×
29.12.2017
217.015.feb5

Результат интеллектуальной деятельности: ПРОМЫВОЧНЫЙ РАСТВОР ДЛЯ АБСОРБЦИИ ДИОКСИДА УГЛЕРОДА И СПОСОБ УСКОРЕНИЯ АБСОРБЦИИ ПОСРЕДСТВОМ ДИОКСИДА ГЕРМАНИЯ

Вид РИД

Изобретение

№ охранного документа
0002638663
Дата охранного документа
15.12.2017
Аннотация: Изобретение относится к промывочному раствору для абсорбции диоксида углерода. Раствор содержит абсорбент диоксида углерода на основе солей аминокислоты и добавку, активирующую скорость абсорбции, которая представляет собой диоксид германия. Также изобретение относится к способу ускорения абсорбции диоксида углерода, в котором содержащий диоксид углерода газ приводят в контакт с указанным промывочным раствором. Диоксид углерода физически растворяют в промывочном растворе и химически абсорбируют абсорбентом. При этом диоксид германия оказывает каталитическое действие по меньшей мере на одной стадии реакции химической абсорбции диоксида углерода. Технический результат заключается в создании экологически чистого промывочного раствора с высокой степенью абсорбции и низким потреблением энергии при регенерации. 2 н. и 6 з.п. ф-лы, 6 ил., 1 пр.

На энергетической установке на ископаемом топливе, служащей для генерации электрической энергии, при сжигании этого топлива образуется дымовой газ, содержащий, в частности, диоксид углерода. В целях снижения выбросов диоксида углерода (СО2) известно применение в качестве вторичной меры удаления диоксида углерода из дымового газа с помощью промывочного раствора. В частности, используется способ абсорбции-десорбции. В промышленном масштабе дымовой газ приводят в контакт внутри абсорбера с промывочным раствором, содержащим абсорбент, при этом диоксид углерода вымывается из дымового газа в промывочный раствор (процесс поглощения СО2). Сначала диоксид углерода физически растворяют в промывочном растворе, а затем химически абсорбируют абсорбентом. После этого насыщенный диоксидом углерода промывочный раствор поступает в десорбер, где при повышении температуры диоксид углерода десорбируют и направляют, например, в соответствующее хранилище. При этом абсорбент регенерируют, и он снова может быть подан в абсорбер для последующей абсорбции.

Распространенные абсорбенты основаны, в частности, на первичных, вторичных или третичных аминах или их смесях и показали хорошую избирательность и высокую емкость при абсорбции диоксида углерода. В химической промышленности используют главным образом первичный амин МЕА (моноэтаноламин), обладающий быстрой кинетикой абсорбции. Однако первичные амины в процессе абсорбции-десорбции характеризуются низким энергетическим кпд, так как при этом необходимы относительно большие затраты энергии на регенерацию. Поскольку энергетический кпд в химической промышленности не является первоочередной задачей, то до настоящего времени энергетическими недостатками пренебрегали. Напротив, на электростанциях, вырабатывающих электроэнергию, именно расход энергии при процессе поглощения СО2 имеет большое значение, поскольку ввиду своей величины он оказывает существенное влияние на общий кпд электростанции.

Поэтому для устранения такого энергетического недостатка при обработке дымового газа на электростанции в качестве абсорбентов используют стерически затрудненные амины (при образовании бикарбонатов), вторичные и третичные амины, соли аминокислот и/или растворы поташа. Эти абсорбенты характеризуются заметно меньшей энергией при регенерации, что проявляется в меньшем падении кпд электростанции. Кроме того, вторичные и третичные амины обладают по сравнению с первичными аминами большей способностью насыщения диоксидом углерода.

Преимуществом же первичных аминосоединений является заметно более быстрая кинетика абсорбции. В результате этого по сравнению с вторичными аминами или солями аминокислот колонны или реакторы абсорбера, в которых проходит абсорбция диоксида углерода, могут выполняться меньших размеров, что обеспечивает снижение капитальных затрат. Стерически затрудненные, вторичные или третичные амины или соли аминокислот обладают более медленной кинетикой реакции, поскольку они образуют нестабильные карбаматные продукты или даже вовсе не образуют их.

Преимущество солей аминокислот против гетероциклических аминов или алканоламинов состоит в том, что они не обдают заметным давлением пара и, следовательно, не могут испаряться и отводиться в процессе выделения в окружающую среду. Гетероциклические амины и алканоламины летучи и выбрасываются в окружающую среду вместе с очищенным дымовым газом, что ведет к нежелательному загрязнению окружающей среды.

Задачей изобретения является создание по возможности экологически чистого промывочного раствора для абсорбции диоксида углерода, характеризующегося высокой скоростью абсорбции и одновременно с этим низким потреблением энергии при регенерации. Другая задача изобретения состоит в создании способа ускорения абсорбции диоксида углерода, в котором содержащий диоксид углерода газ приводят в контакт с промывочным раствором, содержащим абсорбент, при абсорбции диоксида углерода.

Задача изобретения, касающегося промывочного раствора, решается посредством промывочного раствора, содержащего абсорбент на основе аминов, или этаноламинов, или солей аминокислот, или поташа, или их комбинации и активирующую добавку, которая представляет собой диоксид германия.

При этом в основе изобретения на первом этапе лежит идея о том, что химическая абсорбция диоксида углерода происходит уже в граничном слое между промывочным раствором и газом, в котором сначала физически растворяется диоксид углерода. При этом реакция, сопровождающаяся абсорбцией диоксида углерода, влияет на профиль концентрации в граничном слое. В соответствии с этим, в частности, скорость реакции при химической абсорбции влияет в целом на кинетику абсорбции, в т.ч. и на стадию физического растворения, которая предшествует собственно абсорбции. Увеличение скорости реакции, следовательно, ведет к увеличению скорости улавливания диоксида углерода из очищаемого газа.

Добавка активатора или катализатора гидратации в относительно медленно реагирующий абсорбент, например в упомянутые вторичные или третичные амины, соли аминокислот или поташ, ускорила бы абсорбцию газообразного диоксида углерода промывочным раствором, при этом одновременно сохранились бы энергетические преимущества в отношении регенерации.

В результате собственных исследований стали известными в качестве таких активаторов, например, оксиды металлов с переходными металлами, как, например, ванадий, молибден, вольфрам или титан, или с полуметаллами, как, например, мышьяк или селен. Также в качестве таких активаторов могут использоваться кислоты мышьяка, селена, брома или фосфора. Такие активаторы или катализаторы хотя и ускоряют реакцию абсорбции с растворенным диоксидом углерода, однако из-за того, что они в некоторых случаях являются токсичными добавками, они не используются в составе промывочного раствора на электростанциях.

На втором этапе изобретения было установлено, что реакция абсорбции абсорбента с диоксидом углерода также ускоряется при добавке диоксида германия, причем диоксид германия обладает большим преимуществом, заключающимся в том, что он не является токсичным соединением. В результате использования диоксида германия при щелочной промывке дымового газа с целью абсорбции диоксида углерода становится возможным использование вместе с нетоксичной добавкой медленно действующих в отношении кинетики абсорбции абсорбентов, таких как вторичные или третичные амины, соли аминокислот или поташ, и одновременно использование их энергетического преимущества, заключающегося в низкой энергии регенерации. Благодаря добавке диоксида германия ускоряется реакция абсорбции, в результате чего в целом повышается скорость поглощения диоксида углерода из очищаемого отходящего газа.

Благодаря достигнутому общему повышению скорости поглощения диоксида углерода абсорбционная колонна может быть выполнена с меньшими размерами, за счет чего могут быть уменьшены капитальные затраты на установку для поглощения СО2.

В основе изобретения лежит при этом, в частности, идея о том, что уже незначительного количества неорганического активатора достаточно для существенного ускорения абсорбции диоксида углерода.

Ввиду того, что активатор «диоксид германия» добавляют лишь в очень малом количестве, то в этом случае не происходит увеличения требования энергии на регенерацию. Более того, она может даже дополнительно снизиться после введения активирующей добавки, поскольку достигается соответственно более высокое насыщение в абсорбере и увеличивается действующая сила вследствие увеличения разницы парциального давления в десорбере. Следовательно, возможны как сокращение размеров абсорбера, так и снижение необходимой энергии регенерации.

Как оказалось, оптимальным является содержание диоксида германия в промывочном растворе от 0,01 до 10 вес. %. Однако количество диоксида германия необходимо поддерживать по возможности низким для исключения возможных неблагоприятных воздействий неорганического катализатора на промывочный раствор. Поэтому особо оптимальным оказалось содержание диоксида германия от 0,05 до 2 вес. %. В принципе, при этом следует иметь в виду, что неорганические катализаторы не участвуют в абсорбции диоксида углерода. Они катализируют, в частности, реакцию «карбамат - вода» (гидратацию), образуя при этом бикарбонат. Долю катализатора в промывочном растворе необходимо поэтому выбирать так, чтобы в промывочном растворе достигалось по возможности оптимальное соотношение между содержанием диоксида германия и абсорбента.

В качестве абсорбента пригодны, в частности, стерически затрудненные, вторичные или третичные амины и соли аминокислот или их смесь. В результате максимально используется их энергетическое преимущество регенерации вместе с ускоренной кинетикой абсорбции (за счет добавки диоксида германия). Снижение кпд электростанции вследствие подключения установки для выделения диоксида углерода сводится к минимуму.

Предпочтительно промывочный раствор является водным.

Для солей аминокислот пригодны аминокислоты, происходящие, в частности, от саркозина, N,N-диметилаланина, таурина, альфа-аланина, бета-аланина, N-метилаланина, пролина, гомотаурина или глицина.

Задача, касающаяся способа, решается согласно изобретению посредством способа ускорения абсорбции диоксида углерода, в котором содержащий диоксид углерода газ приводят в контакт с промывочным раствором, содержащим абсорбент на основе аминов, или этаноламинов, или солей аминокислот, или поташа, или их комбинации и диоксид германия, для абсорбции диоксида углерода, при этом диоксид углерода физически растворяется в промывочном растворе и химически абсорбируется абсорбентом, причем диоксид германия оказывает каталитическое действие по меньшей мере на одной стадии реакции химической абсорбции диоксида углерода.

Предпочтительно содержание диоксида германия в промывочном растворе задается от 0,01 до 10 вес. %. Особо предпочтительное содержание диоксида германия составляет от 0,05 до 2 вес. %.

В качестве абсорбентов предпочтительно используют стерически затрудненные, вторичные или третичные амины и/или соли аминокислот.

Согласно предпочтительной альтернативе в качестве содержащего диоксид углерода газа обрабатывается дымовой газ паротурбинной электростанции на ископаемом топливе, газотурбинной установки или комбинированной парогазотурбинной установки.

Ниже примеры осуществления изобретения подробнее поясняются с помощью чертежей, на которых изображено:

фиг. 1 - диаграмма сравнения разных промывочных растворов;

фиг. 2 - диаграмма с двумя кривыми результатов измерения падения давления диоксида углерода при использовании разных промывочных растворов;

фиг. 3 - график реакции СО2 с солью вторичной аминокислоты;

фиг. 4 - график реакции СО2 с солью вторичной аминокислоты при катализе посредством диоксида германия;

фиг. 5 - химическая структура поташа как пример абсорбента;

фиг. 6 - химическая структура соли аминокислоты как пример абсорбента.

На представленной на фиг. 1 диаграмме можно видеть удельную энергию в кДж на кг удаленного СО2, необходимую для удаления диоксида углерода из дымового газа энергетической установки. Ось не масштабирована, потому что необходимая энергия, по существу, зависит также от других параметров процесса, таких как давление, температура, объем перекачивания, массовый поток дымового газа и пр., на которых здесь нет необходимости останавливаться более подробно.

Полосы означают разные промывочные растворы 13 и 14. Левая полоса означает промывочную жидкость 13 с солью вторичной аминокислоты в качестве абсорбента. Правая полоса означает промывочный раствор 14, содержащий соль вторичной аминокислоты и некоторое количество диоксида германия в качестве активирующей добавки. В промывочном растворе 14 соотношение между солью вторичной аминокислоты и диоксидом германия составляет в данном примере, в вес. %: 99,5:0,5. Также представлена удельная мощность, необходимая для выделения СО2 из дымового газа. При этом предполагается, что кроме используемого промывочного раствора никакой параметр процесса не изменяется.

Здесь можно видеть, что промывочный раствор 14 по сравнению с промывочным раствором 13 требует значительно меньшей удельной энергии. Это означает, что при одинаковом размере колонны промывочный раствор 14, активированный диоксидом германия, требует существенно меньшую удельную энергию.

На фиг. 2 показано падение давления в замкнутой ячейке перемешивания при температуре 45°С в зависимости от времени и исследуемого промывочного раствора после добавки диоксида углерода при 2,5 бара. Верхняя кривая а) соответствует использованному водному промывочному раствору с содержанием 30 вес. % соли аминокислоты. Нижняя кривая b) соответствует характеристике после дополнительного введения в тот же промывочный раствор диоксида германия в количестве 0,3 вес. %.

Отчетливо можно видеть более быстрое поглощение газообразного диоксида углерода в случае использования диоксида германия. Следовательно, при одинаковой способности к поглощению абсорберы абсорбционной установки для диоксида углерода могут быть выполнены меньших размеров в том случае, когда в промывочный раствор добавлен диоксид германия в качестве активирующей добавки.

На фиг. 3 показан график реакции с переходом СО2 из газовой фазы 10 в граничный слой 21 жидкой фазы 11. Переход из газовой фазы 10 в граничный слой 21 происходит через граничную поверхность 24. В граничном слое 21 СО2 реагирует с солью 4 вторичной аминокислоты в качестве абсорбента 18 в виде быстротекущей реакции 9 с образованием продуктов реакции: карбамат 5 и протонированная соль 12 аминокислоты.

Последующая реакция, при которой продукт реакции дополнительно реагирует с водой с образованием бикарбоната и других продуктов реакции, является медленной реакцией 8, так как она протекает уже в жидкой массе 20 промывочного раствора 19, где она стерически затруднена, и протекает заметно медленнее, чем при образовании карбамата в граничном слое 21.

Как и на фиг. 3, на фиг. 4 показан график реакции, при этом в промывочном растворе 19 наряду с солью 7 вторичной аминокислоты в качестве абсорбента 18 содержится диоксид германия 17 в качестве активирующей добавки 6. Показаны газовая фаза 10 и жидкая фаза 11. Жидкая фаза 11 разделена при этом на граничный слой 21, примыкающий к газовой фазе 10, и жидкую массу 20, примыкающую к граничному слою 21.

Диоксид германия способствует тому, что образование бикарбоната происходит в виде быстротекущей реакции 9. При этом бикарбонат образуется в граничном слое 21 жидкой фазы 11, а не в жидкой массе 20, почему образование бикарбоната протекает быстро. При более быстром образовании бикарбоната СО2 быстрее поступает из газовой фазы 10 в жидкую фазу 11.

Если обратиться к изобретению, то требуется лишь незначительная добавка диоксида германия для достижения существенного ускорения процесса поглощения СО2. Предпочтительным оказалось содержание менее 10 вес. %.

На фиг. 5 показан пример, касающийся абсорбента 18. Приведена химическая структурная формула для карбоната калия, в разговорной речи поташа, 16.

На фиг. 6 дополнительно приведен пример, касающийся абсорбента 18. Показана химическая структурная формула общего вида для соли 7 аминокислоты, при этом означают: О - кислород, N - азот, М - щелочные или щелочно-земельные металлы и R - радикал-заместитель. Радикалы-заместители R1, R2 и R3 могут здесь означать водород Н, алкильный радикал, арильный радикал, алкиларильный радикал, гетероарильный радикал, галоген, CN или R-COO-.

Соли 7 аминокислоты особо оптимальны, в частности, в качестве абсорбентов, так как они не обладают заметным давлением пара и, следовательно, во время процесса поглощения СО2 при абсорбции не могут выбрасываться вместе с дымовым газом в атмосферу.


ПРОМЫВОЧНЫЙ РАСТВОР ДЛЯ АБСОРБЦИИ ДИОКСИДА УГЛЕРОДА И СПОСОБ УСКОРЕНИЯ АБСОРБЦИИ ПОСРЕДСТВОМ ДИОКСИДА ГЕРМАНИЯ
ПРОМЫВОЧНЫЙ РАСТВОР ДЛЯ АБСОРБЦИИ ДИОКСИДА УГЛЕРОДА И СПОСОБ УСКОРЕНИЯ АБСОРБЦИИ ПОСРЕДСТВОМ ДИОКСИДА ГЕРМАНИЯ
ПРОМЫВОЧНЫЙ РАСТВОР ДЛЯ АБСОРБЦИИ ДИОКСИДА УГЛЕРОДА И СПОСОБ УСКОРЕНИЯ АБСОРБЦИИ ПОСРЕДСТВОМ ДИОКСИДА ГЕРМАНИЯ
ПРОМЫВОЧНЫЙ РАСТВОР ДЛЯ АБСОРБЦИИ ДИОКСИДА УГЛЕРОДА И СПОСОБ УСКОРЕНИЯ АБСОРБЦИИ ПОСРЕДСТВОМ ДИОКСИДА ГЕРМАНИЯ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 1 427.
20.10.2013
№216.012.755f

Способ и устройство для отделения диоксида углерода от отходящего газа работающей на ископаемом топливе электростанции

Изобретение относится к способу отделения диоксида углерода от отходящего газа работающей на ископаемом топливе электростанции. Способ включает в себя абсорбционный процесс, в котором содержащий диоксид углерода отходящий газ приводят в контакт с абсорбентом, в результате чего образуется...
Тип: Изобретение
Номер охранного документа: 0002495707
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.7734

Способ проверки функционирования вакуумного выключателя тягового выпрямителя тока

Изобретение касается способа проверки функционирования вакуумного выключателя (12) тягового выпрямителя тока с по меньшей мере одним четырехквадратным исполнительным элементом (2) сетевой стороны и импульсным выпрямителем (4) тока нагрузочной стороны, которые через конденсатор (C)...
Тип: Изобретение
Номер охранного документа: 0002496176
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.7754

Устройство и способ для формирования, накопления и передачи электрической энергии

Использование: в области электротехники. Технический результат - повышение надежности энергоснабжения. Устройство включает в себя по меньшей мере один источник (1) энергии, по меньшей мере один первый накопительный блок (4) и один второй накопительный блок (5) для накопления энергии и блок (6)...
Тип: Изобретение
Номер охранного документа: 0002496208
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.791f

Головная часть для образования лобовой стороны транспортного средства, по меньшей мере, с одним энергопоглощающим элементом

Изобретение относится к железнодорожному транспорту, в частности к конструкции головной части транспортного средства. Головная часть (1), размещаемая на лобовой стороне транспортного средства, содержит несущую конструкцию (2) с присоединительными средствами (11) для механического закрепления на...
Тип: Изобретение
Номер охранного документа: 0002496669
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7aa4

Печной агрегат

Изобретение относится к области металлургии, в частности к очистительному устройству для удаления и/или устранения блокирующего материала из или внутри люка для обслуживания печного агрегата. Печной агрегат содержит электродуговую печь, очистительное устройство для удаления и/или устранения...
Тип: Изобретение
Номер охранного документа: 0002497058
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b6e

Электрическая машина с повышенной степенью защиты с улучшенным охлаждением ротора

Изобретение относится к области электротехники, в частности к электрическим машинам. Предлагаемая электрическая машина содержит статор (1) и роторный вал (3), установленный относительно статора (1) с возможностью вращения вокруг оси (5) вала, так что ось (5) вала определяет осевое направление,...
Тип: Изобретение
Номер охранного документа: 0002497260
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b6f

Корпусная насадка для электрической машины со степенью защиты ip 24w

Изобретение относится к корпусной насадке для электрической машины. Корпусная насадка (10) имеет первую свисающую кромку (28), которая таким образом расположена на первой ограничительной стенке (19), что вода (47), находящаяся на среднем участке (20) на первой ограничительной стенке (19),...
Тип: Изобретение
Номер охранного документа: 0002497261
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b70

Система, снабженная электрической машиной, а также способ эксплуатации электрической машины

Изобретение касается способа эксплуатации и системы, снабженной электрической машиной, которая включает в себя статор (4) и ротор (1), а также инфракрасным температурным сенсором, при этом поле детекции инфракрасного температурного сенсора ориентировано по поверхности корпуса ротора....
Тип: Изобретение
Номер охранного документа: 0002497262
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7d17

Рельсовое транспортное средство, которое в качестве приводного двигателя снабжено синхронным двигателем, возбуждаемым постоянными магнитами

Изобретение касается рельсового транспортного средства, которое в качестве приводного двигателя снабжено синхронным двигателем, возбуждаемым постоянными магнитами. При этом между преобразователем и приводным двигателем расположено переключающее устройство, которое в режиме движения соединяет...
Тип: Изобретение
Номер охранного документа: 0002497696
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7e9b

Осевая турбомашина с малыми потерями через зазоры

Осевая турбомашина (1) включает рабочую лопаточную решетку, которая образована рабочими лопатками (3), у каждой из которых имеется передняя кромка (8) и расположенная в радиальном направлении снаружи свободная вершина (15) лопатки. Рабочую лопаточную решетку охватывают стенки (13) кольцевого...
Тип: Изобретение
Номер охранного документа: 0002498084
Дата охранного документа: 10.11.2013
Показаны записи 91-100 из 943.
20.09.2013
№216.012.6aac

Способ изготовления вихревой распылительной форсунки для распыления жидкого топлива

Изобретение относится к способу изготовления вихревой распылительной форсунки для распыления жидкого топлива. Подготавливают заготовку, имеющую полый цилиндр с закрывающим его с одной стороны днищем и открытым с другой стороны продольным концом. Вблизи днища в полом цилиндре выполняют по...
Тип: Изобретение
Номер охранного документа: 0002492959
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6bdd

Устройство для опрокидывания металлургического плавильного сосуда, металлургическая плавильная система и способ с применением такой плавильной системы

Изобретение относится к области металлургии, в частности к устройству (1) для опрокидывания металлургического плавильного сосуда (50, 55) электродуговой печи (101, 101'). Устройство содержит опрокидываемую рабочую площадку (2) печи, которая имеет отверстие (3) для размещения плавильного сосуда...
Тип: Изобретение
Номер охранного документа: 0002493264
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c8b

Направляющая или рабочая лопатка для осевого компрессора

Направляющая лопатка компрессора или рабочая лопатка осевого компрессора с осевым направлением, радиальным направлением (R), ступицей компрессора и корпусом компрессора. Направляющая лопатка или рабочая лопатка содержит аэродинамическую поверхность (1) с профильными сечениями (3, 5, 15А-15Е),...
Тип: Изобретение
Номер охранного документа: 0002493438
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d04

Селективный детектор монооксида углерода

Изобретение относится к селективному детектору монооксида углерода. Предложен детектор монооксида углерода, который базируется на двух чувствительных слоях. Второй чувствительный слой является каталитически активным и реагирует равным образом на спирты, в частности этанол, и на монооксид...
Тип: Изобретение
Номер охранного документа: 0002493559
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d07

Способ для определения и оценки индикации вихревых токов, в частности трещин, в испытываемом объекте из электропроводного материала

Изобретение относится к способу определения и оценки трещин в испытываемом объекте из электропроводного материала. Способ включает: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых...
Тип: Изобретение
Номер охранного документа: 0002493562
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6fe1

Улавливающий подшипник для улавливания роторного вала машины

Изобретение относится к улавливающему подшипнику для улавливания роторного вала машины. Улавливающий подшипник (2) имеет проходящие вокруг воображаемой геометрической средней оси (М) первое опорное тело (7) и роликовые тела (5). Роликовые тела (5) имеют, каждое, зону (19), которая расположена...
Тип: Изобретение
Номер охранного документа: 0002494292
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.7029

Способ и устройство для распознавания состояния исследуемой создающей шумы машины

Использование: в способе и устройстве для распознавания состояния исследуемой создающей шумы машины. Сущность: в способе и устройстве распознавания состояния исследуемого создающего шумы объекта сгенерированная для по меньшей мере одного эталонного объекта статистическая основная модель...
Тип: Изобретение
Номер охранного документа: 0002494364
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70bd

Способ управления при резервировании многофазного выпрямителя переменного тока с распределенными накопителями энергии

Изобретение относится к области электротехники и может быть использовано для управления выпрямителем переменного тока с распределенными накопителями энергии с тремя фазными модулями, которые имеют соответственно одну верхнюю и одну нижнюю ветвь вентилей, которые снабжены соответственно по...
Тип: Изобретение
Номер охранного документа: 0002494512
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71f2

Непрерывный прокатный стан с введением и/или выведением прокатных клетей в процессе функционирования

Изобретение предназначено для повышения качества проката. Способ включает непрерывную прокатку в нескольких клетях. Плавность выведения/введения прокатных клетей для замены валков обеспечивается за счет того, что при выведения одной (1'') из прокатных клетей (1, 1'') из непрерывного прокатного...
Тип: Изобретение
Номер охранного документа: 0002494827
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7327

Способ определения меры кусковатости твердого материала в электродуговой печи, электродуговая печь, устройство обработки сигнала, а также программный код и носитель данных

Изобретение относится к области получения металла в электродуговой печи. Технический результат - повышение точности прогнозирования состояния твердого материала в электродуговой печи. Согласно способу определения кусковатости для твердого материала, в особенности скрапа, в электродуговой печи...
Тип: Изобретение
Номер охранного документа: 0002495136
Дата охранного документа: 10.10.2013
+ добавить свой РИД