×
10.05.2018
218.016.468a

Гидролокационный способ классификации подводных объектов в контролируемой акватории

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002650419
Дата охранного документа
13.04.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к гидроакустическим методам освещения акватории и может быть использовано для построения и разработки гидролокационных станций освещения подводной обстановки в акватории. Гидролокационный способ обнаружения подводных объектов в контролируемой акватории, при котором последовательно облучают водное пространство зондирующими сигналами, принимают эхо-сигналы от объектов статическим веером характеристик направленности, фильтруют, запоминают все принятые эхо-сигналы по всем пространственным направлениям, определяют помеху и выбирают порог, в каждом пространственном канале сравнивают амплитуды эхо-сигналов с порогом и определяют амплитуду превышения порога и время превышения порога, определяют максимальную амплитуду отсчета, превысившего порог, определяют разность времени между эхо-сигналами по нескольким последовательным излучениям, определяют радиальную скорость объекта по нескольким циклам излучение-прием и стабильность оценки радиальной скорости на интервале наблюдения и по измеренным параметрам определяют класс обнаруженного объекта. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области гидроакустики и может быть использовано при обнаружении малоподвижных объектов в условиях гидролокационного наблюдения в контролируемых условиях морской акваторий.

Известен способ автоматической классификации подводных объектов подвижным гидролокатором по патенту РФ №2461020, который содержит излучение зондирующего сигнала подвижным гидролокатором, прием эхо-сигнала, обработку информации в пространственных каналах статического веера характеристик направленности и по количеству характеристик направленности, в которых обнаружен объект, классификацию на малоразмерный объект или крупноразмерный объект. Известна система автоматической классификации подводных объектов с помощью подвижного гидролокатора по патенту РФ №2465618, которая реализует излучение зондирующего сигнала, прием и обработку эхо-сигнала, идентификацию сигналов между каналами, измерение угловой протяженности объекта, измерение его радиальной протяженности, и принятие решения о классе объекта.

Недостатком этих способов является то, что с их помощью нельзя классифицировать объекты на классы неподвижный и малоподвижный, поскольку сам гидролокатор движется и эхо-сигналы, принимаемые гидролокатором, от посылки к посылке будут изменяться в зависимости от направления приема и скорости собственного движения.

Известен гидролокационный способ обнаружения подводных объектов, движущихся с малой скоростью в контролируемой акватории, по патенту РФ №2242021. Гидролокационный способ обнаружения подводных объектов, движущихся с малой скоростью, включает последовательное облучение водного пространства гидроакустическими сигналами по различным направлениям с неподвижного гидролокатора, прием эхо-сигналов от объектов, фильтрацию и отображение на двухкоординатном индикаторе принятых эхо-сигналов одновременно по М-направлениям. При этом осуществляют К циклов излучение-прием, запоминают все принятые эхо-сигналы, дискретизируют по дистанции, отображают их на экране в виде яркостных отметок так, что по каждому из М-направлений последовательно К раз отображается L элементов дистанции, сохраняют КL элементов и отображают на индикаторе L элементов последнего цикла излучения прием, а решение об обнаруженном объекта по К-му направлению принимают по появлению на индикаторе трассы, образованной яркостными отметками эхо-сигналов, полученными в циклах излучение-прием, классификацию неподвижных и малоподвижных объектов оператор осуществляет по наличию наклона трасс яркостных отметок.

Недостатком способа является то, что обнаружение объектов и классификация обнаруженных объектов производится оператором по виду информации отображаемой на индикаторе, а классификация осуществляется по виду трассы при перемещении объекта, для чего требуется большое время наблюдения, порядка 15 циклов излучения - приема.

Известен гидролокационный способ обнаружения подводных объектов в контролируемой акватории по патенту РФ №2593824 от 18.06.2016, при котором последовательно облучают водное пространство зондирующими сигналами, принимают эхо-сигналы от объектов статическим веером характеристик направленности, фильтруют, запоминают все принятые эхо-сигналы, дискретизируют по дистанции по элементам дистанции L, отображают их на двухкоординатном индикаторе по первому циклу излучение-прием, по первым временным элементам дистанции L1 всех пространственных направлений М определяют помеху и выбирают порог, в каждом пространственном канале по всем элементам дистанции L сравнивают амплитуды эхо-сигналов с порогом и определяют амплитуду превышения порога и время превышения порога, определяют максимальную амплитуду отсчета, превысившего порог, определяют разность времени между началом элемента Lp, где p - номер элемента дистанции, в котором обнаружен эхо-сигнал, и временным положением отсчета с максимальной амплитуды Δtmax1, определяют число N отсчетов в интервала Lр, превысивших порог, определяют радиальную протяженность ΔS объекта в элементе дистанции Lp по формуле ΔS=(tN-t1)C, где tN - время последнего отсчета, превысившего порог, t1 - время первого отсчета, превысившего порог в выбранном элементе дистанции, С - скорость распространения звука, запоминают измеренные параметры, производят следующий цикл излучение-прием, повторяют процедуру измерения, определяют те направления М и те элементы дистанции L, которые совпадают в первом и втором циклах излучение-прием, определяют радиальную скорость объекта по формуле Vрад=(Δt2max-Δt1max)C\ΔTk, где, ΔTk - интервал между циклами излучение-прием, Δt2max, - интервал между временным положением максимума и временем начала элемента дистанции второго цикла излучение-прием, формируют табло результатов классификации по измеренным параметрам: направлению Mi, в котором произошло обнаружение, номеру элемента дистанции Lр, числу превышений порога N, радиальной протяженности ΔS и радиальной скорости Vрад, если Vрад=0, то принимают решение, что объект неподвижный, если Vрад≠0, принимают решение, что объект малоподвижный, а решение о классе малоподвижного объекта принимает оператор по анализу измеренных параметров.

Недостатком рассматриваемого способа является то, что производится классификация обнаруженных объектов только на классы подвижный и неподвижный, а класс конкретного подвижного объекта при этом не определен.

Задачей изобретения является классификация малоподвижных малоразмерных объектов.

Техническим результат изобретения заключается в обеспечении классификации обнаруженных малоподвижных объектов на классы: малоподвижный малоразмерный объект типа подводного пловца и малоразмерный малоподвижный объект с искусственным двигателем.

Для решения поставленной задачи в известный гидролокационный способ обнаружения подводных объектов в контролируемой акватории, при котором последовательно облучают водное пространство зондирующими сигналами, принимают эхо-сигналы от объектов статическим веером характеристик направленности, фильтруют, запоминают все принятые эхо-сигналы по всем пространственным направлениям, определяют помеху и выбирают порог, в каждом пространственном канале сравнивают амплитуды эхо-сигналов с порогом и определяют амплитуду превышения порога и время превышения порога, определяют максимальную амплитуду отсчета, превысившего порог, определяют разность времени между эхо-сигналами по каждому из нескольких последовательных излучений, определяют радиальную скорость объекта, введены новые признаки, а именно по нескольким циклам излучение-прием, определяют среднее значение радиальной скорости, определяют среднеквадратичное отклонение (СКО) значения среднего значения радиальной скорости, определяют интервал N циклов излучение-прием, в котором сохраняется стабильность оценки радиальной скорости, определяют изменение радиальной скорости от максимального значения до минимального значения, если оценка скорости меняется на интервале больше, чем N циклов излучение-прием, и отношение СКО к среднему значению скорости меньше 0,5, средняя скорость больше Vпор, то это малоразмерный малоподвижный объект с искусственным двигателем, если оценка скорости меняется меньше чем за N циклов излучения прием и отношение СКО к среднему значение больше 0,5 при средней скорости меньше Vпор, то это малоподвижный малоразмерный объект типа подводного пловца без двигателя, при этом Vпор определяется по минимальной скорости движения малоподвижного малоразмерного объекта.

Поясним сущность предлагаемого технического решения. В контролируемой акватории могут находиться малоподвижные объекты нескольких классов. Прежде всего, основной задачей обнаружения являются подводные пловцы, которые могут передвигаться с помощью ласт или с помощью малогабаритного искусственного движителя, управляемого пловцом. Эти объекты не отличаются эквивалентным радиусом отражения и протяженностью, что определяется уровнем эхо-сигнала, отраженного их корпусом, а отличаются скоростью движения, что определяется радиальной скоростью движения или величиной изменения расстояния (ВИР) и характером изменения скорости движения во времени.

Движения подводного пловца с ластами являются наименее стабильным на фиксированном временном интервале движения и зависят от физических усилий каждого индивидуального исполнителя, поэтому на интервале наблюдения оценка ВИР будет иметь наибольший разброс. Наименьший разброс оценки ВИР наблюдается у пловцов с использованием малогабаритного движителя. Пловец с малогабаритным движителем выбирает направление движения и перемещается в этом направлении с постоянной скоростью. Изменение направления движения происходит при очередном определении положения после значительного интервала времени. Поэтому оценка ВИР будет наиболее стабильна на фиксированном интервале именно для этого класса малоподвижных малоразмерных объектов. Наименьшей скоростью будут обладать пловцы с естественной формой движения с помощью ласт. Этой форме движения соответствуют наименьшие интервалы постоянного направления движения, поэтому оценка ВИР будет часто изменяться. При большой частоте излучения зондирующих сигналов можно получить большое число оценок ВИР, которые определяются как разность измеренных дистанций за время между излучениями. Измеряя величину изменения расстояния можно определить среднее значение скорости Vcp на интервале циклов излучение-прием N, на котором оценка скорости стабильна. Поскольку сама скорость движения пловца с ластами мала, то отношение изменения скорости как величина разницы между максимальным значением и минимальным значением Vмакс - Vмин, что известно из литературы по статистической обработке как «Размах» (И.Г. Венецкий, В.И. Венецкая «Основные математико-статистические понятия и формулы в экономическом анализе». - М.: Статистика, 1979 г.), будет наибольшей и соизмеримой с оценкой средней скорости. Поэтому и отношение размаха к среднему значения Vcp так же будет наибольшим, что может быть выбрано в качестве классификационного признака Q=(Vмакс-Vмин)/Vcp Движение пловца с использованием малогабаритного движителя характеризуется продолжительными интервалами движения с постоянной скоростью в выбранном направлении. В этом случае и среднее значение скорости будет наибольшим и стабильным на интервале наблюдения, поскольку движение пловца с двигателем обладает большей инерцией, чем движение одиночного пловца с ластами. Поэтому отношение размаха между максимальной оценкой скорости и минимальной оценкой скорости на интервале наблюдения будет наименьшим. В качестве классификационного признака может быть использована и сама оценка средней скорости движения. Она будет наименьшая для пловца с ластами, поэтому при формировании решающего правила используются пороговые ограничения, которые могут быть получены при проведении реальных измерительных процедур для данного типа гидролокатора. В качестве Vпор целесообразно выбрать минимальное движение малоразмерного малоподвижного пловца без ласт.

Блок-схема устройства, реализующего предлагаемы способ, приведена на фиг. 1.

На фиг. 1 антенна 1 соединена двусторонней связью с коммутатором 2 приема-передачи, приемным устройством 3, блоком 4 обработки входной многоканальной информации, спецпроцессором 5, в состав которого входят последовательно соединенные блок 6 измерения помехи и выбора порога, блок 7 измерения ВИРа, блок 8 определения среднего значения оценки ВИРа, блок 9 определения размаха оценки ВИРа, блок 10 определения интервала стабильности оценки ВИРа, блок 11 формирования классификационных признаков. Выход спецпроцессора 5 через блок классификации 12, блок отображения и управления 13 соединены через задающий генератор 14 со вторым входом коммутатора приема-передачи 2.

Антенна 1, коммутатор приема-передачи 2, многоканально приемное устройство 3 используются в прототипе и известны как составные части современных гидролокаторов, также известен и используется в прототипе блок 4 обработки входной многоканальной информации (Яковлев А.Н. Каблов Г.П. Гидролокаторы ближнего действия. - Л.: Судостроение, 1983 г.).

Принципы цифрового преобразование и обработки достаточно подробно приведены в работе: Рокотов С.П. Титов. М.С. «Обработка гидроакустической информации на судовых ЦВМ - Л.: Судостроение, 1979 г., стр 32…42 и в книге «Применение цифровой обработки сигналов» п/р Оппенгейма. - М.: Мир, 1980 г., стр. 389…436.

Цифровые процессоры являются известными устройствами, которые предназначены для осуществления конкретных алгоритмов обработки с использованием аппаратных решений и жесткой логикой вычислений. Их применение повышает быстродействие цифровых вычислительных систем в несколько раз и в большинстве случаев сокращает аппаратные затраты. Описания спецпроцессоров приведены в книге: Корякин Ю.А. Смирнов С.А. Яковлев Г.В. «Корабельная гидроакустическая техника». - Санкт Петербург: Изд. Наука, 2004 г., на стр. 281. Там же приведено описание гидроакустических комплексов и гидролокаторов, построенных на основе спецпроцессоров, стр. 296, стр. 328. В спецпроцессоре могут быть реализованы все блоки предлагаемого устройства.

Реализация заявленного способа с помощью устройства, фиг. 1, осуществляется следующим образом: обработка эхо-сигнала начинается сразу же после окончания излучения. На вход антенны 1 поступает аналоговый эхо-сигнал по всем пространственным каналам и через коммутатор 2 последовательно по всем каналам через приемное устройство 3, в котором происходит фильтрация сигнала, усиление входного сигнала по всем пространственным каналам, поступают в блок 4 обработки входной многоканальной информации, где преобразуется в цифровой вид и передаются в спецпроцессор 5. В блоке 6 производится измерение помехи выбор порога и обнаружение превышения порога амплитудой эхо-сигнала. После измерения помехи и выбора порога следует процедура обнаружения эхо-сигнала, которая производится последовательно по всем каналам и по всем элементам дистанции. Определяются выбросы эхо-сигнала, превысившие порог, оценивают амплитуду эхо-сигнала, временное положение эхо-сигнала и пространственное положение эхо-сигнала, которое можно оценить по одной посылке и передать для дальнейшей обработки в блоке 7. Полученные по нескольким посылкам результаты измерений позволяют определить радиальную скорость или ВИР. Эти оценки передаются в блок 8 для определения среднего значения оценки ВИРа, блок 9 определения размаха ВИРа и в блок 10 определения интервала стабильности оценки ВИРа. На основании проведенных измерений в блоке 11 производится вычисление классификационных признаков, которые передаются в блок 12 классификации, где принимается решение о классе цели. В блоке 13 отображения и управления класс цели и выработанные классификационные признаки предоставляются оператору для окончательного принятия решения и для дополнительного излучения зондирующего сигнала и подтверждения принятого решения.

Таким образом, используя предлагаемую последовательность операций, можно обеспечить автоматическое обнаружение малоподвижного малоразмерного объекта, измерить радиальную скорость обнаруженного объекта по нескольким посылкам, и определить классификационные признаки на основе статистической обработки, и вынести решения о классе малоподвижного малоразмерного объекта: малоподвижный малоразмерный объект типа подводного пловца или малоразмерный малоподвижный объект с искусственным двигателем.

Гидролокационный способ классификации подводных объектов в контролируемой акватории, при котором последовательно облучают водное пространство зондирующими сигналами, принимают эхо-сигналы от объектов статическим веером характеристик направленности, фильтруют, запоминают все принятые эхо-сигналы по всем пространственным направлениям, определяют помеху и выбирают порог, в каждом пространственном канале сравнивают амплитуды эхо-сигналов с порогом и определяют амплитуду превышения порога и время превышения порога, определяют максимальную амплитуду отсчета, превысившего порог, определяют разность времени между эхо-сигналами по нескольким последовательным излучениям, определяют радиальную скорость объекта, отличающийся тем, что по нескольким циклам излучение-прием, определяют среднее значение радиальной скорости, определяют среднеквадратичное отклонение значения радиальной скорости, определяют интервал стабильности оценки радиальной скорости N, при котором оценка скорости постоянна, определяют изменение радиальной скорости от максимального значения до минимального значения, если оценка скорости меняется на интервале больше, чем N циклов излучение-прием и отношение СКО к среднему значению меньше 0,5, средняя скорость больше Vпор, то это малоразмерный малоподвижный объект с искусственным двигателем, если оценка скорости меняется меньше чем за N циклов излучение-прием, и отношение СКО к среднему значению больше 0,5 при средней скорости меньше Vпор, то это малоподвижный малоразмерный объект типа подводного пловца без двигателя, при этом Vпор определяется по минимальной скорости движения малоподвижного малоразмерного объекта.
Гидролокационный способ классификации подводных объектов в контролируемой акватории
Гидролокационный способ классификации подводных объектов в контролируемой акватории
Источник поступления информации: Роспатент

Показаны записи 21-30 из 97.
10.05.2018
№218.016.4357

Гидролокатор с трактом прослушивания эхо-сигналов

Гидролокатор с трактом прослушивания эхо-сигналов относится к гидроакустической технике и может быть использован для точного преобразования спектра эхо-сигналов целей, обнаруженных активным гидролокатором, и их классификации на слух оператором гидролокатора. Задача предлагаемого изобретения...
Тип: Изобретение
Номер охранного документа: 0002649655
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.43c1

Гидроакустический способ управления торпедой

Гидроакустический способ управления торпедой, содержащий выпуск торпеды, которая излучает зондирующие сигналы через фиксированные промежутки времени, прием эхосигналов гидролокатором освещения ближней обстановки, выделение классификационных признаков, определение класса объекта, формирование...
Тип: Изобретение
Номер охранного документа: 0002649675
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4674

Концентратомер подвижных инфузорий в жидких средах

Изобретение относится к области фотометрии жидких сред. Концентратомер жидких сред содержит источник излучения, кювету, фильтр низких частот, усилитель, интегратор, задающий генератор. В состав устройства введены фотопреобразующий усилитель, устройство задержки, устройство выделения сигнала,...
Тип: Изобретение
Номер охранного документа: 0002650424
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.4765

Способ определения параметров цели гидролокатором

Изобретение относится к области гидроакустики и может быть использовано для автоматического обнаружение цели, определения ее параметров при использовании зондирующих сигналов большой длительности на фоне реверберационных помех. Предложен способ, содержащий излучение зондирующего сигнала...
Тип: Изобретение
Номер охранного документа: 0002650835
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4788

Гидроакустический модуль сейсмокосы и способ его изготовления

Изобретение относится к технике морских гибких протяженных буксируемых антенн, служащих для измерения звукового поля в воде и применяемых в геофизике и гидроакустике. В гидрофонном модуле приемники акустического давления жестко связаны капроновой нитью, на концах которой закреплены...
Тип: Изобретение
Номер охранного документа: 0002650834
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.478b

Способ определения скорости звука гидролокатором по трассе распространения сигнала до цели

Изобретение относится к области гидроакустики и предназначено для измерения скорости звука гидролокатором по трассе распространения до цели. Полученная оценка скорости звука позволит повысить достоверность при определении основных параметров цели. Предложен способ определения скорости звука по...
Тип: Изобретение
Номер охранного документа: 0002650829
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.479d

Устройство получения информации о шумящем в море объекте

Изобретение относится к области гидроакустики и предназначено для определения параметров объектов, шумящих в море. Заявлено устройство, содержащее многоэлементную акустическую приемную антенну шумопеленгования, блок формирования веера характеристик направленности в горизонтальной и вертикальной...
Тип: Изобретение
Номер охранного документа: 0002650830
Дата охранного документа: 17.04.2018
18.05.2018
№218.016.512f

Устройство и способ энергосбережения автономного приемопередатчика морского радиогидроакустического буя

Изобретение относится к области функционирования морских радиогидроакустических буев (РГБ), предназначенных для приема/передачи информации о подводной обстановке по гидроакустическому каналу и радиоканалу. РГБ используются в военных целях, а также при исследованиях и мониторинге Мирового океана...
Тип: Изобретение
Номер охранного документа: 0002653403
Дата охранного документа: 08.05.2018
29.05.2018
№218.016.540e

Способ определения текущих координат цели в бистатическом режиме гидролокации

Изобретение относится к области гидроакустики и может быть использовано для обеспечения обнаружения и оценки текущих координат морских объектов в заданных районах мирового океана. Техническим результатом от использования изобретения является: определение истинных координат цели, обнаруженной...
Тип: Изобретение
Номер охранного документа: 0002653956
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.5542

Активный гидролокатор

Изобретение относится к области гидроакустики и может быть использовано при построении систем, предназначенных для обнаружения целей гидролокационным методом в морской среде и измерения их параметров. Техническим результатом использования является повышение достоверности измерения дистанции до...
Тип: Изобретение
Номер охранного документа: 0002654366
Дата охранного документа: 17.05.2018
Показаны записи 21-30 из 71.
20.06.2015
№216.013.56b4

Способ автоматической классификации

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации обнаруженных объектов гидролокатором освещения ближней обстановки. Использование способа позволит повысить вероятность правильной классификации. Способ содержит излучение зондирующего...
Тип: Изобретение
Номер охранного документа: 0002553726
Дата охранного документа: 20.06.2015
10.07.2015
№216.013.5c65

Способ обработки гидроакустического сигнала шумоизлучения объекта

Настоящее изобретение относится к области гидроакустики и может быть использовано для разработки гидроакустической аппаратуры различного назначения. Способ позволяет автоматически обнаруживать гидроакустические сигналы шумоизлучения объектов. Способ обработки гидроакустического сигнала...
Тип: Изобретение
Номер охранного документа: 0002555194
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6bd1

Способ измерения толщины льда

Изобретение относится к области гидроакустики и предназначено для разработки гидроакустической аппаратуры, используемой при плавании в ледовой обстановке. Способ заключается в том, что излучают из подводного положения носителя в направлении льда высокочастотные зондирующие гидроакустические...
Тип: Изобретение
Номер охранного документа: 0002559159
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c68

Способ оценки дистанции до шумящего в море объекта

Использование: изобретение относится к области гидроакустики и может быть использовано для определения дистанции до шумящего объекта. Сущность: прием гидроакустического шумового сигнала производят половинами гидроакустической антенны, измеряют взаимный спектр между гидроакустическими шумовыми...
Тип: Изобретение
Номер охранного документа: 0002559310
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.7300

Способ адаптивной обработки сигнала шумоизлучения

Изобретение относится к области гидроакустики и может быть использовано в процессе проектирования гидроакустической аппаратуры специального назначения. Использование изобретения может повысить эффективность использования гидроакустической аппаратуры. Способ адаптивной обработки сигнала...
Тип: Изобретение
Номер охранного документа: 0002561010
Дата охранного документа: 20.08.2015
10.12.2015
№216.013.9650

Гидроакустический способ определения пространственных характеристик объекта

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения высоты объекта над уровнем дна. Сущность: гидроакустический способ определения пространственных характеристик объекта, содержащий излучение зондирующего сигнала в момент времени t, приема...
Тип: Изобретение
Номер охранного документа: 0002570100
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.979a

Способ классификации шумящих объектов

Изобретение относится к области гидроакустики и может быть использовано для разработки систем классификации, использующих спектральные и корреляционные признаки. Технический результат заключается в повышении вероятности правильной классификации обнаруженных источников шумоизлучения. Способ...
Тип: Изобретение
Номер охранного документа: 0002570430
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9b7f

Способ измерения дистанции гидролокатором

Использование: изобретение относится к области гидроакустики и может быть использовано при разработке гидроакустической аппаратуры для повышения точности измерения дистанции, а также при проведении мониторинга морских районов. Сущность: способ измерения дистанции гидролокатором содержит...
Тип: Изобретение
Номер охранного документа: 0002571432
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9e8d

Способ обработки сигнала шумоизлучения объекта

Использование: изобретение относится к гидроакустике и может быть использовано при разработке гидроакустической аппаратуры, предназначенной для обнаружения шумящих объектов. Сущность: способ обработки сигнала шумоизлучения объекта содержит прием временной последовательности сигнала...
Тип: Изобретение
Номер охранного документа: 0002572219
Дата охранного документа: 27.12.2015
20.04.2016
№216.015.34d5

Способ измерения скорости звука

Настоящее изобретение относится к области гидроакустики и предназначено для определения скорости звука по трассе. Способ заключается в следующем. Неподвижный источник излучает через постоянные промежутки времени Т постоянные по длительности зондирующие сигналы. Сигналы распространяются в...
Тип: Изобретение
Номер охранного документа: 0002581416
Дата охранного документа: 20.04.2016
+ добавить свой РИД