×
19.01.2018
218.016.00b2

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ ТЕКУЩЕГО СОСТОЯНИЯ ПАНЕЛИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002629647
Дата охранного документа
30.08.2017
Аннотация: Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра, характеризующего текущее состояние панели СБ, с задаваемыми значениями и контроль текущего состояния панели СБ по результатам сравнения. Дополнительно измеряют вектор направления на Солнце в связанной с КА системе координат, определяют угол выставки СБ в ее текущее дискретное положение, определяют текущие значения угла падения солнечного излучения на поверхность защитного покрытия СБ, выполняют поворот СБ в не менее чем два выбранных дискретных положения СБ, измеряют значение тока от СБ. Состояние панели СБ оценивают по состоянию ее оптического защитного покрытия, характеризуемому текущим значением его абсолютного показателя преломления, определяемым по значениям угла падения солнечного излучения на поверхность защитного покрытия СБ и значениям тока. Техническим результатом изобретения является обеспечение оценки текущего значения абсолютного показателя преломления защитного покрытия СБ. 1 ил.

Изобретение относится к области космической техники, а именно к системам электроснабжения (СЭС) космических аппаратов (КА) и может быть использовано при эксплуатации солнечных батарей (СБ) СЭС КА.

Одной из составляющей контроля текущего состояния СБ КА является контроль основных электрических характеристик СБ - выходного тока, напряжения и мощности СБ. На стадии проектирования и изготовления СБ осуществляется теоретический расчет выходных параметров СБ, который может быть основан на методе перемещений вольт-амперной характеристики, учитывающем различные влияния окружающей среды и параметров нагрузки на характеристики СБ (Система электроснабжения КА. Техническое описание. 300ГК.20Ю.0000-АТО. РКК «Энергия», 1998; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва. Энергоатомиздат.1983. Стр. 49, 54).

Недостаток указанного способа контроля текущего состояния СБ заключается в том, что используемые в расчетах модели факторов космического полета имеют ограниченную точность, что не позволяет получить достоверные данные о реальных характеристиках СБ в полете, учитывающих процесс «деградации» СБ.

Для контроля фактических характеристик СБ в полете используются измерения фактического выходного тока СБ под воздействием солнечного излучения, поступающего перпендикулярно рабочей поверхности СБ (Елисеев А.С. Техника космических полетов. Москва, «Машиностроение», 1983. стр. 190-194; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983. стр. 57; патент РФ №2353555 по заявке №2006131395/11, приоритет от 31.08.2006 - прототип), для чего разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце и контроль текущего состояния панели СБ осуществляют по результатам сравнения измеренных значений тока с задаваемыми значениями - текущая эффективность СБ оценивается по отношению измеренных фактических выходных параметров СБ к их номинальным значениям - проектным или некоторым исходным значениям, например, на момент начала функционирования КА.

Выбор силы тока в качестве контролируемой выходной характеристики СБ вызван тем, что его сила является переменной величиной, напрямую зависит от состояния СБ в целом, а напряжение на СБ является достаточно стабильной величиной и определяется в основном физическими свойствами используемых для изготовления СБ фотоэлектрических преобразователей (ФЭП), при этом режим работы ФЭП еще на стадии проектирования СБ задается таким образом, чтобы генерируемая мощность (как произведение силы тока и напряжения) была максимально возможной.

Данный способ обеспечивает контроль суммарной эффективности панели СБ в ходе полета КА. Меньшие значения фактических выходных токов от СБ по отношению к заданным проектным или исходным значениям означают «деградацию» СБ.

Способ-прототип имеет существенный недостаток - он не позволяет осуществлять контроль за текущим состоянием оптического защитного покрытия панели СБ, характеризуемого, в частности, текущим значением его абсолютного показателя преломления.

Контроль текущих значений параметров оптического защитного покрытия панели СБ, с одной стороны, позволяет оценить степень его изменения в ходе полета, с другой стороны, более точное знание текущих значений параметров состояния СБ (в частности, абсолютного показателя преломления оптического защитного покрытия панели СБ) необходимо для более точного моделирования функционирования СЭС КА в полете, например, для прогнозирования генерации тока СБ (данная задача является одной из важнейших на всех этапах планирования полета КА).

Задачей, на решение которой направлено настоящее изобретение, является повышение эффективности контроля состояния СЭС КА.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в выполнении оценки текущего состояния оптического защитного покрытия фотопреобразователей панели СБ по определяемому текущему значению его абсолютного показателя преломления.

Технический результат достигается тем, что в способе контроля текущего состояния панели солнечной батареи космического аппарата, включающем поворот панели солнечной батареи в положения, при которых рабочая поверхность солнечной батареи освещена Солнцем, измерение значений тока от солнечной батареи, сравнение определяемого параметра, характеризующего текущее состояние панели солнечной батареи, с задаваемыми значениями и контроль текущего состояния панели солнечной батареи по результатам сравнения, дополнительно измеряют вектор направления на Солнце в связанной с космическим аппаратом системе координат и определяют угол выставки солнечной батареи в ее текущее дискретное положение, по которым определяют текущие значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи, выполняют поворот солнечной батареи в не менее чем два выбранных дискретных положения солнечной батареи, в каждом из выбранных дискретных положений солнечной батареи измеряют значение тока от солнечной батареи, и текущее состояние панели солнечной батареи оценивают по текущему состоянию ее оптического защитного покрытия, характеризуемому текущим значением его абсолютного показателя преломления, определяемым по значениям угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи и значениям тока от солнечной батареи, полученным при каждом из выбранных дискретных положений солнечной батареи, при этом упомянутые дискретные положения солнечной батареи выбирают так, что в данных дискретных положениях значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи отстоят от 0° и 90° не менее чем на задаваемые значения, определяемые требованиям к точности определения показателя преломления оптического защитного покрытия панели солнечной батареи как контролируемого параметра, и значение угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи в одном из дискретных положений солнечной батареи отличается от значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи в другом дискретном положении солнечной батареи не менее чем на задаваемое значение, определяемое требованием к точности определения показателя преломления оптического защитного покрытия солнечной батареи как контролируемого параметра.

Суть предлагаемого изобретения поясняется на представленном рисунке, на котором отображена схема освещения СБ солнечным светом с учетом и введены обозначения:

N - нормаль к рабочей поверхности СБ;

Si, i=1, 2 - вектора солнечного излучения в первом и втором дискретных положениях СБ соответственно;

A - внешняя (лицевая) поверхность (она же поверхность оптического защитного покрытия фотоэлектрических преобразователей) СБ;

αi, i=1, 2 - углы падения солнечного излучения на поверхность защитного покрытия фотоэлектрических преобразователей СБ в первом и втором дискретных положениях СБ соответственно;

B - внешняя (лицевая) поверхность фотоэлектрических преобразователей СБ;

Ci, i=1, 2 - вектора преломленного луча в первом и втором дискретных положениях СБ соответственно;

θi, i=1, 2 - углы преломления солнечного излучения оптическим защитным покрытием фотоэлектрических преобразователей панели СБ в первом и втором дискретных положениях СБ соответственно;

αMax, αMin - максимальное и минимальное значения угла падения солнечного излучения на поверхность защитного покрытия фотоэлектрических преобразователей панели СБ соответственно;

Δα - угол между векторами солнечного излучения в первом и втором дискретных положениях СБ.

Поясним предложенные в способе действия.

На многих КА, например на международной космической станции (МКС), система управления положением СБ предусматривает выставку СБ в заданные дискретные положения, фиксированные в связанной с КА системе координат, а поворот СБ между данными положениями выполняется с заданной угловой скоростью вращения СБ. При этом для выполнения различных полетных операций предусмотрены различные режимы управления ориентаций СБ, в том числе режим автоматического наведения (отслеживания) СБ на Солнце и режим выставки СБ в заданное положение (такие положения выбираются из перечня упомянутых заданных дискретных положений СБ, фиксированных в связанной с КА системе координат). При этом в режиме автоматического наведения (отслеживания) СБ на Солнце система управления автоматически выбирает момент начала поворота СБ для перевода СБ из текущего фиксированного положения СБ в последующее.

Таким образом, в произвольный текущий момент времени СБ находится или в одном из фиксированных положений (в этом случае оно является текущим дискретным фиксированным положением СБ) или в процессе перехода между двумя дискретными фиксированными положениями. При этом в режиме автоматического наведения (отслеживания) СБ на Солнце моменты нахождения панели СБ в одном из дискретных положений определяются по измерениям текущей ориентации КА и измерениям положения Солнца путем определения моментов начала и окончания поворотов СБ с учетом логики автоматического управления СБ в данном режиме.

В предложенном техническом решении для решения поставленной задачи измеряют вектор направления на Солнце в связанной с КА системе координат и определяют угол выставки СБ в ее текущее дискретное положение. По данным параметром определяют текущие значения угла падения солнечного излучения на поверхность защитного покрытия СБ.

Угол а падения солнечного излучения на поверхность защитного покрытия СБ определяют как угол между линиями нормали к рабочей поверхности СБ и вектора солнечного излучения.

Выполняют поворот СБ в не менее чем два выбранных дискретных положения СБ.

Данные дискретные положения СБ выбирают таким образом, что в данных положениях выполнены следующие условия:

- значения угла падения солнечного излучения на поверхность защитного покрытия СБ отстоят от 0° и 90° не менее чем на задаваемые значения, определяемые требованиям к точности определения показателя преломления оптического защитного покрытия панели СБ как контролируемого параметра;

- значение угла падения солнечного излучения на поверхность защитного покрытия СБ в одном дискретном положении СБ отличается от значения угла падения солнечного излучения на поверхность защитного покрытия СБ в другом дискретном положении СБ не менее чем на задаваемое значение, определяемое требованием к точности определения показателя преломления оптического защитного покрытия СБ как контролируемого параметра.

Перечисленные условия реализуется тем, что:

- значения угла падения солнечного излучения на поверхность защитного покрытия СБ отстоят от 0° не менее чем на задаваемое значение αMin определяемое требованиям к точности определения показателя преломления оптического защитного покрытия панели СБ как контролируемого параметра;

- значения угла падения солнечного излучения на поверхность защитного покрытия СБ отстоят от 90° не менее чем на задаваемое значение 90°-αMax, определяемое требованиям к точности определения показателя преломления оптического защитного покрытия панели СБ как контролируемого параметра;

- значение угла падения солнечного излучения на поверхность защитного покрытия СБ в одном дискретном положении СБ отличается от значения угла падения солнечного излучения на поверхность защитного покрытия СБ в другом дискретном положении СБ не менее чем на задаваемое значение Δα, определяемое требованием к точности определения показателя преломления оптического защитного покрытия СБ как контролируемого параметра.

В каждом из выбранных дискретных положений солнечной батареи измеряют значение тока от СБ.

Текущее состояние СБ оценивают по текущему состоянию ее оптического защитного покрытия, которое характеризуется текущим значением его абсолютного показателя преломления. При этом абсолютный показатель преломления определяется по значениям угла падения солнечного излучения на поверхность защитного покрытия СБ и значениям тока от СБ, полученным при вышеописанных дискретных положениях СБ.

Ниже приведем примеры соотношений для определения значения абсолютного показателя преломления защитного покрытия по получаемым значениям угла падения солнечного излучения на поверхность защитного покрытия СБ и значениям тока от СБ.

Влияние оптического защитного покрытия фотоэлектрических преобразователей (фотоэлементов) панели СБ на генерацию тока заключается в том, что оно преломляет и частично отражает солнечное излучение, поступающее на фотоэлементы панели СБ.

Рассмотрим свет, падающий на границу раздела двух сред: космического вакуума и защитного покрытия СБ (обозначаем k - абсолютный показатель преломления оптического защитного покрытия).

Часть света отражается от границы раздела сред, а часть света проходит через границу, испытывая преломление. Суммарная энергия отраженного и преломленного луча в точности равна энергии падающего луча, но соотношение интенсивностей этих лучей зависит от разницы показателей преломления сред, угла падения и поляризации падающего луча. Поляризация является параллельной, если вектор электрического поля E лежит в плоскости падающего луча и нормали к границе раздела сред, в противном случае поляризация является перпендикулярной.

Угол θ преломления солнечного излучения оптическим защитным покрытием фотоэлектрических преобразователей СБ определяют как угол между линиями нормали к рабочей поверхности СБ и вектора преломленного луча.

Согласно формуле Френеля угол падения луча α и угол преломления θ связаны уравнениями

Отражательная способность границы раздела сред для лучей с параллельной и перпендикулярной поляризацией и и пропускательная способность границы раздела сред для лучей с параллельной и перпендикулярной поляризацией и описывается выражениями (Бусурин В.И., Носов Ю.Р. Волоконно-оптические датчики: физические основы, вопросы расчета и применения, Энергоатомиздат, 1990; Сивухин Д.В. Общий курс физики. Оптика. Наука, 1980, Годжаев Н.М. Оптика, Высшая школа, 1977)

Для луча, падающего нормально к границе раздела, перпендикулярная и параллельная компоненты совпадают и определяются выражениями

Считаем, что СБ освещается естественным солнечным светом, который представляет собой суммарное электромагнитное излучение множества атомов, которые излучают световые волны независимо друг от друга. Поэтому световая волна, излучаемая Солнцем, характеризуется всевозможными равновероятными колебаниями светового вектора. В данном случае равномерное распределение векторов Е объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов E - одинаковой (в среднем) интенсивностью излучения каждого из атомов. Тогда средняя отражательная и пропускательная способность границы сред описываются выражениями

Ток IN от СБ под воздействием солнечного излучения N перпендикулярно ее рабочей поверхности и текущий ток I от СБ под воздействием солнечного излучения, поступающего в общем случае под произвольным углом к ее рабочей поверхности, с учетом угла падения Солнечного излучения на рабочую поверхность СБ (см. Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва. Наука, 1984, стр. 109; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 57) и с учетом вышеописанной пропускательной способности оптического защитного покрытия фотоэлектрических преобразователей СБ связаны соотношениями

Соотношения (6) эквивалентны, поскольку T=1-R.

Подставляя (3)÷(5) в (6) получим соотношения для определения R, Т и IN:

Соотношения (7) и (8) эквиваленты.

Используя соотношения (7) и (8) для каждого i-го дискретного положения СБ можно записать:

где αi - угол падения солнечного излучения на поверхность защитного покрытия фотоэлектрических преобразователей СБ в i-м дискретном положении СБ;

θi - угол преломления солнечного излучения оптическим защитным покрытием фотоэлектрических преобразователей панели СБ в i-м дискретном положении СБ,

;

Ii - значение тока от СБ в i-м дискретном положении СБ.

- расчетное значение тока от СБ, соответствующее воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, получаемое по формулам (7), (8) в i-м дискретном положении СБ.

В случае двух дискретных положений СБ приравниваем правые части (9) или (10), получаемые для разных дискретных положений СБ, и формулируем соотношения для определения k:

или

Решение уравнений (11), (12) относительно k выполняем методом последовательных приближений, при этом за начальное значение k можно принять номинальное (проектное) значение абсолютного показателя преломления оптического защитного покрытия СБ.

В общем случае - при выполнении описанных операций в более чем двух дискретных положениях СБ - определение k осуществляем путем определения искомого значения k и определяемой константы , доставляющих минимум функционалу, составленному из разностей левых и правых частей (9) или (10):

минимизируем

где Определяемая константа является средним значением тока от СБ, соответствующим воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, получаемым по результатам измерений, выполненных во всех дискретных положениях СБ.

Выбор дискретных положений СБ для выполнения описанных измерений осуществляется вышеописанным образом, при этом выбор значений задаваемых параметров , и осуществляется исходя из требования к точности определения показателя преломления оптического защитного покрытия панели СБ как контролируемого параметра. Данные ограничения определяются тем, что при значениях α=0°, α=90° и в случае Δα=0° (что соответствует равенству углов α12) уравнения (11), (12), (13) вырождаются и определить текущие значения показателя преломления оптического защитного покрытия панели СБ по предлагаемой методике не представляется возможным.

Опишем технический эффект предлагаемого изобретения.

При эксплуатации в открытом космосе СБ подвергаются воздействию факторов открытого космического пространства - ударам частиц, движущихся в открытом космосе, и воздействию всевозможных типов излучения. Одним из результатов такого воздействия является изменение состояния оптического защитного покрытия панели СБ. При этом основным параметром, характеризующим текущее состояние оптического защитного покрытия, является текущее значение его абсолютного показателя преломления.

Предлагаемое техническое решение позволяет обеспечить выполнение оперативной оценки состояния оптического защитного покрытия фотоэлектрических преобразователей панели СБ по определяемому текущему значению его абсолютного показателя преломления.

Предлагаемый способ, с одной стороны, позволяет оперативно оценивать степень изменения абсолютного показателя преломления оптического защитного покрытия панели СБ в ходе полета КА, с другой стороны, знание текущих значений параметров состояния СБ (в том числе абсолютного показателя преломления оптического защитного покрытия панели СБ) необходимо для более точного моделирования функционирования СЭС КА в полете, например, для прогнозирования генерации тока СБ при решении различных задач управления полета КА.

Таким образом, получаемый технический эффект повышает эффективность контроля состояния СЭС КА.

Данный технический результат достигается путем измерения вектора направления на Солнце в связанной с КА системе координат, определения углов выставки СБ в текущие дискретные положения, определения текущих значений угла падения солнечного излучения на поверхность защитного покрытия СБ, выполнения поворота СБ в не менее чем два выбранных дискретных положения СБ, измерения значений тока от СБ в выбранных дискретных положениях СБ, применения предложенных условий и ограничений, предъявляемых к упомянутым дискретным положениям СБ, выполнения оценки текущего состояния панели СБ по текущему состоянию ее оптического защитного покрытия, характеризуемому текущим значением его абсолютного показателя преломления, и определения текущего значения абсолютного показателя преломления оптического защитного покрытия СБ по значениям угла падения солнечного излучения на поверхность защитного покрытия и значениям тока от СБ, полученным в выбранных дискретных положениях СБ, по предлагаемым соотношениям.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.

Способ контроля текущего состояния панели солнечной батареи космического аппарата, включающий поворот панели солнечной батареи в положения, при которых рабочая поверхность солнечной батареи освещена Солнцем, измерение значений тока от солнечной батареи, сравнение определяемого параметра, характеризующего текущее состояние панели солнечной батареи, с задаваемыми значениями и контроль текущего состояния панели солнечной батареи по результатам сравнения, отличающийся тем, что дополнительно измеряют вектор направления на Солнце в связанной с космическим аппаратом системе координат и определяют угол выставки солнечной батареи в ее текущее дискретное положение, по которым определяют текущие значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи, выполняют поворот солнечной батареи в не менее чем два выбранных дискретных положения солнечной батареи, в каждом из выбранных дискретных положений солнечной батареи измеряют значение тока от солнечной батареи и текущее состояние панели солнечной батареи оценивают по текущему состоянию ее оптического защитного покрытия, характеризуемому текущим значением его абсолютного показателя преломления, определяемым по значениям угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи и значениям тока от солнечной батареи, полученным при каждом из выбранных дискретных положений солнечной батареи, при этом упомянутые дискретные положения солнечной батареи выбирают так, что в данных дискретных положениях значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи отстоят от 0° и 90° не менее чем на задаваемые значения, определяемые требованиям к точности определения показателя преломления оптического защитного покрытия панели солнечной батареи как контролируемого параметра, и значение угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи в одном из дискретных положений солнечной батареи отличается от значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи в другом дискретном положении солнечной батареи не менее чем на задаваемое значение, определяемое требованием к точности определения показателя преломления оптического защитного покрытия солнечной батареи как контролируемого параметра.
СПОСОБ КОНТРОЛЯ ТЕКУЩЕГО СОСТОЯНИЯ ПАНЕЛИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ ТЕКУЩЕГО СОСТОЯНИЯ ПАНЕЛИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 301-310 из 379.
20.02.2019
№219.016.c0c1

Устройство подачи термостатирующей среды в отсек ракеты-носителя

Изобретение относится к устройствам воздушного термостатирования объектов, например приборов системы управления полезного груза и других объектов, размещаемых в отсеках ракетных блоков и блоках космической головной части ракеты-носителя, в период их предстартовой подготовки. Устройство согласно...
Тип: Изобретение
Номер охранного документа: 0002368548
Дата охранного документа: 27.09.2009
01.03.2019
№219.016.cf47

Релейный регулятор

Изобретение относится к автоматике и может быть использовано в системах управления различными инерционными объектами, например поворотными платформами, промышленными роботами, летательными аппаратами. Релейный регулятор содержит первое и второе сравнивающие устройства, первый и второй...
Тип: Изобретение
Номер охранного документа: 0002403607
Дата охранного документа: 10.11.2010
11.03.2019
№219.016.d840

Способ формирования меток времени и устройство для его реализации

Изобретение относится к вычислительной и импульсной технике и может быть использовано в системах, использующих программно-временные устройства. Техническим результатом изобретения является упрощение способа и устройства реализации за счет снижения объема преобразуемой информации. Технический...
Тип: Изобретение
Номер охранного документа: 0002391773
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d842

Привод

Изобретение может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Привод содержит корпус (1), размещенный в нем двигатель (2), связанный с выступающим из корпуса со стороны его первого торца (3) выходным валом (4), а также датчик (16) угла поворота. Вал...
Тип: Изобретение
Номер охранного документа: 0002391583
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d941

Радиальный вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники, а также в других областях техники. Технический результат заключается в повышении надежности радиального вентилятора за счет устранения возможности...
Тип: Изобретение
Номер охранного документа: 0002354850
Дата охранного документа: 10.05.2009
11.03.2019
№219.016.d96f

Космическая головная часть ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано при проектировании и создании космической головной части. Космическая головная часть ракеты-носителя содержит обтекатель, космический аппарат, состоящий из, по крайней мере одного отсека, на поверхности которого...
Тип: Изобретение
Номер охранного документа: 0002355607
Дата охранного документа: 20.05.2009
11.03.2019
№219.016.d9c7

Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции

Изобретение относится к области очистки или защиты окружающей среды внутри обитаемых орбитальных станций от разрушающего воздействия микроорганизмов. Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции включает периодическое облучение...
Тип: Изобретение
Номер охранного документа: 0002372942
Дата охранного документа: 20.11.2009
11.03.2019
№219.016.d9d4

Резервированный счетчик для формирования меток времени

Использование: в области вычислительной и импульсной техники при построении высоконадежных резервированных систем для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит...
Тип: Изобретение
Номер охранного документа: 0002379829
Дата охранного документа: 20.01.2010
11.03.2019
№219.016.d9e0

Резервированный счетчик

Изобретение используется в области вычислительной и импульсной техники для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит n-разрядный счетчик, блок из n мажоритарных...
Тип: Изобретение
Номер охранного документа: 0002379828
Дата охранного документа: 20.01.2010
11.03.2019
№219.016.da87

Устройство для старта полезного груза с планет без атмосферы

Изобретение относится к космической технике, в частности к устройствам доставки полезного груза с Луны на Землю, например для транспортировки с Луны одноатомного газа гелий 3 (Hе), который может быть использован в качестве дополнительного источника термоядерной энергии. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002368543
Дата охранного документа: 27.09.2009
Показаны записи 301-310 из 353.
29.05.2018
№218.016.526f

Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает определение угла между нормалью к рабочей поверхности СБ и нормалью к плоскости орбиты КА при условии минимального затенения СБ конструкцией КА. Измеряют также угол между направлением на Солнце и...
Тип: Изобретение
Номер охранного документа: 0002653891
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.52b6

Способ определения производительности установленной на космическом аппарате солнечной батареи с положительной выходной мощностью тыльной поверхности

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает измерение вектора направления на Солнце в инерциальной системе координат, угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также изменения данного угла за виток. При некотором...
Тип: Изобретение
Номер охранного документа: 0002653890
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.584e

Способ оценки состояния солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к системам электроснабжения космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает ориентацию СБ на Солнце, измерение на последовательных витках орбиты угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также тока СБ в моменты...
Тип: Изобретение
Номер охранного документа: 0002655089
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5b10

Способ контроля производительности солнечной батареи космического аппарата на бестеневых орбитах

Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает ориентацию нормали к рабочей поверхности СБ на Солнце (под углом α) и измерение тока СБ. На последовательных витках орбиты измеряют угол β между направлением на Солнце и плоскостью орбиты КА...
Тип: Изобретение
Номер охранного документа: 0002655561
Дата охранного документа: 28.05.2018
26.07.2018
№218.016.7570

Способ определения плотности атмосферы на высоте полета космического аппарата

Изобретение относится к методам и средствам наблюдения свободно движущегося по орбите космического аппарата (КА), ориентацию которого поддерживают с помощью гиродинов. При этом измеряют параметры движения центра масс и параметры вращательного движения КА. По параметрам ориентации КА и положению...
Тип: Изобретение
Номер охранного документа: 0002662371
Дата охранного документа: 25.07.2018
26.07.2018
№218.016.75be

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Изобретение относится к системе энергопитания космического аппарата (КА) с солнечными батареями (СБ). Способ включает измерение тока и параметров углового положения СБ. При измерении тока СБ определяют расстояние от Земли до Солнца и поворачивают нормаль к рабочей поверхности СБ до угла Q+ƒ с...
Тип: Изобретение
Номер охранного документа: 0002662372
Дата охранного документа: 25.07.2018
29.08.2018
№218.016.8138

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Изобретение относится к космической технике. Способ контроля системы энергопитания снабженного солнечными батареями (СБ) космического аппарата (КА) включает измерение тока СБ и параметров углового положения СБ, определение параметров эффективности СБ и контроль системы энергопитания по...
Тип: Изобретение
Номер охранного документа: 0002665145
Дата охранного документа: 28.08.2018
07.09.2018
№218.016.843a

Устройство для хранения и идентификации перемещаемых объектов на космическом аппарате

Изобретение относится к области хранения, идентификации и определения текущего местоположения хранящихся на космическом аппарате (КА) перемещаемых объектов хранения. Технический результат заключается в расширении арсенала средств. Устройство содержит конструктивные элементы для размещения...
Тип: Изобретение
Номер охранного документа: 0002665914
Дата охранного документа: 04.09.2018
11.10.2018
№218.016.8fdd

Способ управления передвижением космонавта к идентифицируемым объектам на космической станции и система для его осуществления

Изобретение относится к космической технике. Способ управления передвижением космонавта к идентифицируемым объектам на космической станции включает определение параметров текущего положения космонавта и формирование команд на передвижение космонавта к идентифицируемым объектам. Дополнительно...
Тип: Изобретение
Номер охранного документа: 0002669155
Дата охранного документа: 08.10.2018
11.10.2018
№218.016.906f

Способ тарировки датчика микроускорений в условиях космического полета

Изобретение относится к космической технике и может быть использовано при тарировке датчика микроускорений на космическом аппарате (КА) в условиях штатного космического полета. Сущность изобретения заключается в том, что в способе тарировки датчика микроускорений в условиях космического полета...
Тип: Изобретение
Номер охранного документа: 0002669164
Дата охранного документа: 08.10.2018
+ добавить свой РИД