×
29.12.2017
217.015.f98b

Результат интеллектуальной деятельности: Охлаждаемая турбина двухконтурного газотурбинного двигателя

Вид РИД

Изобретение

Аннотация: Охлаждаемая турбина двухконтурного газотурбинного двигателя содержит сопловой аппарат турбины с сопловыми лопатками, диск с рабочими лопатками, установленными в проточной части турбины, многоканальный воздуховод. Многоканальный воздуховод проходит через внутренние полости сопловых лопаток, его входная полость сообщена с источником охлаждающего воздуха. Выходная полость многоканального воздуховода соединена, с одной стороны, через дополнительный аппарат закрутки статора, дополнительный безлопаточный диффузор и дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки, а с другой стороны, через аппарат закрутки статора, безлопаточный диффузор и воздушные каналы с остальной полостью каждой рабочей лопатки. Безлопаточный диффузор и дополнительный безлопаточный диффузор размещены на сопловом аппарате турбины и выполнены в виде каналов, входные полости которых соединены с аппаратом закрутки статора и дополнительным аппаратом закрутки статора соответственно. Выходная полость канала дополнительного безлопаточного диффузора соединена через дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки. Выходная полость канала безлопаточного диффузора соединена через воздушные каналы с остальной полостью каждой рабочей лопатки. Выходные полости каналов образуют между собой кольцевой зазор, оснащенный подвижным уплотнением, и отделены дополнительными подвижными уплотнениями от проточной части турбины и от полости, образованной аппаратом закрутки статора и диском с рабочими лопатками. Изобретение позволяет снизить затраты на изготовление и сборку элементов конструкции узла турбины за счет снижения массы деталей и металлоемкости конструкции. 1 ил.

Изобретение относится к области охлаждения турбореактивных двигателей, а именно к способам охлаждения рабочих колес высокотемпературных турбин многорежимных авиационных двигателей.

Известна охлаждаемая турбина двухконтурного газотурбинного двигателя, содержащая сопловой аппарат турбины с сопловыми лопатками, диск с рабочими лопатками, установленными в проточной части турбины, многоканальный воздуховод, проходящий через внутренние полости сопловых лопаток, входная полость которого сообщена с источником охлаждающего воздуха, а выходная полость соединена, с одной стороны, через дополнительный аппарат закрутки статора, дополнительный безлопаточный диффузор и дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки, а с другой стороны, через аппарат закрутки статора, безлопаточный диффузор и воздушные каналы с остальной полостью каждой рабочей лопатки (патент РФ №2387846, МПК F01D 5/18, опубл. 27.04.2010 г.).

Недостатком данного изобретения является то, что безлопаточный и дополнительный безлопаточный диффузоры соединены с диском турбины и находятся в поле центробежных сил. Это усложняет конструкцию крепления элементов безлопаточных диффузоров к диску турбины, снижает их запасы прочности и надежности, создает проблему уплотнения этих элементов с целью минимизации утечек охлаждающего воздуха в проточную часть турбины. Также для обеспечения требуемых запасов прочности и ресурса самих безлопаточных диффузоров требуется увеличить их массу, а следовательно, и массу самого диска турбины, что повышает металлоемкость конструкции и, следовательно, увеличиваются затраты на изготовление узлов турбины.

Задача изобретения - повышение эффективности производства двигателя.

Ожидаемый технический результат - снижение массы и металлоемкости конструкции узла турбины, упрощение технологии ее изготовления и сборки, повышение запасов прочности и ресурса двигателя при сохранении эффективности охлаждения рабочих лопаток турбины.

Ожидаемый технический результат достигается тем, что в охлаждаемой турбине двухконтурного газотурбинного двигателя, содержащей сопловой аппарат турбины с сопловыми лопатками, диск с рабочими лопатками, установленными в проточной части турбины, многоканальный воздуховод, проходящий через внутренние полости сопловых лопаток, входная полость которого сообщена с источником охлаждающего воздуха, а выходная полость соединена, с одной стороны, через дополнительный аппарат закрутки статора, дополнительный безлопаточный диффузор и дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки, а с другой стороны, через аппарат закрутки статора, безлопаточный диффузор и воздушные каналы с остальной полостью каждой рабочей лопатки, согласно изобретению безлопаточный диффузор и дополнительный безлопаточный диффузор размещены на сопловом аппарате турбины и выполнены в виде каналов, входные полости которых соединены с аппаратом закрутки статора и дополнительным аппаратом закрутки статора соответственно, выходная полость канала дополнительного безлопаточного диффузора соединена через дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки, а выходная полость канала безлопаточного диффузора соединена через воздушные каналы с остальной полостью каждой рабочей лопатки, при этом выходные полости каналов образуют между собой кольцевой зазор, оснащенный подвижным уплотнением, и отделены дополнительными подвижными уплотнениями от проточной части турбины и от полости, образованной аппаратом закрутки статора и диском с рабочими лопатками.

Размещение безлопаточного диффузора и дополнительного безлопаточного диффузора на сопловом аппарате турбины обеспечивает его неподвижность и отсутствие влияния центробежных сил диска. В этом случае упрощается технология крепления безлопаточных диффузоров, технология их производства, поскольку безлопаточные диффузоры возможно изготовить из листового материала, применяя более дешевые и простые операции. Снижается их масса, а следовательно, и всего узла турбины в целом.

Выполнение безлопаточного диффузора и дополнительного безлопаточного диффузора в виде каналов обеспечивает однозначность их геометрии и независимость подводов охлаждающего воздуха к рабочим лопаткам турбины.

Для безлопаточного диффузора известно, что максимальная степень повышения давления охлаждающего воздуха при его торможении в безлопаточном диффузоре реализуется до момента достижения равенства скорости охлаждающего воздуха и скорости диска турбины. В этом случае охлаждающий воздух входит в каналы подвода охлаждающего воздуха к рабочим лопаткам с минимальными потерями и высоким давлением.

В случае, когда безлопаточные диффузоры неподвижны, это условие остается справедливым. Таким образом, в неподвижных безлопаточных диффузорах также обеспечивается повышение давления потока охлаждающего воздуха за вычетом потерь на трение о неподвижные стенки каналов.

Соединение входных полостей каналов с аппаратом закрутки статора и дополнительным аппаратом закрутки статора соответственно позволяет подать охлаждающий воздух в безлопаточный диффузор и дополнительный безлопаточный диффузор с более низкой температурой, чем в источнике охлаждающего воздуха, поскольку воздух выходит из выходных каналов аппаратов закрутки статора с большой скоростью, что обеспечивает снижение его температуры.

Соединение выходной полости канала дополнительного безлопаточного диффузора через дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки, а выходной полости канала безлопаточного диффузора через воздушные каналы с остальной полостью каждой рабочей лопатки обеспечивает независимое охлаждение как теплонапряженной входной кромки, так и задней и выходной кромки рабочей лопатки турбины, а образование между выходными полостями каналов кольцевого зазора, оснащенного подвижным уплотнением, позволяет более точно разделить потоки охлаждающего воздуха во внутреннюю полость, примыкающую к входной кромке, и остальную полость рабочей лопатки, что также обеспечивает независимость и автономность подводов.

Отделение выходных полостей каналов дополнительными подвижными уплотнениями от проточной части турбины и от полости, образованной аппаратом закрутки статора и диском с рабочими лопатками, обеспечивает минимальные утечки охлаждающего воздуха.

На чертеже показан продольный разрез охлаждаемой турбины.

Охлаждаемая турбина двухконтурного газотурбинного двигателя содержит сопловой аппарат турбины 1 с сопловыми лопатками 2, диск 3 с рабочими лопатками 4, установленными в проточной части турбины 5, многоканальный воздуховод 6, проходящий через внутренние полости 7 сопловых лопаток 2.

Входная полость 8 многоканального воздуховода 6 сообщена с источником охлаждающего воздуха 9, а выходная полость 10 соединена, с одной стороны, через дополнительный аппарат закрутки статора 11, дополнительный безлопаточный диффузор 12 и дополнительные воздушные каналы 13 с внутренней полостью 14 каждой рабочей лопатки 4, расположенной у входной кромки 15, а с другой стороны, через аппарат закрутки статора 16, безлопаточный диффузор 17 и воздушные каналы 18 с остальной полостью 19 каждой рабочей лопатки 4.

Безлопаточный диффузор 17 и дополнительный безлопаточный диффузор 12 размещены на сопловом аппарате турбины 1 и выполнены в виде каналов 20 и 21, входные полости 22 и 23 которых соединены с аппаратом закрутки статора 16 и дополнительным аппаратом закрутки статора 11 соответственно.

Выходная полость 24 канала 21 дополнительного безлопаточного диффузора 12 соединена через дополнительные воздушные каналы 13 с внутренней полостью 14 каждой рабочей лопатки 4, расположенной у входной кромки 15, а выходная полость 25 канала 20 безлопаточного диффузора 17 соединена через воздушные каналы 18 с остальной полостью 19 каждой рабочей лопатки 4.

Выходные полости 24 и 25 каналов 21 и 20 образуют между собой кольцевой зазор 26, оснащенный подвижным уплотнением 27, а также отделены дополнительными подвижными уплотнениями 28 и 29 от проточной части турбины 5 и от полости 30, образованной аппаратом закрутки статора 16 и диском 3 с рабочими лопатками 4.

Охлаждение турбины осуществляется следующим образом.

Воздух от источника охлаждающего воздуха 9 поступает во входную полость 8 многоканального воздуховода 6, проходящего через внутренние полости 7 сопловых лопаток 2, на выходе 10 из которого часть потока охлаждающего воздуха направляется в аппарат закрутки статора 16, а часть в дополнительный аппарат закрутки статора 11. Распределение расходов охлаждающего воздуха зависит от площади проходных сечений аппаратов закрутки статора и определяется на стадии проектировочного расчета.

Воздух, выходящий из дополнительного аппарата закрутки статора 11 с температурой, более низкой, чем на входе за счет разгона потока охлаждающего воздуха в нем, направляется по неподвижному каналу 21 дополнительного безлопаточного диффузора 12, где происходит торможение потока охлаждающего воздуха с повышением его давления за вычетом потерь на трение о неподвижные стенки канала 21. Далее воздух с высоким давлением через дополнительные воздушные каналы 13 устремляется во внутреннюю полость 14 каждой рабочей лопатки 4, расположенной у входной кромки 15, и обеспечивает охлаждение теплонапряженной входной кромки 15.

Одновременно воздух, выходящий из аппарата закрутки статора 16 также с более низкой температурой, чем на входе, поступает в неподвижный безлопаточный диффузор 17, где в результате торможения потока повышается давление на выходе из безлопаточного диффузора 17 и воздух устремляется через воздушные каналы 18 в остальную часть 19 каждой рабочей лопатки 4, где происходит охлаждение выходной кромки и задней части рабочей лопатки турбины.

Через подвижные уплотнения 28 и 29 небольшая часть воздуха поступает в проточную часть турбины 5 и в полость 30, образованную аппаратом закрутки статора 16 и диском 3 с рабочими лопатками 4.

Также происходит перетечка воздуха в кольцевом зазоре 26 между безлопаточными диффузорами 17 и 12 через подвижное уплотнение 27.

Реализация данного изобретения позволяет снизить затраты на изготовление и сборку элементов конструкции узла турбины за счет снижения массы деталей и металлоемкости конструкции, упрощения технологии крепления и сборки узла турбины, повышение запасов прочности и ресурса двигателя в целом при сохранении эффективности охлаждения рабочих лопаток турбины.

Охлаждаемая турбина двухконтурного газотурбинного двигателя, содержащая сопловой аппарат турбины с сопловыми лопатками, диск с рабочими лопатками, установленными в проточной части турбины, многоканальный воздуховод, проходящий через внутренние полости сопловых лопаток, входная полость которого сообщена с источником охлаждающего воздуха, а выходная полость соединена, с одной стороны, через дополнительный аппарат закрутки статора, дополнительный безлопаточный диффузор и дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки, а с другой стороны, через аппарат закрутки статора, безлопаточный диффузор и воздушные каналы с остальной полостью каждой рабочей лопатки, отличающаяся тем, что безлопаточный диффузор и дополнительный безлопаточный диффузор размещены на сопловом аппарате турбины и выполнены в виде каналов, входные полости которых соединены с аппаратом закрутки статора и дополнительным аппаратом закрутки статора соответственно, выходная полость канала дополнительного безлопаточного диффузора соединена через дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки, а выходная полость канала безлопаточного диффузора соединена через воздушные каналы с остальной полостью каждой рабочей лопатки, при этом выходные полости каналов образуют между собой кольцевой зазор, оснащенный подвижным уплотнением, и отделены дополнительными подвижными уплотнениями от проточной части турбины и от полости, образованной аппаратом закрутки статора и диском с рабочими лопатками.
Охлаждаемая турбина двухконтурного газотурбинного двигателя
Источник поступления информации: Роспатент

Показаны записи 281-285 из 285.
03.06.2023
№223.018.766f

Способ управления расходом топлива в камеру сгорания на запуске газотурбинного двигателя

Изобретение относится к области управления работой газотурбинных двигателей (ГТД), преимущественно авиационных, и может быть использовано для управления подачей топлива в ГТД на режиме запуска. Предлагается способ управления расходом топлива в камеру сгорания на запуске газотурбинного...
Тип: Изобретение
Номер охранного документа: 0002796562
Дата охранного документа: 25.05.2023
03.06.2023
№223.018.769a

Ротор турбины низкого давления газотурбинного двигателя

Изобретение относится к авиадвигателестроению, а именно к конструкциям роторов турбины низкого давления (ТНД) газотурбинного двигателя (ГТД). Ротор турбины низкого давления газотурбинного двигателя, содержащий промежуточный вал, носок с размещенным на нем подшипником, при этом в носке выполнены...
Тип: Изобретение
Номер охранного документа: 0002796564
Дата охранного документа: 25.05.2023
16.06.2023
№223.018.7c05

Способ диагностики технического состояния газотурбинного двигателя

Изобретение относится к неразрушающему контролю технического состояния газотурбинных двигателей. Способ диагностики технического состояния газотурбинного двигателя, заключающийся в том, что выбирают параметры, подлежащие диагностическому контролю, текущее значение которых регистрируют на...
Тип: Изобретение
Номер охранного документа: 0002745820
Дата охранного документа: 01.04.2021
16.06.2023
№223.018.7d15

Гидродинамический демпфер подшипниковой опоры ротора турбомашины

Изобретение относится к области машиностроения. Демпфер содержит внутренний корпус, образующий с корпусом радиальный зазор. На внутренней поверхности корпуса и наружной поверхности внутреннего корпуса выполнены проточки. В полости, образованной несквозными цилиндрическими проточками,...
Тип: Изобретение
Номер охранного документа: 0002741824
Дата охранного документа: 28.01.2021
16.06.2023
№223.018.7d3e

Способ снижения вибронапряжений в рабочих лопатках турбомашины

Изобретение предназначено для использования в турбомашиностроении и может найти широкое применение для снижения вибронапряжений в лопатках рабочих колес турбомашин. Проводят тензометрирование лопаток отдельного рабочего колеса турбомашины. Определяют наиболее опасную резонансную частоту...
Тип: Изобретение
Номер охранного документа: 0002746365
Дата охранного документа: 12.04.2021
Показаны записи 291-300 из 308.
15.10.2019
№219.017.d59f

Газотурбинный двигатель

Изобретение относится к области эксплуатации газотурбинных двигателей в промышленности в качестве привода газоперекачивающих агрегатов, в частности к дополнительным устройствам, обеспечивающим очистки проточных частей и внутренних каналов газотурбинных двигателей от загрязнений и топливных...
Тип: Изобретение
Номер охранного документа: 0002702782
Дата охранного документа: 11.10.2019
17.10.2019
№219.017.d677

Способ генерации излучения газодинамического лазера интегрированного в единую конструкцию газотурбинного двигателя и газотурбинный двигатель для его осуществления

Изобретение относится к лазерной технике и может быть использовано при создании технологических лазерных систем, интегрированных в конструкцию газотурбинного двигателя. Способ генерации излучения газодинамического лазера интегрированного в единую конструкцию газотурбинного двигателя включает...
Тип: Изобретение
Номер охранного документа: 0002702921
Дата охранного документа: 14.10.2019
10.11.2019
№219.017.e008

Маслосистема авиационного газотурбинного двигателя с форсажной камерой

Изобретение относится к области машиностроения и касается устройства маслосистемы авиационного газотурбинного двигателя (далее ГТД) с форсажной камерой, устанавливаемого на сверхзвуковые маневренные самолеты. Технический результат изобретения - повышение надежности работы ГТД путем упрощения...
Тип: Изобретение
Номер охранного документа: 0002705501
Дата охранного документа: 07.11.2019
21.11.2019
№219.017.e412

Способ ресурсных испытаний газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей. Способ ресурсных испытаний газотурбинного двигателя включает разбиение рабочей области частоты вращения ротора с рабочими лопатками на несколько диапазонов и наработку в...
Тип: Изобретение
Номер охранного документа: 0002706514
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e45c

Способ очистки газотурбинного двигателя

Изобретение относится к области эксплуатации газотурбинных двигателей в промышленности в качестве привода газоперекачивающих агрегатов, в частности, к способам, связанным с необходимостью очистки проточных частей и внутренних каналов газотурбинных двигателей от загрязнений и топливных осаждений...
Тип: Изобретение
Номер охранного документа: 0002706516
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e45e

Способ контроля технического состояния газотурбинного двигателя во время его эксплуатации

Изобретение относится к области эксплуатации газотурбинных двигателей (ГТД), а именно к контролю их технического состояния во время эксплуатации для принятия решения по их обслуживанию и дальнейшей эксплуатации. Способ контроля технического состояния ГТД во время его эксплуатации включает...
Тип: Изобретение
Номер охранного документа: 0002706523
Дата охранного документа: 19.11.2019
24.11.2019
№219.017.e626

Стенд для комплексных испытаний двигательных и самолетных агрегатов газотурбинного двигателя

Изобретение относится к машиностроению, в том числе к газотурбиностроению, а именно к испытательной технике, в частности к стендам полунатурного моделирования испытаний агрегатов и систем, и может быть использовано при ресурсных испытаниях с имитацией эксплуатационных режимов нагружения...
Тип: Изобретение
Номер охранного документа: 0002706829
Дата охранного документа: 21.11.2019
01.12.2019
№219.017.e86d

Способ подготовки и сжигания топлива в камере сгорания газотурбинной установки

Изобретение относится к камерам сгорания газотурбинных установок, работающим на газообразном углеводородном топливе и использующим в своей работе каталитические средства. Способ подготовки и сжигания топлива в камере сгорания газотурбинной установки включает подачу воздуха из-за компрессора в...
Тип: Изобретение
Номер охранного документа: 0002707780
Дата охранного документа: 29.11.2019
22.12.2019
№219.017.f09f

Система суфлирования воздуха в авиационном газотурбинном двигателе

Изобретение относится к авиадвигателестроению и касается устройства системы суфлирования воздуха авиационного газотурбинного двигателя (далее ГТД). Задачей изобретения является снижение расхода масла в ГТД за счет рациональной организации подвода воздуха и отвода масла от суфлера. Указанная...
Тип: Изобретение
Номер охранного документа: 0002709751
Дата охранного документа: 19.12.2019
05.02.2020
№220.017.fdc7

Способ формирования размеров светового пятна на динамическом объекте и устройство для его осуществления

Изобретение относится к квантовой электронике, конкретно к способам формирования световых пятен от излучения концентрических излучателей, и может быть использовано при создании технологических устройств, в частности, интегрированных в конструкцию газотурбинного двигателя, для адаптивного...
Тип: Изобретение
Номер охранного документа: 0002713128
Дата охранного документа: 03.02.2020
+ добавить свой РИД