×
10.05.2018
218.016.468a

Гидролокационный способ классификации подводных объектов в контролируемой акватории

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002650419
Дата охранного документа
13.04.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к гидроакустическим методам освещения акватории и может быть использовано для построения и разработки гидролокационных станций освещения подводной обстановки в акватории. Гидролокационный способ обнаружения подводных объектов в контролируемой акватории, при котором последовательно облучают водное пространство зондирующими сигналами, принимают эхо-сигналы от объектов статическим веером характеристик направленности, фильтруют, запоминают все принятые эхо-сигналы по всем пространственным направлениям, определяют помеху и выбирают порог, в каждом пространственном канале сравнивают амплитуды эхо-сигналов с порогом и определяют амплитуду превышения порога и время превышения порога, определяют максимальную амплитуду отсчета, превысившего порог, определяют разность времени между эхо-сигналами по нескольким последовательным излучениям, определяют радиальную скорость объекта по нескольким циклам излучение-прием и стабильность оценки радиальной скорости на интервале наблюдения и по измеренным параметрам определяют класс обнаруженного объекта. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области гидроакустики и может быть использовано при обнаружении малоподвижных объектов в условиях гидролокационного наблюдения в контролируемых условиях морской акваторий.

Известен способ автоматической классификации подводных объектов подвижным гидролокатором по патенту РФ №2461020, который содержит излучение зондирующего сигнала подвижным гидролокатором, прием эхо-сигнала, обработку информации в пространственных каналах статического веера характеристик направленности и по количеству характеристик направленности, в которых обнаружен объект, классификацию на малоразмерный объект или крупноразмерный объект. Известна система автоматической классификации подводных объектов с помощью подвижного гидролокатора по патенту РФ №2465618, которая реализует излучение зондирующего сигнала, прием и обработку эхо-сигнала, идентификацию сигналов между каналами, измерение угловой протяженности объекта, измерение его радиальной протяженности, и принятие решения о классе объекта.

Недостатком этих способов является то, что с их помощью нельзя классифицировать объекты на классы неподвижный и малоподвижный, поскольку сам гидролокатор движется и эхо-сигналы, принимаемые гидролокатором, от посылки к посылке будут изменяться в зависимости от направления приема и скорости собственного движения.

Известен гидролокационный способ обнаружения подводных объектов, движущихся с малой скоростью в контролируемой акватории, по патенту РФ №2242021. Гидролокационный способ обнаружения подводных объектов, движущихся с малой скоростью, включает последовательное облучение водного пространства гидроакустическими сигналами по различным направлениям с неподвижного гидролокатора, прием эхо-сигналов от объектов, фильтрацию и отображение на двухкоординатном индикаторе принятых эхо-сигналов одновременно по М-направлениям. При этом осуществляют К циклов излучение-прием, запоминают все принятые эхо-сигналы, дискретизируют по дистанции, отображают их на экране в виде яркостных отметок так, что по каждому из М-направлений последовательно К раз отображается L элементов дистанции, сохраняют КL элементов и отображают на индикаторе L элементов последнего цикла излучения прием, а решение об обнаруженном объекта по К-му направлению принимают по появлению на индикаторе трассы, образованной яркостными отметками эхо-сигналов, полученными в циклах излучение-прием, классификацию неподвижных и малоподвижных объектов оператор осуществляет по наличию наклона трасс яркостных отметок.

Недостатком способа является то, что обнаружение объектов и классификация обнаруженных объектов производится оператором по виду информации отображаемой на индикаторе, а классификация осуществляется по виду трассы при перемещении объекта, для чего требуется большое время наблюдения, порядка 15 циклов излучения - приема.

Известен гидролокационный способ обнаружения подводных объектов в контролируемой акватории по патенту РФ №2593824 от 18.06.2016, при котором последовательно облучают водное пространство зондирующими сигналами, принимают эхо-сигналы от объектов статическим веером характеристик направленности, фильтруют, запоминают все принятые эхо-сигналы, дискретизируют по дистанции по элементам дистанции L, отображают их на двухкоординатном индикаторе по первому циклу излучение-прием, по первым временным элементам дистанции L1 всех пространственных направлений М определяют помеху и выбирают порог, в каждом пространственном канале по всем элементам дистанции L сравнивают амплитуды эхо-сигналов с порогом и определяют амплитуду превышения порога и время превышения порога, определяют максимальную амплитуду отсчета, превысившего порог, определяют разность времени между началом элемента Lp, где p - номер элемента дистанции, в котором обнаружен эхо-сигнал, и временным положением отсчета с максимальной амплитуды Δtmax1, определяют число N отсчетов в интервала Lр, превысивших порог, определяют радиальную протяженность ΔS объекта в элементе дистанции Lp по формуле ΔS=(tN-t1)C, где tN - время последнего отсчета, превысившего порог, t1 - время первого отсчета, превысившего порог в выбранном элементе дистанции, С - скорость распространения звука, запоминают измеренные параметры, производят следующий цикл излучение-прием, повторяют процедуру измерения, определяют те направления М и те элементы дистанции L, которые совпадают в первом и втором циклах излучение-прием, определяют радиальную скорость объекта по формуле Vрад=(Δt2max-Δt1max)C\ΔTk, где, ΔTk - интервал между циклами излучение-прием, Δt2max, - интервал между временным положением максимума и временем начала элемента дистанции второго цикла излучение-прием, формируют табло результатов классификации по измеренным параметрам: направлению Mi, в котором произошло обнаружение, номеру элемента дистанции Lр, числу превышений порога N, радиальной протяженности ΔS и радиальной скорости Vрад, если Vрад=0, то принимают решение, что объект неподвижный, если Vрад≠0, принимают решение, что объект малоподвижный, а решение о классе малоподвижного объекта принимает оператор по анализу измеренных параметров.

Недостатком рассматриваемого способа является то, что производится классификация обнаруженных объектов только на классы подвижный и неподвижный, а класс конкретного подвижного объекта при этом не определен.

Задачей изобретения является классификация малоподвижных малоразмерных объектов.

Техническим результат изобретения заключается в обеспечении классификации обнаруженных малоподвижных объектов на классы: малоподвижный малоразмерный объект типа подводного пловца и малоразмерный малоподвижный объект с искусственным двигателем.

Для решения поставленной задачи в известный гидролокационный способ обнаружения подводных объектов в контролируемой акватории, при котором последовательно облучают водное пространство зондирующими сигналами, принимают эхо-сигналы от объектов статическим веером характеристик направленности, фильтруют, запоминают все принятые эхо-сигналы по всем пространственным направлениям, определяют помеху и выбирают порог, в каждом пространственном канале сравнивают амплитуды эхо-сигналов с порогом и определяют амплитуду превышения порога и время превышения порога, определяют максимальную амплитуду отсчета, превысившего порог, определяют разность времени между эхо-сигналами по каждому из нескольких последовательных излучений, определяют радиальную скорость объекта, введены новые признаки, а именно по нескольким циклам излучение-прием, определяют среднее значение радиальной скорости, определяют среднеквадратичное отклонение (СКО) значения среднего значения радиальной скорости, определяют интервал N циклов излучение-прием, в котором сохраняется стабильность оценки радиальной скорости, определяют изменение радиальной скорости от максимального значения до минимального значения, если оценка скорости меняется на интервале больше, чем N циклов излучение-прием, и отношение СКО к среднему значению скорости меньше 0,5, средняя скорость больше Vпор, то это малоразмерный малоподвижный объект с искусственным двигателем, если оценка скорости меняется меньше чем за N циклов излучения прием и отношение СКО к среднему значение больше 0,5 при средней скорости меньше Vпор, то это малоподвижный малоразмерный объект типа подводного пловца без двигателя, при этом Vпор определяется по минимальной скорости движения малоподвижного малоразмерного объекта.

Поясним сущность предлагаемого технического решения. В контролируемой акватории могут находиться малоподвижные объекты нескольких классов. Прежде всего, основной задачей обнаружения являются подводные пловцы, которые могут передвигаться с помощью ласт или с помощью малогабаритного искусственного движителя, управляемого пловцом. Эти объекты не отличаются эквивалентным радиусом отражения и протяженностью, что определяется уровнем эхо-сигнала, отраженного их корпусом, а отличаются скоростью движения, что определяется радиальной скоростью движения или величиной изменения расстояния (ВИР) и характером изменения скорости движения во времени.

Движения подводного пловца с ластами являются наименее стабильным на фиксированном временном интервале движения и зависят от физических усилий каждого индивидуального исполнителя, поэтому на интервале наблюдения оценка ВИР будет иметь наибольший разброс. Наименьший разброс оценки ВИР наблюдается у пловцов с использованием малогабаритного движителя. Пловец с малогабаритным движителем выбирает направление движения и перемещается в этом направлении с постоянной скоростью. Изменение направления движения происходит при очередном определении положения после значительного интервала времени. Поэтому оценка ВИР будет наиболее стабильна на фиксированном интервале именно для этого класса малоподвижных малоразмерных объектов. Наименьшей скоростью будут обладать пловцы с естественной формой движения с помощью ласт. Этой форме движения соответствуют наименьшие интервалы постоянного направления движения, поэтому оценка ВИР будет часто изменяться. При большой частоте излучения зондирующих сигналов можно получить большое число оценок ВИР, которые определяются как разность измеренных дистанций за время между излучениями. Измеряя величину изменения расстояния можно определить среднее значение скорости Vcp на интервале циклов излучение-прием N, на котором оценка скорости стабильна. Поскольку сама скорость движения пловца с ластами мала, то отношение изменения скорости как величина разницы между максимальным значением и минимальным значением Vмакс - Vмин, что известно из литературы по статистической обработке как «Размах» (И.Г. Венецкий, В.И. Венецкая «Основные математико-статистические понятия и формулы в экономическом анализе». - М.: Статистика, 1979 г.), будет наибольшей и соизмеримой с оценкой средней скорости. Поэтому и отношение размаха к среднему значения Vcp так же будет наибольшим, что может быть выбрано в качестве классификационного признака Q=(Vмакс-Vмин)/Vcp Движение пловца с использованием малогабаритного движителя характеризуется продолжительными интервалами движения с постоянной скоростью в выбранном направлении. В этом случае и среднее значение скорости будет наибольшим и стабильным на интервале наблюдения, поскольку движение пловца с двигателем обладает большей инерцией, чем движение одиночного пловца с ластами. Поэтому отношение размаха между максимальной оценкой скорости и минимальной оценкой скорости на интервале наблюдения будет наименьшим. В качестве классификационного признака может быть использована и сама оценка средней скорости движения. Она будет наименьшая для пловца с ластами, поэтому при формировании решающего правила используются пороговые ограничения, которые могут быть получены при проведении реальных измерительных процедур для данного типа гидролокатора. В качестве Vпор целесообразно выбрать минимальное движение малоразмерного малоподвижного пловца без ласт.

Блок-схема устройства, реализующего предлагаемы способ, приведена на фиг. 1.

На фиг. 1 антенна 1 соединена двусторонней связью с коммутатором 2 приема-передачи, приемным устройством 3, блоком 4 обработки входной многоканальной информации, спецпроцессором 5, в состав которого входят последовательно соединенные блок 6 измерения помехи и выбора порога, блок 7 измерения ВИРа, блок 8 определения среднего значения оценки ВИРа, блок 9 определения размаха оценки ВИРа, блок 10 определения интервала стабильности оценки ВИРа, блок 11 формирования классификационных признаков. Выход спецпроцессора 5 через блок классификации 12, блок отображения и управления 13 соединены через задающий генератор 14 со вторым входом коммутатора приема-передачи 2.

Антенна 1, коммутатор приема-передачи 2, многоканально приемное устройство 3 используются в прототипе и известны как составные части современных гидролокаторов, также известен и используется в прототипе блок 4 обработки входной многоканальной информации (Яковлев А.Н. Каблов Г.П. Гидролокаторы ближнего действия. - Л.: Судостроение, 1983 г.).

Принципы цифрового преобразование и обработки достаточно подробно приведены в работе: Рокотов С.П. Титов. М.С. «Обработка гидроакустической информации на судовых ЦВМ - Л.: Судостроение, 1979 г., стр 32…42 и в книге «Применение цифровой обработки сигналов» п/р Оппенгейма. - М.: Мир, 1980 г., стр. 389…436.

Цифровые процессоры являются известными устройствами, которые предназначены для осуществления конкретных алгоритмов обработки с использованием аппаратных решений и жесткой логикой вычислений. Их применение повышает быстродействие цифровых вычислительных систем в несколько раз и в большинстве случаев сокращает аппаратные затраты. Описания спецпроцессоров приведены в книге: Корякин Ю.А. Смирнов С.А. Яковлев Г.В. «Корабельная гидроакустическая техника». - Санкт Петербург: Изд. Наука, 2004 г., на стр. 281. Там же приведено описание гидроакустических комплексов и гидролокаторов, построенных на основе спецпроцессоров, стр. 296, стр. 328. В спецпроцессоре могут быть реализованы все блоки предлагаемого устройства.

Реализация заявленного способа с помощью устройства, фиг. 1, осуществляется следующим образом: обработка эхо-сигнала начинается сразу же после окончания излучения. На вход антенны 1 поступает аналоговый эхо-сигнал по всем пространственным каналам и через коммутатор 2 последовательно по всем каналам через приемное устройство 3, в котором происходит фильтрация сигнала, усиление входного сигнала по всем пространственным каналам, поступают в блок 4 обработки входной многоканальной информации, где преобразуется в цифровой вид и передаются в спецпроцессор 5. В блоке 6 производится измерение помехи выбор порога и обнаружение превышения порога амплитудой эхо-сигнала. После измерения помехи и выбора порога следует процедура обнаружения эхо-сигнала, которая производится последовательно по всем каналам и по всем элементам дистанции. Определяются выбросы эхо-сигнала, превысившие порог, оценивают амплитуду эхо-сигнала, временное положение эхо-сигнала и пространственное положение эхо-сигнала, которое можно оценить по одной посылке и передать для дальнейшей обработки в блоке 7. Полученные по нескольким посылкам результаты измерений позволяют определить радиальную скорость или ВИР. Эти оценки передаются в блок 8 для определения среднего значения оценки ВИРа, блок 9 определения размаха ВИРа и в блок 10 определения интервала стабильности оценки ВИРа. На основании проведенных измерений в блоке 11 производится вычисление классификационных признаков, которые передаются в блок 12 классификации, где принимается решение о классе цели. В блоке 13 отображения и управления класс цели и выработанные классификационные признаки предоставляются оператору для окончательного принятия решения и для дополнительного излучения зондирующего сигнала и подтверждения принятого решения.

Таким образом, используя предлагаемую последовательность операций, можно обеспечить автоматическое обнаружение малоподвижного малоразмерного объекта, измерить радиальную скорость обнаруженного объекта по нескольким посылкам, и определить классификационные признаки на основе статистической обработки, и вынести решения о классе малоподвижного малоразмерного объекта: малоподвижный малоразмерный объект типа подводного пловца или малоразмерный малоподвижный объект с искусственным двигателем.

Гидролокационный способ классификации подводных объектов в контролируемой акватории, при котором последовательно облучают водное пространство зондирующими сигналами, принимают эхо-сигналы от объектов статическим веером характеристик направленности, фильтруют, запоминают все принятые эхо-сигналы по всем пространственным направлениям, определяют помеху и выбирают порог, в каждом пространственном канале сравнивают амплитуды эхо-сигналов с порогом и определяют амплитуду превышения порога и время превышения порога, определяют максимальную амплитуду отсчета, превысившего порог, определяют разность времени между эхо-сигналами по нескольким последовательным излучениям, определяют радиальную скорость объекта, отличающийся тем, что по нескольким циклам излучение-прием, определяют среднее значение радиальной скорости, определяют среднеквадратичное отклонение значения радиальной скорости, определяют интервал стабильности оценки радиальной скорости N, при котором оценка скорости постоянна, определяют изменение радиальной скорости от максимального значения до минимального значения, если оценка скорости меняется на интервале больше, чем N циклов излучение-прием и отношение СКО к среднему значению меньше 0,5, средняя скорость больше Vпор, то это малоразмерный малоподвижный объект с искусственным двигателем, если оценка скорости меняется меньше чем за N циклов излучение-прием, и отношение СКО к среднему значению больше 0,5 при средней скорости меньше Vпор, то это малоподвижный малоразмерный объект типа подводного пловца без двигателя, при этом Vпор определяется по минимальной скорости движения малоподвижного малоразмерного объекта.
Гидролокационный способ классификации подводных объектов в контролируемой акватории
Гидролокационный способ классификации подводных объектов в контролируемой акватории
Источник поступления информации: Роспатент

Показаны записи 11-20 из 97.
12.01.2017
№217.015.607f

Устройство получения информации о шумящем в море объекте

Использование: изобретение относится к области гидроакустики и предназначено для определения параметров объектов, шумящих в море. Сущность: устройство, содержащее многоэлементную акустическую приемную антенну шумопеленгования, блок формирования веера характеристик направленности в...
Тип: Изобретение
Номер охранного документа: 0002590933
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.857d

Способ обработки гидролокационной информации

Способ обработки гидролокационной информации гидролокатора относится к гидроакустическим системам обнаружения и определения местоположения целей и может быть использован в гидролокаторе с диаграммоформирующим устройством статического веера ДН ЛФАР. Задачей изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002603228
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87db

Акустическая излучающая система интенсификации нефтедобычи

Изобретение относится к нефтедобывающей отрасли промышленности и может быть использовано для предотвращения солеотложения в нефтедобывающем оборудовании в процессе интенсификации нефтедобычи. Акустическая излучающая система интенсификации нефтедобычи содержит последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002603778
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8a52

Имитатор эхосигнала эхолота

Имитатор эхосигналов эхолота относится к гидроакустической технике и может быть использован на этапе отладки программно-аппаратных средств при разработке эхолотов, проверки их работоспособности в процессе производства и эксплуатации на носителях. Задача изобретения заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002604170
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.90c5

Способ классификации гидроакустических сигналов шумоизлучения морского объекта

Изобретение относится к области гидроакустики и может быть использовано в задачах определения класса объекта при разработке гидроакустических систем. Технический результат изобретения заключается в обеспечении достоверного определения спектральных классификационных признаков сигналов...
Тип: Изобретение
Номер охранного документа: 0002603886
Дата охранного документа: 10.12.2016
26.08.2017
№217.015.e306

Гидроакустическая приемная многоэлементная антенна выпуклой формы двойной кривизны, размещаемая в носовой оконечности носителя

Изобретение относится к области гидроакустики, а именно к приемным многоэлементным гидроакустическим антеннам двойной кривизны, размещаемым в носовой оконечности носителя. Техническим результатом настоящего изобретения является создание формы рабочей поверхности гидроакустической антенны,...
Тип: Изобретение
Номер охранного документа: 0002626072
Дата охранного документа: 21.07.2017
20.01.2018
№218.016.1b99

Способ управления скоростью и дальностью передачи в радиомодеме адаптивной радиолинии передачи потоков дискретной информации

Изобретение относится к технике радиосвязи при передаче массивов информации в цифровом формате. Технический результат состоит в обеспечении оптимальной скорости и дальности связи путем варьирования частотой передачи в зависимости от условий связи в канале. Для этого предложен способ...
Тип: Изобретение
Номер охранного документа: 0002636574
Дата охранного документа: 24.11.2017
04.04.2018
№218.016.3133

Способ определения водоизмещения надводного корабля при его шумопеленговании

Изобретение относится к области гидроакустики и предназначено для распознавания морских судов по их шумоизлучению. Для реализации способа осуществляют прием шумового сигнала гидроакустической антенной, аналого-цифровое преобразование, детектирование, низкочастотную фильтрацию, вычисление...
Тип: Изобретение
Номер охранного документа: 0002645013
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.40fe

Способ определения координат подводного объекта гидроакустической системой подводной навигации с юстировочным маяком

Изобретение относится к области подводной навигации и предназначено для определения координат местоположения подводного объекта (ПО) с повышенной точностью, в частности подводных объектов, оборудованных приемопередатчиком гидроакустической навигационной системы с длинной базой (ГАНС-ДБ, LBL...
Тип: Изобретение
Номер охранного документа: 0002649073
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4147

Способ селекции эхо-сигналов в эхолоте

Способ относится к активным гидроакустическим системам обнаружения дна и оценки его глубины и может быть использован в эхолотах для селекции мешающих эхо-сигналов. Техническим результатом изобретения является повышение достоверности оценки глубины эхолотом в каждом цикле зондирования путем...
Тип: Изобретение
Номер охранного документа: 0002649070
Дата охранного документа: 29.03.2018
Показаны записи 11-20 из 71.
27.08.2014
№216.012.ef85

Способ измерения глубины объекта и гидролокатором

Изобретение относится к области гидролокации и предназначено для обнаружения газовой пелены и определения глубины местоположения начала утечек газа трубопроводов гидроакустическими средствами. Технический результат - обеспечение обнаружения и классификации источника утечки газа подводного...
Тип: Изобретение
Номер охранного документа: 0002527136
Дата охранного документа: 27.08.2014
20.09.2014
№216.012.f503

Способ обработки эхосигнала гидролокатора

Использование: гидроакустика. Сущность: способ содержит излучение зондирующего сигнала, прием эхосигнала веером статических характеристик, набор временной реализации последовательно по всем пространственным каналам, обработку последовательно по всем пространственным каналам, определение уровня...
Тип: Изобретение
Номер охранного документа: 0002528556
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f874

Способ обработки гидролокационной информации

Использование: гидроакустика и может быть использовано для построения навигационных гидроакустических станций освещения ближней обстановки. Сущность: способ содержит излучение зондирующего сигнала, прием отраженного эхосигнала, формирование статического веера характеристик направленности,...
Тип: Изобретение
Номер охранного документа: 0002529441
Дата охранного документа: 27.09.2014
10.12.2014
№216.013.0cf2

Система автоматической классификации гидролокатора ближнего действия

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации объектов, обнаруженных гидролокаторами ближнего действия. Технический результат - обеспечение классификации объекта, обнаруженного гидролокатором ближней обстановки, в автоматическом...
Тип: Изобретение
Номер охранного документа: 0002534731
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.26fe

Способ определения осадки айсберга

Изобретение относится к области гидроакустики и может быть использовано в навигационных приборах (гидроакустических станциях) обнаружения ледяных образований (в том числе айсбергов) и оценки его характеристик. Способ предназначен для автоматического определения осадки айсберга для защиты...
Тип: Изобретение
Номер охранного документа: 0002541435
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2802

Гидроакустический способ измерения дистанции с помощью взрывного источника

Изобретение относится к области гидроакустики и может быть использовано для обнаружения объекта в морской среде и измерения координат. Техническим результатом от использования изобретения является измерение дистанции до объекта отражения при неизвестном времени излучения и месте постановки, что...
Тип: Изобретение
Номер охранного документа: 0002541699
Дата охранного документа: 20.02.2015
27.03.2015
№216.013.3510

Способ измерения изменения курсового угла движения источника зондирующих сигналов

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения зондирующих сигналов гидролокаторов, установленных на подвижном носителе. Техническим результатом от использования изобретения является обеспечение возможности определения изменения...
Тип: Изобретение
Номер охранного документа: 0002545068
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3c04

Гидроакустический способ измерения дистанции с использованием взрывного сигнала

Изобретение относится к гидроакустике и предназначено для обнаружения объектов и измерения дистанции до них при взрывном источнике зондирующих сигналов. Изобретение позволяет определить дальность обнаружения и обеспечить скрытность приемного устройства. Гидроакустический способ измерения...
Тип: Изобретение
Номер охранного документа: 0002546852
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42ca

Способ определения осадки айсберга

Изобретение относится к области гидроакустики и может быть использовано в навигационных приборах (гидроакустических станциях) обнаружения ледяных образований (в том числе айсбергов) и оценки его характеристик. Способ предназначен для автоматического определения осадки айсберга для защиты...
Тип: Изобретение
Номер охранного документа: 0002548596
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4a7d

Способ измерения дистанции до шумящего объекта

Изобретение относится к области гидроакустики и может быть использовано при разработке систем определения координат по данным тракта шумопеленгования гидроакустических комплексов. Способ содержит прием гидроакустического шумового сигнала гидроакустической антенной, сопровождение цели в режиме...
Тип: Изобретение
Номер охранного документа: 0002550576
Дата охранного документа: 10.05.2015
+ добавить свой РИД