловоздушной смеси, выполненным в виде трубопроводной магистрали, вход которой через соответствующий исполнительный орган сообщен с рабочим контуром на входе в корпус, а выход - с верхним объемом бака.

Указанные существенные признаки обеспечивают решение поставленной технической проблемы с достижением заявленного технического результата, так как:

- выполнение смесителя в виде бака, нижний объем которого представляет собой источник масла, а верхний объем - источник воздуха, и плоского перфорированного рассекателя, установленного в баке параллельно поверхности масла, упрощает конструкцию стенда за счет исключения воздушного контура, источника давления и двухкомпонентных газовоздушных форсунок;

- снабжение стенда дополнительным контуром подготовки масловоздушной смеси, выполненным в виде трубопроводной магистрали, вход которой через соответствующий исполнительный орган сообщен с рабочим контуром на входе в камеру, а выход - с верхним объемом бака, обеспечивает получение масловоздушной смеси с использованием простых технических средств.

Настоящее изобретение поясняется следующим описанием и чертежом, где изображена схема предлагаемого стенда. На чертеже приняты следующие обозначения:

1 - бак;

2 - объем нижней части бака 1;

3 - объем верхней части бака 1;

4 - перфорированный рассекатель;

5 - корпус для размещения испытуемого агрегата;

6 - участки трубопроводной магистрали замкнутого рабочего контура;

7 - исполнительный орган трубопроводной магистрали рабочего контура;

8 - трубопроводная магистраль дополнительного контура;

9 - исполнительный орган трубопроводной магистрали дополнительного контура;

10 - насос циркуляции;

11 - электропривод насоса;

12 - датчик объемного расхода масла;

13 - входной кран;

14 - контроллер.

Стенд для испытания агрегатов систем смазки на масловоздушной смеси включает замкнутый рабочий контур, содержащий смеситель, выполненный в виде бака 1 с источником масла, представляющим собой объем 2 нижней части бака 1, и источником воздуха, представляющим собой объем 3 верхней части бака 1, и перфорированного рассекателя 4, установленного в объеме 3 верхней части бака 1 параллельно поверхности объема 2 бака 1, и корпус 5 для размещения испытуемого агрегата (на чертеже не показан). Объем 2 нижней части бака 1 и корпус 5 сообщены между собой при помощи участков 6 трубопроводной магистрали с установленным на ней исполнительным органом 7. Стенд снабжен дополнительным контуром подготовки масловоздушной смеси, который выполнен в виде трубопроводной магистрали 8, вход которой через исполнительный орган 9 сообщен с рабочим контуром на входе в корпус 5, а выход - с объемом 3 верхней части бака 1. Поступление масловоздушной смеси к корпусу 5 осуществляется при помощи установленного трубопроводной магистрали рабочего контура насоса 10 циркуляции. Дополнительный контур через трубопроводную магистраль 8 и исполнительный орган 9 обеспечивает поступление смеси из насоса 10 циркуляции в объем 3 верхней части бака 1 и на перфорированный рассекатель 4. При этом образуется контур формирования масловоздушной смеси в объеме 3 верхней части бака 1. Насос 10 циркуляции вращается электроприводом 11, объемный расход в рабочем и дополнительном контурах циркуляции измеряется датчиком 12. Для наполнения маслом объема 2 нижней части бака 1 от внешнего источника (на чертеже не показан) на входе трубопроводной магистрали рабочего контура установлен кран 13. Управление частотой вращения электропривода 11 и состоянием исполнительных органов 7 и 9 осуществляется от контроллера 14. Исполнительные органы 7 и 9 могут быть выполнены в виде электромагнитных клапанов или в виде регулируемых дросселей, имеющих состояние «открыто» и «закрыто». В трубопроводной магистрали 8 дополнительного контура может устанавливаться воздухоотделитель, из которого жидкая фаза поступает в объем 2 нижней части бака 1, а выделившийся воздух - в объем 3 верхней части бака 1 (эти связи на чертеже не показаны).

Стенд для испытания агрегатов систем смазки на масловоздушной смеси работает следующим образом.

Работа стенда происходит в двух режимах прокачки смеси:

режим 1 - формирование в циркуляционном объеме бака масловоздушной смеси с требуемым значением величины объемного газосодержания;

режим 2 - испытание агрегата на полученной масловоздушной смеси.

При открытом кране 13 и закрытых органах 7 и 9 заполняется маслом объем 2 нижней части бака 1 и осуществляется формирование масловоздушной смеси с требуемым значением величины объемного газосодержания (режим 1).

По команде контроллера 14 исполнительный орган 7 рабочего контура находится в положении «закрыто», а исполнительный орган 9 дополнительного контура переводится в положение «открыто». При этом образуется контур циркуляции: «объем 2 нижней части бака 1 - участки 6 трубопроводной магистрали рабочего контура - насос 10 циркуляции - открытый исполнительный орган 7 - трубопроводная магистраль 8 дополнительного контура - объем 3 верхней части бака 1». Контроллером 14 задается требуемая частота вращения электропривода 11, насос 10 выводится на требуемый режим прокачки масла, а расход масла контролируется датчиком 12.

В контуре циркуляции «бак-насос-бак» при возврате масла за счет действия сил гравитации в объеме 3 верхней части бака 1 падающий поток распадается на струи и капли. При их соударении с поверхностью объема 2 нижней части бака 1 на месте падения образуется вогнутость. При этом реализуется процесс вовлечения воздуха в жидкость, причем преобладает явление защемления воздушных пузырьков между струей (каплей) и стенками вогнутости, а при разрушении стенок - вовлечение происходит вследствие образования воздушных полостей и защемления воздуха около каждой отдельной капли падающей жидкости. В результате реализуется эффект воздухововлечения и образуется масловоздушная смесь. Через определенное время смесь поступает из объема 2 нижней части бака 1 на вход насоса 10 циркуляции, который возвращает ее в объем 3 верхней части бака 1, где смесь снова разбивается на струи и дополнительно насыщается воздухом. Таким образом, в качестве смесителя используется бак 1, при этом для работы смесителя не требуется воздух от отдельного источника высокого давления, т.к. его роль выполняет объем 3 верхней части бака 1. В результате реализации эффекта воздухововлечения на поверхности объема 2 нижней части бака 1 образуется масловоздушная смесь. При этом процесс подготовки масловоздушной смеси сопровождается перемещением воздуха из объема 3 верхней части бака 1 в объем 2 нижней части бака 1, постепенно увеличивая его объем. Смесь заполняет объем 2 бака 1, объем участков 6 трубопроводной магистрали рабочего контура и объем трубопроводной магистрали 8 дополнительного контура.

Для обеспечения проведения испытаний с заданным объемным газосодержанием αсм смеси в характерном для систем смазки диапазоне αсм=0.2…0.5 начальный объем V3.н между рассекателем и поверхностью масла в баке 1 определяется из следующего соотношения:

где V2 - объем нижней части бака, заполняемый маслом.

Процесс подготовки смеси циклический, с периодом Δtф.см формирования смеси, зависящим от времени пребывания смеси в объеме 2 нижней части бака 1 и трубопроводных магистралей рабочего и дополнительного контуров, и продолжается до получения в циркуляционном объеме бака 1 смеси с требуемым объемным газосодержанием, причем смесь образуется в виде мелкодисперсной устойчивой масловоздушной эмульсии, без коалесценции пузырьков воздуха из-за действия на них сил поверхностного натяжения на границе раздела сред. Характерными показателями процесса формирования смеси являются:

- коэффициент kвв, воздухововлечения, который определяется экспериментально для конкретной конфигурации бака и показывает количество ΔQвв вовлеченного маслом с объемным расходом Qн в контуре циркуляции воздуха;

- время Δtк.ц пребывания маслогазовой смеси в масляном контуре с объемом Vк.ц. циркуляции.

Количество вовлекаемого воздуха на одном цикле равно произведению коэффициента kвв воздухововлечения на величину объемным расхода Qн прокачанной смеси в контуре циркуляции:

Принимая величину kвв постоянной, за m циклов в масле накопится следующее количество Qвв вовлеченного воздуха:

Величина αсм объемного газосодержания мелкодисперсной маслогазовой смеси равна отношению объемного расхода Qвв вовлеченного воздуха к суммарному объемному расходу Qж воздуха и жидкости, т.е. к величине Qн прокачиваемой смеси:

Соотношение (3) показывает, что при постоянной величине прокачки смеси для получения требуемого значения αсм объемного газосодержания необходимо обеспечить m циклов прокачки. Учитывая, что время Δtк.ц одного цикла прокачки равно отношению величин объема Vк.ц контура циркуляции и объемного расхода Qн прокачанной смеси в контуре циркуляции (временем пребывания струй в объеме 3 верхней части бака 1 можно пренебречь), получим следующее соотношение для определения времени Tф.см формирования смеси с требуемым значением αсм:

Подставляя в соотношение (4) выражение для m из соотношения (3), получим:

Соотношение (5) позволяет определить время формирования масловоздушной смеси с требуемым значением объемного газосодержания. Оно позволяет также выбрать режим работы насоса и величину объема бака для минимизации времени формирования смеси.

Полученную величину времени формирования смеси следует рассматривать как приближенное значение, т.к. величина коэффициента kвв воздухововлечения может изменяться в процессе циклического формирования смеси из-за уменьшения объема жидкой фазы в смеси, свободной от воздушных пузырьков, и других факторов.

Для более точной оценки величины объемного газосодержания полученной масловоздушной смеси целесообразно использовать устройства прямого измерения объемного газосодержания αсм, например ультразвуковые.

Контроль постоянства величины объемного газосодержания может производиться по анализу постоянства давлений в магистрали прокачки смеси - при увеличении объемного газосодержания давление начинает уменьшаться, а при уменьшении объемного газосодержания - увеличиваться.

После получения в объеме 2 нижней части бака 1 требуемого значения объемного газосодержания производится переход на режим проведения испытания агрегата, устанавливаемого в корпусе 4 стенда (режим 2). Для этого по команде контроллера 14 исполнительный орган 7 переводится в положение «открыто», а орган 9 - в положение «закрыто». В результате образуется замкнутый контур циркуляции: «объем 2 нижней части бака 1 - участки 6 трубопроводной магистрали рабочего контура - насос 10 циркуляции - корпус 5 с испытуемым агрегатом - закрытый исполнительный орган 9 - участки 6 трубопроводной магистрали рабочего контура - объем 2 нижней части бака 1». Контроллером 14 задается требуемая частота вращения электропривода 11, и насос 10 циркуляции выводится на заданный режим подачи смеси к испытуемому агрегату. Закрытием или открытием исполнительного органа 9 обеспечивается требуемое давление на выходе агрегата при проведении испытаний.

Для прекращения испытаний отключается электропривод 11 вращения насоса 10.

Таким образом, выполнение смесителя в виде бака, объемы верхней и нижней частей которого представляют собой источники соответственно масла и воздуха с установленным в верхней части бака параллельно его нижней части плоского перфорированного рассекателя, и снабжение стенда дополнительным контуром, сообщенным с рабочим контуром и верхней частью бака, исключает необходимость применения компрессора для подачи воздуха и двухкомпонентных газовоздушных форсунок в смесителе, что позволяет упростить конструкцию стенда.

Стенд для испытания агрегатов систем смазки на масловоздушной смеси, включающий замкнутый рабочий контур, содержащий смеситель с источниками масла и воздуха, и корпус для размещения испытуемого агрегата, сообщенные между собой при помощи трубопроводной магистрали с исполнительными органами, отличающийся тем, что смеситель выполнен в виде бака, нижний объем которого представляет собой источник масла, а верхний объем - источник воздуха, и плоского перфорированного рассекателя, установленного в баке параллельно поверхности масла, а стенд снабжен дополнительным контуром подготовки масловоздушной смеси, выполненным в виде трубопроводной магистрали, вход которой через соответствующий исполнительный орган сообщен с рабочим контуром на входе в корпус, а выход - с верхним объемом бака.
Стенд для испытания агрегатов систем смазки на масловоздушной смеси
Стенд для испытания агрегатов систем смазки на масловоздушной смеси
Источник поступления информации: Роспатент

Показаны записи 111-120 из 204.
09.11.2018
№218.016.9b5b

Способ испытания на трещиностойкость образцов полимерных композиционных материалов

Изобретение относится к области испытаний на трещиностойкость, а именно к способам испытания на трещиностойкость образцов полимерных композиционных материалов. Сущность: размещают на контрастном фоне образец материала с предварительно выполненной на его конце трещиной, прикладывают к...
Тип: Изобретение
Номер охранного документа: 0002672035
Дата охранного документа: 08.11.2018
23.11.2018
№218.016.9fe0

Способ изготовления полого диска газотурбинного двигателя

Изобретение относится к изготовлению полого диска газотурбинного двигателя. Диск выполняют в виде единой детали методом гетерофазной лазерной металлургии путем наложения кольцевых валиков из порошкового материала слоями с произвольным перекрытием валиков по периферии с шагом 1,3-1,5 мм и...
Тип: Изобретение
Номер охранного документа: 0002672989
Дата охранного документа: 22.11.2018
05.12.2018
№218.016.a329

Способ определения форм колебаний вращающихся колес турбомашин

Изобретение относится к области испытаний деталей и узлов турбомашин, в частности к способам определения динамических характеристик рабочих колеc. Техническим результатом, достигаемым в заявленном изобретении, является повышение достоверности определения диаметральных форм колебаний...
Тип: Изобретение
Номер охранного документа: 0002673950
Дата охранного документа: 03.12.2018
07.12.2018
№218.016.a4a0

Устройство для фиксации резьбового соединения

Изобретение относится к области резьбовых соединений, а именно к устройству для фиксации резьбового соединения. Технический результат, достигаемый при осуществлении предлагаемого изобретения, заключается в обеспечении реализации эффекта самоподтягивания резьбового соединения за счет...
Тип: Изобретение
Номер охранного документа: 0002674240
Дата охранного документа: 05.12.2018
12.12.2018
№218.016.a58e

Способ определения напряжений в колеблющейся лопатке

Использование: для определения напряжений в колеблющейся лопатке. Сущность изобретения заключается в том, что задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки, измеряют межплоскостное расстояние...
Тип: Изобретение
Номер охранного документа: 0002674408
Дата охранного документа: 07.12.2018
20.12.2018
№218.016.a961

Устройство для фиксации болтового соединения фланцев вращающегося трубопровода

Изобретение относится к области резьбовых соединений, а именно к устройствам для фиксации болтовых соединений фланцев вращающегося трубопровода. Сущность изобретения состоит в том, что устройство для фиксации болтового соединения фланцев вращающегося трубопровода включает фиксатор положения...
Тип: Изобретение
Номер охранного документа: 0002675457
Дата охранного документа: 19.12.2018
23.12.2018
№218.016.aa4a

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой заключается в том, что сжатый воздух из регулируемого вентилятора разделяют на поток первого контура и поток второго контура. Для формирования потока третьего контура канал третьего контура подключают через...
Тип: Изобретение
Номер охранного документа: 0002675637
Дата охранного документа: 21.12.2018
26.12.2018
№218.016.aa91

Способ изготовления диска осевой турбомашины

Изобретение относится к области двигателестроения, а именно к способам изготовления дисков для осевых турбомашин, в частности дисков высокотемпературных турбин газотурбинных двигателей. Диск турбомашины выполняют в виде единой детали методом трехмерной печати, для чего формируют ступицу и...
Тип: Изобретение
Номер охранного документа: 0002675735
Дата охранного документа: 24.12.2018
29.12.2018
№218.016.aca4

Устройство для определения температуры газовой среды в газотурбинных двигателях

Изобретение относится к области контактных измерений параметров высокотемпературных газов, в частности к средствам измерения температуры газа и распределения ее значений в полостях высокотемпературных элементов газотурбинных двигателей, и может быть применено для экспериментальных исследований...
Тип: Изобретение
Номер охранного документа: 0002676237
Дата охранного документа: 26.12.2018
11.01.2019
№219.016.ae5e

Способ изготовления составного керамического стержня для литья полых изделий

Изобретение относится к области литейного производства и может быть использовано при отливке полых лопаток газотурбинных двигателей. При изготовлении составного стержня из керамической массы изготавливают основной стержень (1) с выступами (2) на наружной поверхности и обжигают его. Из...
Тип: Изобретение
Номер охранного документа: 0002676721
Дата охранного документа: 10.01.2019
Показаны записи 11-12 из 12.
17.08.2019
№219.017.c110

Электродвигатель с внешним ротором и системой охлаждения статора

Изобретение относится к области электротехники, в частности, к охлаждению статора обращенной машины. Технический результат - повышение надежности и КПД. Электродвигатель с внешним ротором и системой охлаждения статора включает статический вал, установленный в подшипниковой опоре, концентрично...
Тип: Изобретение
Номер охранного документа: 0002697511
Дата охранного документа: 15.08.2019
23.05.2023
№223.018.6c67

Система топливопитания газотурбинного двигателя

Изобретение относится к системам топливопитания и может быть использовано для питания топливом авиационных газотурбинных двигателей. Система содержит насос подачи топлива с электроприводом, вычислительный модуль, регулятор частоты вращения насоса, систему управления высшего уровня, датчик...
Тип: Изобретение
Номер охранного документа: 0002739658
Дата охранного документа: 28.12.2020
+ добавить свой РИД