×
04.04.2018
218.016.3216

Результат интеллектуальной деятельности: Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электросвязи и информационных технологий и предназначено для использования в сетях передачи видеоизображений, в частности при необходимости сжатия оцифрованных видеоизображений. Техническим результатом является повышение коэффициента сжатия без снижения качества восстановленного на приеме изображения за счет исключения предварительно сформированной библиотеки вейвлет-базисов и формирования базиса ортогонального преобразования непосредственно из самого блока исходного изображения. Предложен способ кодирования цифрового изображения. Согласно способу преобразуют цифровое пространство цифрового изображения, разделяют изображение на блоки размером P×N элементов, адаптивно кодируют каждый блок размером P×N элементов, формируют битовый поток. При этом адаптивное кодирование выполняют путем определения базиса ортогонального преобразования, причем для определения базиса ортогонального преобразования вычисляют правостороннюю матрицу ортогонального преобразования размером N×N и левостороннюю матрицу ортогонального преобразования размером Р×Р элементов. 1 з.п. ф-лы, 10 ил., 1 табл.

Заявленное изобретение относится к области электросвязи и информационных технологий, а именно к сжатию оцифрованных изображений.

Заявленное изобретение может быть использовано для снижения требований к скорости передачи изображений и к емкости запоминающих устройств, используемых для хранения изображений.

Существующие в настоящее время стандарты сжатия видеоданных, например MPEG-1, 2, 4, Н-263, Н-264, предусматривают выполнение следующих типовых этапов преобразования: кодирование цветового пространства изображения; разделение цветовых компонент на блоки фиксированного размера (4×4, 8×8, 16×16, 32×32, 64×64); выполнение над каждым блоком операции двумерного дискретного косинусного преобразования (ДКП-2); квантование коэффициентов ДКП-2 с последующим энтропийным кодированием. Эффект сжатия достигается за счет того, что после выполнения ДКП-2 большая часть коэффициентов принимает значение, близкое к нулю. В связи с этим квантованные блоки коэффициентов содержат большое количество нулевых элементов, что обеспечивает высокий коэффициент сжатия на этапе энтропийного кодирования. Недостатком указанных стандартов является необходимость разделения исходного изображения на блоки меньшего размера. Это приводит к существенному недостатку - возникновению артефакта блочности, который проявляется в наличии видимых границ между блоками пикселей на декодированных изображениях. Данное обстоятельство существенно ухудшает зрительное восприятие изображений при увеличении коэффициента сжатия. Подробно использование ДКП-2 для сжатия изображений описано в стандарте ISO/IEC 10918-1: 1993.

Известен также способ и устройство для кодирования и декодирования изображения и способ и устройство для декодирования изображения с помощью адаптивного порядка сканирования коэффициентов по патенту РФ 2518935 МПК H04N от 10.06.2014, заключающийся в том, что на передающей стороне исходное изображение разделяют на блоки меньшего размера, выполняют над указанными блоками ДКП-2, квантуют их и выполняют энтропийное кодирование над квантованными коэффициентами, отличающийся использованием адаптивного порядка сканирования коэффициентов ДКП-2 путем проецирования коэффициентов на ось под углом α (равен 0, 45 или 90 градусов) к опорной оси и кодированием с помощью энтропийного кодирования о заранее заданном угле α и отсканированных коэффициентах.

Недостатком данного способа-аналога является ограниченное число вариантов сканирования коэффициентов, которое определяется заранее заданным углом α, что приводит либо к снижению коэффициента сжатия при заданном качестве восстановленных изображений, либо к снижению качества восстановления при увеличении коэффициента сжатия. Кроме того, поскольку ДКП-2 выполняют над блоками меньшего размера, чем сжимаемое изображение, то сохраняется недостаток, связанный с эффектом блочности при восстановлении изображений на приеме.

Другой способ сжатия основывается на субполосном преобразовании изображения с последующим устранением межполосной избыточности. Субполосное преобразование подробно рассмотрено в книге В.П. Воробьев, В.Г. Грибунин "Теория и практика вейвлет-преобразования". - С-Петербург, ВУС, 1999. Используя субполосное преобразование, изображение преобразуют в набор субполос, каждая из которых представляет собой матрицу коэффициентов преобразования. В качестве субполосного преобразования используют вейвлет-разложение по схеме Малла. В этом случае используется реализация вейвлет-преобразования в виде зеркального фильтра с ядром, вид которого определяется используемым вейвлет-базисом. Адаптация заключается в выборе низкочастотной либо высокочастотной составляющей зеркального фильтра по каждой субполосе.

Данный аналог за счет адаптивного выбора частотных составляющих субполос обеспечивает повышение коэффициента сжатия по сравнению с методами, в которых выбор частотных составляющих субполос является фиксированным.

Недостатком указанного аналога является то, что при сжатии изображения используют неизменный вейвлет-базис, что не позволяет обеспечивать требуемый коэффициент сжатия при кодировании всего многообразия различных изображений.

Наиболее близким по своей технической сущности к заявленному способу кодирования оцифрованных изображений является способ кодирования оцифрованных изображений с использованием дискретного вейвлет-преобразования адаптивно-определенного базиса по патенту RU 2429541 С2, МПК G06T 9/20 (2006/1) от 02.09.2009. Способ-прототип кодирования оцифрованных изображений заключается в том, что исходное изображение разбивают на блоки и для упомянутых блоков выполняют дискретное вейвлет-преобразование с использованием вейвлет-базисов, которые были определены адаптивно на этапе адаптивного кодирования.

Способ-прототип кодирования оцифрованных изображений обеспечивает снижение требований к скорости передачи изображений и к емкости запоминающих устройств на основе повышения коэффициента сжатия за счет выбора оптимального вейвлет-базиса из библиотеки.

Общая схема способа-прототипа представлена на фиг. 1. На передающей стороне входное изображение 1 подвергают преобразованию цветовых пространств на этапе 2, результатом которого являются матрицы пикселов, соответствующие цветовым пространствам изображения (например, матрица яркости, матрица контрастности и матрица цветности). Каждую из этих матриц передают на этап 3 дискретизации изображения, на котором его сегментируют и формируют блоки исходного изображения (далее по тексту - БИИ). Затем выполняют этап 4 адаптивного кодирования с использованием методов статистического, корреляционного и спектрального анализа, для чего адаптивно определяют вейвлет-базисы для БИИ, выполняют дискретное вейвлет-преобразование (далее по тексту - ДВП), а также выполняют другие действия по кодированию БИИ. Способ определения вейвлет-базиса может быть как одним для всех БИИ, так и различаться от блока к блоку. Кроме того, при расчете коэффициентов ДВП субполос БИИ для каждой из этих субполос может быть использован свой вейвлет-базис. На завершающем этапе 5 формируют битовый поток изображения. Полученные последовательности бит для каждого из БИИ дополняют служебной информацией (например, информацией о размерах блоков, размерах изображения, используемых вейвлет-базисах и т.д.) и объединяют в битовый поток изображения. Окончание этапа 5 означает завершение компрессии входного изображения 1 и результирующая битовая последовательность на этапе 6 может быть записана запоминающим устройством или передана по каналу связи.

В способе-прототипе предусмотрено несколько вариантов адаптивного определения вейвлет-базисов для БИИ: на основе расчета характеристики БИИ; на основе расчета характеристики субполос БИИ; на основе оценки восстановления блоков изображения. При этом каждый из указанных вариантов предполагает выбор оптимального вейвлет-базиса из библиотеки базисов.

При необходимости восстановления изображения записанную или переданную последовательность бит подвергают декомпрессии. На этапе 7 декомпрессии анализируют битовый поток изображения, извлекают служебную информацию и выделяют последовательности бит, соответствующие кодированным коэффициентам ДВП для БИИ. Полученная служебная информация и последовательности бит позволяют осуществить декодирование на этапе 8 и обратное ДВП для соответствующих базисных функций на этапе 9 для того, чтобы в результате получить блоки восстановленного изображения. Полученные на этапе 9 блоки восстановленного изображения в соответствии со служебной информацией на этапе 10 объединяют в матрицы цветовых пространств восстановленного изображения. После того как все матрицы изображения восстановлены, наступает этап преобразования цветовых пространств 11, представляющий собой восстановленное изображение в виде матриц требуемого цветового пространства. Результатом декомпрессии является восстановленное изображение 12.

Особенностью способа-прототипа является то, что выбор оптимального вейвлет-базиса осуществляют из библиотеки вейвлет-базисов ограниченного объема. Поскольку разнообразие сжимаемых изображений бесконечно велико, а объем библиотеки вейвлет-базисов ограничен, то возможны случаи, когда выбранный вейвлет-базис для сжатия текущего БИИ будет неоптимальным. Это, в свою очередь, приводит либо к снижению качества восстановленных на приеме изображений, либо к снижению коэффициента сжатия.

Недостатком ближайшего аналога (прототипа) является ограниченный набор вейвлет-базисов, из которого выбирают оптимальный, что приводит к снижению эффективности сжатия (коэффициента сжатия).

Целью заявленного технического решения является разработка способа кодирования цифрового изображения, обеспечивающего повышение коэффициента сжатия без снижения качества восстановленного на приеме изображения за счет исключения предварительно сформированной библиотеки вейвлет-базисов и формирования базиса ортогонального преобразования непосредственно из самого БИИ.

Указанный технический результат в заявленном способе кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования достигается тем, что в известном способе кодирования, заключающемся в преобразовании цифрового пространства цифрового изображения, разделении изображения на блоки размером P×N элементов, адаптивном кодировании каждого блока размером P×N элементов, формировании битового потока, согласно изобретению адаптивное кодирование выполняют путем определения базиса ортогонального преобразования и для упомянутых блоков выполняется двумерное ортогональное преобразование с использованием базиса ортогонального преобразования, который был определен адаптивно на этапе адаптивного кодирования, дополнительно определение базиса ортогонального преобразования выполняют путем вычисления правосторонней матрицы ортогонального преобразования размером N×N элементов и левосторонней матрицы ортогонального преобразования размером P×Pэлементов, а для вычисления правосторонней матрицы ортогонального преобразования предварительно назначают величину коэффициента mp, кратную N, причем mp<<N, и формируют нулевую матрицу WP размером N×N элементов, затем вычисляют корреляционных матриц Xi, i=1, 2, …, по формулe ; k, n=1, 2, …, mp, где Xi(k,n) - k-ый, n-ый элемент i-ой корреляционной матрицы; а(j,k+(i-1)mp) - элемент блока исходного изображения размером P×N элементов, расположенный в j-ой строке и k+(i-1)mp столбце; a(j,n+(i-1)mp - элемент блока исходного изображения размером P×N элементов, расположенный в j-ой строке и n+(i-1)mp столбце, затем, используя QR-алгоритм вычисления собственных векторов и собственных чисел квадратной симметрической матрицы, для каждой матрицы Xi, i=1, 2, …, , вычисляют матрицу собственных векторов Vi и диагональную матрицу собственных чисел [diagλ]i, i=1, 2, …, , такие, что Xi=Vi[diagλ]i, причем abs(λi(1,1))>abs(λi(2,2))>,…,>abs(λi(j,j))>,…,>abs(λi(mp,mp)), где λi(j,j) - j-ый, j-ый элемент i-ой диагональной матрицы собственных чисел [diagλ]i, после чего присваивают элементам матрицы WP размером N×N элементов элементы матриц собственных векторов Vi, i=1, 2, …, по формуле WP(k+(i-1)mp, i+(j-1)mp)=Vi(k,j), k=1, 2, …, mp; i=1, 2, …, ; j=1, 2, …, mp, а для вычисления левосторонней матрицы ортогонального преобразования предварительно назначают величину коэффициента ml, кратную Р, причем ml<<P, и формируют нулевую матрицу WL размером P×P элементов, затем вычисляют корреляционных матриц Yi, i=1, 2, …, по формуле ; k, n=1, 2, …, ml, где Yi (k, n) - k-ый, n-ый элемент i-ой корреляционной матрицы; a(k+(i-1)ml,j) - элемент блока исходного изображения размером P×N элементов, расположенный в k+(i-1)ml строке и в j-ом столбце; а(n+(i-1)ml,j) - элемент блока исходного изображения размером P×N элементов, расположенный в n+(i-1)ml строке и в j-ой строке, затем, используя QR-алгоритм вычисления собственных векторов и собственных чисел квадратной симметрической матрицы, для каждой матрицы Yi, i=1, 2, …, , вычисляют матрицу собственных векторов Ui и диагональную матрицу собственных чисел [diagϒ]i, i=1, 2, …, , такие, что Yi=Ui[diagϒ]i, причем abs(ϒi(1,1))>abs(ϒi(2,2))>,…,>abs(ϒi(j,j))>,…,>abs(ϒi(mp,mp)), где ϒi(j,j) - j-ый, j-ый элемент i-ой диагональной матрицы собственных чисел [diagϒ]i, после чего присваивают элементам матрицы WL размером P×P элементов элементы матриц собственных векторов Ui, i=1, 2, …, по формуле WL(i+(j-1)ml,k+(i-1)ml)=Ui(k,j), k=1, 2, …, ml; i=1, 2, …, ; j=1, 2, …, ml, после этого выполняют двумерное ортогональное преобразование блока исходного изображения размером P×N элементов по формуле С=WL⋅A⋅WP, где С - матрица коэффициентов двумерного ортогонального преобразования размером P×N элементов; WL - левосторонняя матрица ортогонального преобразования размером P×P элементов; WP - правосторонняя матрица ортогонального преобразования размером N×N элементов; A - матрица блока исходного изображения размером P×N элементов.

В предлагаемом способе кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования определение базиса ортогонального преобразования выполняют на основе матрицы блока исходного изображения размером P×N элементов, при этом не требуется предварительного создания библиотеки базисов. Поэтому новая совокупность действий при выполнении кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования позволяет либо улучшить качество восстанавливаемых на приеме изображений, либо повысить коэффициент их сжатия за счет адаптивного вычисления базиса на основе кодируемого изображения.

Заявленный способ поясняется чертежами, на которых показаны:

фиг. 1 - общая схема компрессии и декомпрессии в ближайшем аналоге (прототипе);

фиг. 2 - этапы адаптивного кодирования заявленного способа преобразования;

фиг. 3 - этапы вычисления правосторонней матрицы ортогонального преобразования;

фиг. 4 - присвоение элементам матрицы WP размеров N×N элементов матриц собственных векторов Vi, i=1, 2, …;

фиг. 5 - этапы вычисления левосторонней матрицы ортогонального преобразования;

фиг. 6 - формирование i-й корреляционной матрицы левосторонней матрицы ортогонального преобразования размером P×P элементов;

фиг. 7 - пример исходного изображения размером 1080×1920 пикселей;

фиг. 8 - фрагмент восстановленного изображения при использовании алгоритма JPEG;

фиг. 9 - фрагмент восстановленного изображения при использовании алгоритма JPEG-2000;

фиг. 10 - фрагмент восстановленного изображения при использовании заявленного способа.

Реализация заявленного способа заключается в преобразовании цифрового пространства цифрового изображения, разделении изображения на блоки размером P×N элементов, адаптивном кодировании каждого блока размером P×N элементов, формировании битового потока и отличается от способа-прототипа выполнением этапа адаптивного кодирования при компрессии изображения. Фиг. 2 иллюстрирует этапы адаптивного кодирования заявленного способа преобразования. На фиг. 2 БИИ 1, представленный матрицей A размером P×N элементов, используется для расчета базиса ортогонального преобразования в виде правосторонней матрицы ортогонального преобразования - WP размером N×N элементов и левосторонней матрицы ортогонального преобразования - WL размером P×P элементов. Вычисление матриц WP и WL осуществляют на этапах 2 и 3, соответственно. После вычисления матриц WP и WL на этапе 4 выполняют двумерное ортогональное преобразование, в результате которого вычисляют коэффициенты двумерного ортогонального преобразования в виде матрицы С размером P×N элементов в соответствии с выражением С=WL⋅A⋅WP.

Этапы вычисления правосторонней матрицы ортогонального преобразования показаны на фиг. 3. Исходными данными для расчета матрицы WP размером N×N элементов является БИИ 1 в виде матрицы A размером P×N элементов и коэффициент mp, который определяет число ненулевых элементов в каждом столбце матрицы WP размером N×N элементов. На этапе 2, используя элементы a(i,j), i=1, 2, …, Р; j=1, 2, …, N, матрицы A вычисляют корреляционные матрицы Xi, i=1, 2, …, по формуле (см. фиг. 6); k, n=1, 2, …, mp. Затем, на этапе 3, для найденных матриц Xi, i=1, 2, …, вычисляют матрицы собственных векторов Vi и диагональные матрицы собственных чисел [diagλ]i, i=1, 2, …, . Вычисление матриц собственных векторов и диагональных матриц собственных чисел можно осуществить так, как это показано в работе [Б. Парлет Симметричные проблемы собственных значений. Численные методы: Пер. с англ. - М, 1983. 384 с]. На 4 этапе присваивают элементам предварительно сформированной нулевой матрицы WP размером N×N элементов элементы матриц собственных векторов Vi, i=1, 2, …, в соответствии с выражением WP(k+(i-1)mp, i+(j-1)mp)=Vi(k,j), k=1, 2, …, mp; i=1, 2, …, ; j=1, 2, …, mp. Присвоение элементам матрицы WP размеров N×N элементов матриц собственных векторов Vi, i=1, 2, … показано на фиг. 4.

Этапы вычисления левосторонней матрицы ортогонального преобразования показаны на фиг. 5. Исходными данными для расчета матрицы WL размером Р×Р элементов является БИИ 1 в виде матрицы A размером P×N элементов и параметр ml, который определяет число ненулевых элементов в каждой строке матрицы WL размером P×P элементов. На этапе 2, используя элементы a(i,j), i=1, 2, …, Р; j=1, 2, …, N, матрицы A вычисляют корреляционные матрицы Yi, i=1, 2, …, по формуле ; k, n=1, 2, …, ml. Затем, на этапе 3, для найденных матриц Yi, i=1, 2, …, вычисляют матрицы собственных векторов Ui и диагональные матрицы собственных чисел [diagϒ]i, i=1, 2, …, . На 4 этапе присваивают элементам предварительно сформированной нулевой матрицы WL размером Р×Р элементов элементы матриц собственных векторов Ui, i=1, 2, …, в соответствии с выражением WL(i+(j-1)ml, k+(i-1)ml)=Ui(k,j), k=1, 2, …, ml; k=1, 2, …, ; j=1, 2, …, ml.

Проверка эффективности заявленного способа кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования проводилась методом имитационного моделирования.

В качестве исходного было использовано монохромное изображение с 256 уровнями серого размером 1080×1920 пикселей. Пример исходного изображения показан на фиг. 7. Результаты имитационного моделирования представлены в таблице 1.

В ходе моделирования оценка качества восстановленных изображений осуществлялась путем расчета пикового отношения сигнал/шум (PSNR) и визуальным просмотром. Расчет PSNR осуществлялся в соответствии с выражением , где P - число строк блока исходного изображения; N - число столбцов блока исходного изображения; A(i,j) - элемент блока исходного изображения размером P×N элементов, расположенный в i-ой строке и j-ом столбце; - элемент блока восстановленного изображения размером P×N элементов, расположенный в i-ой строке и j-ом столбце. Представленные в табл. 1 значения PSNR получены при сжатии исходного изображения в 100 раз. Кроме заявленного способа в таблице 1 представлены результаты вычисления PSNR при использовании известных стандартов сжатия неподвижных изображений JPEG и JPEG-2000. Анализ результатов показывает, что заявленный способ характеризуется превышением величины PSNR на 5,1 [дБ] по сравнению с алгоритмом JPEG и на 2,5 [дБ] по сравнению с алгоритмом JPEG-2000.

Визуальный анализ качества восстановленных изображений показал, что изображения, полученные на основе заявленного способа, не имеют артефактов в виде блочности (см. фиг. 8), характерных для алгоритма JPEG, и артифактов в виде выделения фоновых участков, характерных для алгоритма JPEG-2000 (см. фиг. 9). Фрагмент восстановленного изображения на основе заявленного способа представлен на фиг. 10. Анализ представленного изображения свидетельствует об отсутствии указанных артефактов.

Таким образом, в заявленном способе кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования обеспечивается повышение качества восстановленных изображений при заданном коэффициенте сжатия по сравнению с известными.


Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Способ кодирования оцифрованных изображений с использованием адаптивного ортогонального преобразования
Источник поступления информации: Роспатент

Показаны записи 71-80 из 98.
30.03.2019
№219.016.fa23

Поездная модульная передающая фазированная антенная решетка

Изобретение относится к радиотехнике и предназначено для использования в системах подвижной радиосвязи преимущественно в коротковолновом (KB) диапазоне. Поездная модульная передающая (ПМП) фазированная антенная решетка (ФАР) состоит из: блока автоматического управления параметрами (БАУП) 1 ФАР,...
Тип: Изобретение
Номер охранного документа: 0002683592
Дата охранного документа: 29.03.2019
01.04.2019
№219.016.fa50

Способ обнаружения компьютерных атак

Изобретение относится к вычислительной технике. Технический результат заключается в разработке способа обнаружения компьютерных атак различных типов за счет использования искусственной нейронной сети, обладающей возможностью адаптации и прогнозирования. Способ обнаружения компьютерных атак...
Тип: Изобретение
Номер охранного документа: 0002683631
Дата охранного документа: 29.03.2019
08.05.2019
№219.017.48e5

Тем-рупор

Изобретение относится к антенной технике, в частности к сверхширокополосным (СШП) антеннам, и может быть использовано в различных широкополосных радиотехнических системах для излучения мощных СШП электромагнитных импульсов. Антенна (ТЕМ-рупор) содержит две идентичные, зеркально изогнутые друг...
Тип: Изобретение
Номер охранного документа: 0002686876
Дата охранного документа: 06.05.2019
29.05.2019
№219.017.6371

Устройство формирования сигналов с многопозиционной манипуляцией

Изобретение относится к цифровой радиосвязи и может быть использовано в системах передачи информации посредством помехозащищенных сигналов с многопозиционной манипуляцией. Достигаемым техническим результатом является повышение помехозащищенности сигналов с многопозиционной манипуляцией при...
Тип: Изобретение
Номер охранного документа: 0002688135
Дата охранного документа: 20.05.2019
14.07.2019
№219.017.b421

Способ борьбы с артиллерией противника

Изобретение относится к области активной и пассивной локации и может быть использовано для высокоточного определения текущих координат артиллерии противника в интересах эффективной контрбатарейной борьбы. Учитывают тактические и инженерные свойства местности. Сравнивают временные затраты на...
Тип: Изобретение
Номер охранного документа: 0002694421
Дата охранного документа: 12.07.2019
02.08.2019
№219.017.bb83

Способ определения координат источника радиоизлучения

Изобретение относится к радиотехнике, а именно к способам определения местоположения источника радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения местоположения подвижного ИРИ на произвольной высоте, в частности, расположенного...
Тип: Изобретение
Номер охранного документа: 0002696086
Дата охранного документа: 31.07.2019
22.08.2019
№219.017.c223

Способ оценки электромагнитной совместимости бортового радиоэлектронного оборудования

Изобретение относится к области радиотехники, в частности, для испытаний радио- и радиоэлектронного бортового оборудования (БРЭО) на электромагнитную совместимость (ЭМС). Технический результат заключается в способе оценки ЭМС, исключающем использование дополнительного измерительного...
Тип: Изобретение
Номер охранного документа: 0002697810
Дата охранного документа: 20.08.2019
02.10.2019
№219.017.cd24

Способ селекции цифровых потоков

Изобретение относится к области радиотехники, в частности к радиосетям передачи данных и речевых сообщений диапазона высоких частот. Технический результат заключается в повышении вероятности правильной селекции ЦП, в условиях априорной неопределенности о их параметрах и структуре, форме кадра...
Тип: Изобретение
Номер охранного документа: 0002701465
Дата охранного документа: 26.09.2019
02.10.2019
№219.017.cdd3

Способ и устройство определения координат источников радиоизлучения

Изобретения относятся к радиотехнике и могут быть использованы для определения местоположения источников радиоизлучения (ИРИ) с летно-подъемного средства (ЛПС) угломерным способом. Достигаемый технический результат - повышение точности определения координат ИРИ. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002700767
Дата охранного документа: 20.09.2019
06.10.2019
№219.017.d2e3

Устройство комплексного контроля технического состояния радиоэлектронного оборудования

Предложенное изобретение относится к области контрольно-измерительной техники и может быть использовано при бесконтактном контроле технического состояния радиоэлектронного оборудования (РЭО). Устройство комплексного контроля технического состояния радиоэлектронного оборудования содержит...
Тип: Изобретение
Номер охранного документа: 0002702129
Дата охранного документа: 04.10.2019
Показаны записи 51-60 из 60.
09.06.2018
№218.016.5ec6

Способ арифметического кодирования с шифрованием

Изобретение относится к области электросвязи и информационных технологий, а именно к технике криптографической защиты избыточной двоичной информации при обмене данными по общедоступным каналам передачи, в которых нарушитель может осуществлять действия по несанкционированному чтению информации....
Тип: Изобретение
Номер охранного документа: 0002656713
Дата охранного документа: 06.06.2018
14.07.2018
№218.016.7135

Наземный пункт управления робототехническими комплексами

Наземный пункт управления робототехническими комплексами (РТК) выполнен с возможностью расположения в кузове-фургоне и содержит множество приемо-передающих антенн связи с РТК, множество рабочих мест оператора со средствами вычислительной техники, средства электропитания, приемо-передающие...
Тип: Изобретение
Номер охранного документа: 0002661264
Дата охранного документа: 13.07.2018
29.04.2019
№219.017.45d6

Способ обнаружения модификации электронного изображения

Изобретение относится к области электросвязи. Техническим результатом является повышение повышение точности определения координат модифицированной части электронного изображения. Двухмерное пространственное представление проверяемого электронного изображения разделяют на перекрывающиеся блоки,...
Тип: Изобретение
Номер охранного документа: 0002448370
Дата охранного документа: 20.04.2012
18.05.2019
№219.017.5935

Устройство формирования и проверки заверенного цифровым водяным знаком электронного изображения

Изобретение относится к средствам защиты подлинности электронных изображений, сжимаемых алгоритмами сжатия электронных изображений, такими как JPEG, MPEG-2, передаваемых отправителем получателю по общедоступным каналам передачи, в которых нарушитель может осуществлять действия по навязыванию...
Тип: Изобретение
Номер охранного документа: 0002411579
Дата охранного документа: 10.02.2011
22.08.2019
№219.017.c223

Способ оценки электромагнитной совместимости бортового радиоэлектронного оборудования

Изобретение относится к области радиотехники, в частности, для испытаний радио- и радиоэлектронного бортового оборудования (БРЭО) на электромагнитную совместимость (ЭМС). Технический результат заключается в способе оценки ЭМС, исключающем использование дополнительного измерительного...
Тип: Изобретение
Номер охранного документа: 0002697810
Дата охранного документа: 20.08.2019
12.10.2019
№219.017.d543

Способ совместного арифметического и помехоустойчивого кодирования и декодирования

Изобретение относится к области электросвязи и информационных технологий и может быть использовано для помехоустойчивого кодирования и декодирования при передаче информации по каналам с ошибками. Техническим результатом является повышение помехоустойчивости передачи очередных частей...
Тип: Изобретение
Номер охранного документа: 0002702724
Дата охранного документа: 09.10.2019
27.01.2020
№220.017.fa32

Способ совместного арифметического и помехоустойчивого кодирования и декодирования

Изобретение относится к области электросвязи и информационных технологий. Технический результат заключается в повышении помехоустойчивости передачи очередных частей кодированной последовательности при воздействии многократных ошибок передачи. Такой результат достигается тем, что на передающей...
Тип: Изобретение
Номер охранного документа: 0002712096
Дата охранного документа: 24.01.2020
18.03.2020
№220.018.0ce0

Способ радиоподавления каналов связи

Изобретение относится к области радиотехники, а именно к технике создания искусственных радиопомех, и может быть использовано для радиоподавления источников излучений, априорная информация о загруженности рабочих частот которых не известна, в том числе использующих режим с псевдослучайной...
Тип: Изобретение
Номер охранного документа: 0002716702
Дата охранного документа: 16.03.2020
02.04.2020
№220.018.12dd

Способ совместного арифметического и помехоустойчивого кодирования и декодирования

Изобретение относится к области электросвязи и информационных технологий и может быть использовано для помехоустойчивого кодирования и декодирования при передаче информации по каналам с ошибками. Техническим результатом является повышение помехоустойчивости передачи очередных частей...
Тип: Изобретение
Номер охранного документа: 0002718213
Дата охранного документа: 31.03.2020
15.05.2023
№223.018.5b9d

Способ арифметического кодирования и декодирования

Изобретение относится к области электросвязи и информационных технологий. Технический результат заключается в уменьшение скорости передачи по каналу передачи кодированной последовательности. Технический результат достигается тем, что на передающей стороне принимают очередную информационную...
Тип: Изобретение
Номер охранного документа: 0002752868
Дата охранного документа: 11.08.2021
+ добавить свой РИД