×
10.05.2018
218.016.4b39

Способ сплайн-фильтрации сигналов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области радиоэлектроники и гидроакустики, а именно к способам обнаружения, обработки сигнала при наличии помех. Изобретение заключается в реализации разработки оптимального метода обнаружения гидроакустического сигнала в условиях помех, описываемых нелинейными стохастическими уравнениями. Способ сплайн-фильтрации сигналов основывается на методе условной марковской фильтрации, который включает в себя: решение уравнений фильтрации для гипотезы наличия/отсутствия сигнала; уравнения правдоподобия; уравнения для вычисления коэффициентов усиления. Отличительной особенностью способа сплайн-фильтрации является то, что для получения оценок помехи при нелинейном уравнении состояния дополнительно используется сплайн-интерполяция нелинейной функции, а область динамического диапазона изменений нелинейной функции разбивается на интервалы, в каждом из которых реализуется линейное представление уравнения состояния, что позволяет на каждом из поддиапазонов реализовать фильтр Калмана-Бьюси, включающего в себя: два уравнения оценки состояния при гипотезах наличия/отсутствия сигнала; уравнения оценки дисперсии на различных интервалах и уравнения правдоподобия, включающего эти оценки, по результатам вычисления которого выносится решение об обнаружении или необнаружении сигнала. Техническим результатом является уменьшение вычислительных затрат, обеспечение высокой эффективности обнаружения сигнала при различных помехах, получение более эффективного алгоритма фильтрации и возможность работы в реальном масштабе времени. 8 ил.
Реферат Свернуть Развернуть

Настоящее изобретение относится к области радиоэлектроники, а именно к способам обработки и обнаружения сигнала на фоне помех. Задача, на решение которой направлено заявленное изобретение, заключается в реализации разработки оптимального метода обнаружения гидроакустического сигнала в условиях помех, описываемых нелинейными стохастическими уравнениями. Поставленная задача решается за счет того, что в заявленном способе нелинейная функция представляется через сплайны, что дает возможность проводить линейную обработку на каждом интервале и представлять нелинейный алгоритм как композицию линейного фильтра Калмана-Бьюси.

Достигаемый технический результат заключается в уменьшении вычислительных затрат, обеспечении высокой эффективности обнаружения и в универсальности обработки при различных помехах. Возможность работы в реальном масштабе времени, получение более эффективного алгоритма фильтрации, требующего меньше вычислительных затрат, обуславливают высокую экономическую выгоду, которая может быть использована при внедрении в систему обработки гидроакустических сигналов.

На сегодняшний день приближенные решения уравнений фильтрации основаны на аппроксимации решения - апостериорной плотности вероятности некоторой функцией из параметризованного класса, при этом используют нормальную плотность вероятности [1]. Однако в ряде случаев апостериорная плотность вероятности существенно отличается от нормальной (к примеру, процесс ближней реверберации) и при возникновении больших ошибок фильтрации (малое отношение сигнал-шум, помеха-шум) требуются более точные приближения. С этой точки зрения особенно привлекательными являются аппроксимации, основанные на сплайновых представлениях, так как при их применении никаких допущений по поводу законов распределений не делается.

Из предшествующих методик известен метод условной марковской фильтрации (прототип) (2, с. 213-222], в котором взаимосвязь сигнала и помехи выражается некоторой детерминированной функцией, а белый шум - аддитивен. Основная задача метода состоит в том, чтобы, располагая одним из компонентов многомерного марковского процесса, вычислить распределение вероятностей для значений наблюдаемого компонента, где сигнал является произвольной детерминированной функцией по времени S(x,t)=S(t), а помеха V(η,t)=η(t) представляется диффузионным гауссовским процессом. Суть работы метода условной марковской фильтрации можно выразить в системе уравнений:

где: s(t) - детерминированный сигнал; u(t) - поступающая входная реализация; z(t) - логарифм отношения правдоподобия; - оценка реверберационной помехи при гипотезе наличия сигнала; - оценка реверберационной помехи при гипотезе отсутствия сигнала; σ*2 - дисперсия оценки помехи; N0 - величина спектральной плотности белого шума; γ - коэффициент диффузии.

Схема, реализующая указанный метод условной марковской фильтрации (прототип) [2, с. 213-222], приведена на фиг. 1. где:

блок 1 - блок усиления на коэффициент ;

блок 2 - блок усиления на коэффициент ;

блоки 3, 7, 18 - интеграторы:

блок 5 - блок усиления на коэффициент ;

блоки 4, 8, 15 - квадраторы;

блоки 6, 9, 16 - блоки усиления на коэффициент [-1];

блоки 10, 13 - блоки усиления на коэффициент [2];

блоки 11, 14 - премножители;

блок 12 - блок формирования опорного сигнала;

блок 17 - блок усиления на коэффициент ;

блок 19 - двухпороговое устройство;

блок 20 - однопороговое устройство;

блоки 21, 24 - блоки принятия решения при гипотезе наличия сигнала;

блок 22 - блок принятия решения при гипотезе отсутствия сигнала;

блок 23 - блок, реализующий продолжение наблюдения.

Принцип действия метода заключается в следующем: при гипотезах наличия и отсутствия сигнала вычисляются оценочные значения отфильтрованной от белого шума помехи, на их основе формируют логарифм отношения правдоподобия и затем выносят решение в одной из двух пороговых схем. Метод условной марковской фильтрации позволяет получить структурные схемы оптимальных приемников для различных помеховых ситуаций, но не производит оценку помехоустойчивости таких приемников.

Также известен метод кусочного разложения оценок (патент №2257610), который основан на разбиении исходной дискретной реализации на прикрывающиеся интервалы одинаковой длины с последующей оценкой на каждом из них полезного сигнала (аналог) [3, с. 4-10]. Исходя из данного метода, предполагается, что полезный сигнал описывается некоторой кусочно-непрерывной гладкой функцией, которая удовлетворяет условиям теоремы Вейерштрассе об аппроксимации на локальных отрезках. Такой подход позволяет получить множество оценок полезной составляющей в каждом сечении процесса с последующим их усреднением. Использование системы ортогональных многочленов при решении задачи аппроксимации позволяет получить только общее решение задачи оценки сигнала и обрабатывать одномерные дискретные реализации сигналов ограниченного объема в условиях непараметрической априорной неопределенности, что делает метод сплайн-фильтрации по сравнению с методом кусочного разложения оценок более универсальным.

При переходе от аппроксимаций многочленами к аппроксимации сплайнами преследуют две цели. Первая - это улучшение качества приближения: при одинаковых вычислительных затратах абсолютные погрешности аппроксимации сплайнами меньше, чем абсолютные погрешности аппроксимации многочленами, а при одинаковых погрешностях уменьшается объем вычислений. Сплайны позволяют избежать осцилляций [4-6]. Для сходимости аппроксимации к аппроксимируемой функции предъявляются более слабые требования, чем в случае многочленов. Например, интерполяция сплайнами невысоких степеней сходится даже для непрерывных функций. Вторая цель - резкое уменьшение вычислительных трудностей как при построении алгоритмов решения задач, так и при дальнейшей работе с аппроксимантами, которые на каждом звене представляют собой многочлены невысоких степеней или иные элементарные функции [4,5].

Асимптотически наилучшее равномерное приближение сплайном первой степени S1(x) функции ƒ(x) определяется выражением [7]:

где: xi, xi+1 - узловые точки на интервале; Δi - интервал с номером секции i. Сплайновое представление тестового сигнала, показано на фиг. 2. где:

x1, x2, x3 - узловые точки на интервале;

Δ1, Δ2, Δ3 - интервалы;

r(x) - тестовый сигнал, у которого коэффициент сноса равен r(x)=-0,5х2-x;

s(x) - сплайновое представление сигнала r(x).

В рамках данного изобретения для удовлетворения требования непрерывности плотности вероятности применялась операция сглаживания высокочастотных составляющих характеристической функции путем замены высокочастотных отсчетов нулями. Спектральные плотности вероятности тестового процесса ps(x) и его приближение сплайнами представлено на фиг. 3. где:

x - значения тестового процесса;

ps(x) - плотность вероятности тестового процесса;

phx(x)- плотность вероятности приближения тестового процесса сплайнами.

Обе кривые (фиг. 3) имеют схожую форму нормального распределения с положительными коэффициентами асимметрии: для плотности вероятности тестового сигнала он равен 0,77, а для плотности вероятности приближения тестового процесса сплайнами - 0,75; также оба распределения имеют только по одному возможному значению, соответствующему наибольшей вероятности появления, и являются одномодальными.

Аппроксимировать исходную функцию можно различными способами, но для решения задачи линейной фильтрации выражение (2) на интервалах [xi, xi+1) рассматривается как линейное стохастическое уравнение. Вследствие этого алгоритм фильтрации на интервале можно представить как фильтр Калмана с параметрами, меняющимися в зависимости от номера секции, к которой принадлежит текущая оценка процесса. Известно, что в задачах линейной фильтрации нет необходимости вычислять плотность вероятности, достаточно найти оценку математического ожидания процесса в каждой точке и дисперсию этой оценки [5-7]. Таким образом можно записать уравнение фильтрации случайного процесса x(t)∈Δi:

где: x* - текущая оценка процесса; h - функция прямоугольного окна; ai, bi - коэффициенты, значения которых определяются через узловые точки xi и значения функции ƒ(хi) через систему уравнений:

Если рассматривать весь интервал изменения x∈X, то дисперсия фильтрации случайного процесса x(t) будет представляться вектором (, , …σn), при котором имеет место соответствие: , тогда система уравнений фильтрации представляется уравнениями:

Из выражения (5) следует, что в стационарном режиме дисперсия фильтрации постоянна на интервалах Δi и меняется при переходе к другому интервалу ступенчатым образом. При этом необходимо отметить, что на каждом интервале реализуется линейный фильтр Калмана-Бьюси. При этом дисперсия фильтрации является функцией только оценки . Важным фактором с вычислительной точки зрения является то, что стационарные коэффициенты усиления могут быть рассчитаны априори и могут представляться в виде набора чисел, поэтому реализация метода фильтрации со стационарными коэффициентами требует значительно меньших объемов памяти и вычислительных затрат [5].

Метод сплайн-фильтрации позволяет оценивать случайные процессы, заданные не только скалярным, но и матрично-векторным уравнением. Преимущества предлагаемого подхода в вычислительном отношении, по сравнению с известными методами нелинейной фильтрации, более существенны. В случае решения задачи обнаружения сигнала на фоне помехи и белого шума уравнения обнаружения и фильтрации имеют вид [4-7]:

Предлагаемый способ сплайн-фильтрации на основе прототипа и системы уравнений (6) представлен на фиг. 4, где:

блок 14 - блок усиления на коэффициент ;

блок 7 - блок усиления на коэффициент ;

блоки 8, 12, 26 - интеграторы;

блок 10 - блок усиления на коэффициент ;

блоки 9, 13, 21 - квадраторы;

блоки 11, 15, 22 - блоки усиления на коэффициент [-1];

блоки 16, 19 - блоки усиления на коэффициент [2];

блоки 17, 20 - перемножители;

блок 18 - блок формирования опорного сигнала;

блок 25 - блок усиления на коэффициент ;

блок 27 - двухпороговое устройство;

блок 28 - однопороговое устройство;

блоки 29, 32 - блоки принятия решения при гипотезе наличия сигнала;

блок 30 - блок принятия решения при гипотезе отсутствия сигнала;

блок 31 - блок, реализующий продолжение наблюдения;

дополнительно включенные блоки:

блок 1 - блок определения узловых точек на интервале;

блок 2 - блок формирования системы интервалов;

блок 3 - блок сравнения оценки помехи с системой интервалов;

блок 4 - блок определения значения оценки помехи |x*(1)];

блок 5 - блок определения величины коэффициента [ai];

блок 6 - блок определения величины коэффициента [bi];

блок 23 - блок вычисления значения следующей оценки помехи [х*(2)];

блок 24 - блок вычисления значения следующей оценки помехи [х*(3)].

Работает изобретение следующим образом: находится значение оценки помехи х*(1). Значение оценки х*(1) соотносится с системой {Δi}. В результате определяются величины коэффициентов аi(1), bi(1) и дисперсия , которые используются для определения следующей оценки x*(2). С приходом отсчета реализации u1 на основании системы уравнений [3] вычисляется следующая оценка помехи х*(2). Полученное значение x*(2) соотносится с множеством интервалов {Δi} и снова определяется тройка {ai, bi, }. С учетом полученных значений коэффициентов ai(2), bi(2), дисперсии и системы [3] находится следующее значение оценки помехи х*(3). Процедуры определения коэффициентов для следующих оценок на основании системы уравнений повторяется. Получение оценок помехи при нелинейном уравнении состояния происходит при использовании сплайн-интерполяции нелинейной функции, где область динамического диапазона изменений нелинейной функции разбивается на интервалы, в каждом из которых реализуется линейное представление уравнения состояния, что позволяет на каждом из поддиапазонов реализовать фильтр Калмана-Бьюси. Фильтр включает в себя: два уравнения оценки состояния при гипотезах наличия/отсутствия сигнала; уравнения оценки дисперсии на различных интервалах и уравнения правдоподобия, включающего эти оценки, и по результатам вычисления которого выносится решение об обнаружении или необнаружении сигнала.

Метод сплайн-фильтрации основан на аппроксимации зависимости ƒ(x) сплайн-функцией S1(x), что позволяет использовать линейный фильтр Калмана с коэффициентами, значения которых заранее рассчитываются. Значения ai и bi могут быть получены априори, исходя из вида зависимости ƒ(x) и необходимой точности аппроксимации, так как уравнение Риккати для коэффициента усиления фильтра Калмана не содержит измеряемых данных.

Имитационное моделирование способа сплайн-фильтрации производится в среде пакета MathCAD на основе системы уравнений (6). На первом этапе моделируются шумы формирования и наблюдения реализации белого гауссовского шума, после чего на основании исходного нелинейного динамического уравнения моделируется структурно связанная с сигналом помеха, которая представлена на фиг. 5, где:

i - число дискретных отсчетов;

j - число спектральных отсчетов;

ni - помеха;

Fzj - спектральная плотность входной реализации.

Описанным выше способом представлен тестовый сигнал и сформирована реализация входного случайного процесса, которые показаны на фиг. 6, где:

i - число дискретных отсчетов;

zi - входная реализация;

Sti - тестовый сигнал.

Учитывая специфику реверберации, спектральные плотности помехи и сигнала выбираются одинаковыми, что показано на фиг. 7, где:

i, j - число спектральных отсчетов;

Fsj - спектральная плотность тестового сигнала;

Fri - спектральная плотность помехи.

Непосредственное моделирование уравнений (5) производится при условиях, где коэффициент сноса в динамическом уравнении помехи определяется функцией r(x)=-0,05x2-0,3x, которая аппроксимируется кусочно-линейной функцией, представляющей собой два отрезка прямой, при котором входное отношение сигнал/помеха равно 0.5, а число дискретных отсчетов - 64. На фиг. 8 представлены кривые значений помехи и ее оценки, где:

i - число спектральных отсчетов;

ni - помеха;

n*i - оценка помехи.

Рассматривая значения помехи и ее оценку (фиг. 8), в среде MathCAD была определена относительная ошибка способа сплайн-фильтрации, которая составила 0.05% и на основании которой можно констатировать, что метод сплайн-фильтрации позволяет достаточно эффективно решать задачи нелинейной фильтрации помехи и обнаружения сигналов путем представления исходного нелинейного алгоритма как композиции линейного фильтра Калмана-Бьюси.

Сравнительный анализ способа сплайн-фильтрации с прототипом и аналогом показал, что предлагаемый подход не уступает по такому показателю, как выходное отношение сигнал-помеха, причем различие сводится к минимуму, если увеличивается число аппроксимирующих отрезков. Способ сплайн-фильтрации дозволяет оценивать случайные процессы, заданные не только скалярным, но и матрично-векторным уравнением. Экстраполяция полученных результатов на этот случай не представляет трудностей, а преимущества предлагаемого подхода в вычислительном отношении, по сравнению с известными методами нелинейной фильтрации, становятся еще более существенными.

Список использованных источников

1. Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радиотехнических устройств и систем. М.: Радио и связь, 1991, 608 с.

2. Казаков В.А. Введение в теорию марковских процессов и некоторые радиотехнические задачи. М.: Советское радио, 1973. 232 с. (прототип, с. 213-222).

3. Марчук В.И., Шерстобитов А.И., Гавриленко Д.С. Особенности фильтрации цифровых сигналов в условиях ограниченности выборки его исходной реализации. Успехи современной радиоэлектроники. Зарубежная радиоэлектроника. 2011. №9. С. 4-10 (аналог, с. 4-10).

4. Бурова И.Г., Демьянович Ю.К. Теория минимальных сплайнов. - СПб: Издательство СПбГУ, 2001. - 315 с.

5. Завьялов Ю.С., Квасов Б.Н., Мирошниченко В.Л. Метод сплайн-функций. М.: Наука, 1980.

6. Розов А.К. Нелинейная фильтрация сигналов. - СПб.: Политехника, 1994. - 381 с.

7. Бутырский Е.Ю. Обнаружение сигналов на фоне марковской реверберационной помехи // Научное приборостроение. - 2012. - Т. 22. - №1. - С. 87-95.

Способ сплайн-фильтрации сигналов на основе метода условной марковской фильтрации, содержащей: операции решения уравнений фильтрации для гипотезы наличия/отсутствия сигнала; операции решения уравнения правдоподобия и уравнения для вычисления коэффициентов усиления, отличающийся тем, что для получения оценок помехи при нелинейном уравнении состояния и уменьшении вычислительных затрат при нелинейной фильтрации дополнительно используется операция сплайн-интерполяции нелинейной функции путем операции разбиения динамического диапазона изменений нелинейной функции на интервалы, в каждом из которых реализуется операция линейного представления уравнения состояния, что позволяет на каждом из поддиапазонов реализовать фильтр Калмана-Бьюси, включающего в себя: операции двух уравнений оценки состояния при гипотезах наличия/отсутствия сигнала; операции решения уравнения оценки дисперсии на различных интервалах и операции решения уравнения правдоподобия, включающего эти оценки, и по результатам вычисления которого выносится решение об обнаружении или необнаружении сигнала.
Способ сплайн-фильтрации сигналов
Способ сплайн-фильтрации сигналов
Способ сплайн-фильтрации сигналов
Способ сплайн-фильтрации сигналов
Способ сплайн-фильтрации сигналов
Способ сплайн-фильтрации сигналов
Способ сплайн-фильтрации сигналов
Способ сплайн-фильтрации сигналов
Способ сплайн-фильтрации сигналов
Источник поступления информации: Роспатент

Показаны записи 1-10 из 139.
20.01.2018
№218.016.10f5

Цифровой комплекс спутниковой системы связи

Изобретение относится к радиоэлектронным системам связи с использованием радиоизлучения при размещении станции в морском мобильном объекте и может быть использовано в качестве бортовой станции системы спутниковой связи. Технический результат – расширение функциональных возможностей на основе...
Тип: Изобретение
Номер охранного документа: 0002633911
Дата охранного документа: 19.10.2017
10.05.2018
№218.016.4edf

Способ дистанционного минирования

Изобретение относится к способам поражения морских целей в отдаленных районах, в частности к способам применения морских мин, доставляемых в район минной постановки носителями-транспортировщиками и являющихся средствами дистанционного минирования. Задачей изобретения является разработка способа...
Тип: Изобретение
Номер охранного документа: 0002652610
Дата охранного документа: 27.04.2018
16.06.2018
№218.016.62ec

Система для транспортировки объектов

Изобретение относится к водному транспорту и касается проводки объектов по внутренним водным путям. Предложена система для транспортировки объектов, содержащая транспортируемый объект, на корпусе которого смонтированы крепежные узлы, подъемные стропы, подъемно-транспортные понтоны, включающие...
Тип: Изобретение
Номер охранного документа: 0002657618
Дата охранного документа: 14.06.2018
25.06.2018
№218.016.660b

Способ и устройство передачи дискретной информации для быстродвижущихся объектов

Изобретение относится к области специальной радиотехники и может быть использовано в цифровых системах связи для обмена информацией между быстродвижущимися объектами. Наличие доплеровского эффекта существенно снижает отношение сигнал/помеха на выходе системы, что особенно важно для...
Тип: Изобретение
Номер охранного документа: 0002658649
Дата охранного документа: 22.06.2018
01.07.2018
№218.016.6932

Спасательное судно

Изобретение относится к области судостроения и касается вопросов создания судна, способного оказывать помощь личному составу аварийной подводной лодки (ПЛ), лежащей на грунте подо льдом. Спасательное судно с корпусом из материала ледового класса Arc9 включает в себя привязной спасательный...
Тип: Изобретение
Номер охранного документа: 0002659317
Дата охранного документа: 29.06.2018
01.07.2018
№218.016.6967

Понтон для транспортировки объектов

Изобретение относится к понтонам, предназначенным для транспортировки объектов по внутренним водным путям, под мостами, эстакадами и мелководью. Понтон для транспортировки объектов содержит корпус, который разделен на балластные отсеки и воздушный ящик, системы затопления и осушения, кингстон с...
Тип: Изобретение
Номер охранного документа: 0002659339
Дата охранного документа: 29.06.2018
01.07.2018
№218.016.69ae

Способ охраны подводного объекта

Способ охраны подводного объекта с применением подводного аппарата-охранителя (ПАО) заключается в подготовке ПАО к пуску путем проверки бортовой системы управления (БСУ), в которую вводят программу движения и задание. Осуществляют пуск ПАО с охраняемого объекта или носителя, включают БСУ в...
Тип: Изобретение
Номер охранного документа: 0002659213
Дата охранного документа: 28.06.2018
08.07.2018
№218.016.6d56

Автокорреляционный демодулятор псевдослучайных сигналов с относительной фазовой модуляцией

Изобретение относится к технике телекоммуникаций и может быть применено для обработки дискретных сигналов с относительной фазовой модуляцией в системах с псевдослучайными сигналами в условиях организованных (преднамеренных) помех. Технический результат - повышение помехоустойчивости приема...
Тип: Изобретение
Номер охранного документа: 0002660595
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6d63

Автокорреляционный демодулятор псевдослучайных сигналов с относительной фазовой модуляцией второго порядка

Изобретение относится к технике связи и может быть применено для обработки дискретных сигналов с относительной фазовой модуляцией второго порядка в системах с расширенным спектром (с псевдослучайными сигналами) при нестабильности несущей частоты и в условиях организованных (преднамеренных)...
Тип: Изобретение
Номер охранного документа: 0002660594
Дата охранного документа: 06.07.2018
22.09.2018
№218.016.8943

Гидродинамический зонд для измерения скорости звука в море

Изобретение относится к акустическим измерениям и может быть использовано, в частности, для измерения вертикального распределения скорости звука в море. Гидродинамический зонд содержит носовую часть, установленный на фиксированном расстоянии от нее акустический цилиндрический пустотелый...
Тип: Изобретение
Номер охранного документа: 0002667322
Дата охранного документа: 18.09.2018
Показаны записи 1-9 из 9.
10.11.2014
№216.013.03d8

Способ прогнозирования риска развития врожденных инфекций

Изобретение относится к области медицины и представляет собой способ прогнозирования риска развития врожденных инфекций путем определения количества специфических антител классов Ig М и Ig G в биологическом материале, отличающееся тем, что в качестве биологического материала используют мазок со...
Тип: Изобретение
Номер охранного документа: 0002532382
Дата охранного документа: 10.11.2014
10.02.2015
№216.013.2700

Способ измерения асимметрии распада поляризованных пучков

Изобретение относится к области ядерной физики. Способ измерения асимметрии распада поляризованных пучков включает в себя пропускание поляризованного пучка частиц через контролируемую зону, регистрацию заряженных частиц, испускаемых асимметрично относительно спина распадающихся частиц,...
Тип: Изобретение
Номер охранного документа: 0002541437
Дата охранного документа: 10.02.2015
20.04.2015
№216.013.452d

Устройство обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника

Предлагаемое изобретение относится к области гидроакустики, а именно к устройствам обнаружения шумовых гидроакустических сигналов в виде дискретных составляющих (ДС) на фоне аддитивной помехи. Достигаемый технический результат - повышение помехоустойчивости обнаружителя шумовых...
Тип: Изобретение
Номер охранного документа: 0002549207
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4b32

Устройство обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника

Предлагаемое изобретение относится к области гидроакустики, а именно к устройствам обнаружения шумовых гидроакустических сигналов в виде дискретных составляющих (ДС) на фоне аддитивной помехи. Техническим результатом является повышение помехоустойчивости обнаружителя шумовых гидроакустических...
Тип: Изобретение
Номер охранного документа: 0002550757
Дата охранного документа: 10.05.2015
20.02.2019
№219.016.bfd1

Способ измерения константы радиоактивного распада

Изобретение относится к области приборостроения и может найти применение в системах исследования радиоактивного распада нейтронов. Технический результат - повышение точности измерений. Для достижения данного результата в предложенном способе использована ступенчатая вариация потока...
Тип: Изобретение
Номер охранного документа: 0002377599
Дата охранного документа: 27.12.2009
20.02.2019
№219.016.c2c0

Устройство для измерения времени жизни нейтрона

Изобретение относится к области экспериментальной ядерной физики, в частности к устройствам для изучения бета-распада, включая измерения времени жизни нейтрона в бета-распаде. Технический результат - повышение точности времени жизни нейтрона и упрощение измерительной процедуры. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002408904
Дата охранного документа: 10.01.2011
04.06.2019
№219.017.731a

Способ обнаружения полигармонического сигнала

Предлагаемое изобретение относится к области гидроакустики, а именно - к способам обнаружения полигармонического сигнала на фоне аддитивной помехи. Результатом предлагаемого изобретения является повышение помехоустойчивости обнаружителя полигармонических сигналов путем более корректного учета...
Тип: Изобретение
Номер охранного документа: 0002690317
Дата охранного документа: 31.05.2019
02.10.2019
№219.017.d094

Устройство обнаружения широкополосных полигармонических сигналов на фоне аддитивной помехи

Изобретение относится к области радиоэлектроники и гидроакустики, а именно к устройствам обнаружения сигналов при наличии помех. Устройство позволяет повысить помехоустойчивость за счет использования и включения в схему изобретения коррелятора, который, запоминая успешные отклики, поступающие...
Тип: Изобретение
Номер охранного документа: 0002700798
Дата охранного документа: 23.09.2019
05.08.2020
№220.018.3ccc

Способ диагностики врожденного вирусного заболевания плода

Изобретение относится к медицине, а именно к инфекционным заболеваниям, и может быть использовано для диагностики врожденного вирусного заболевания плода. Для этого в крови беременных определяют величину специфических IgM и IgG антител, и при значении специфических IgM выше порога...
Тип: Изобретение
Номер охранного документа: 0002728925
Дата охранного документа: 03.08.2020
+ добавить свой РИД