×
26.08.2017
217.015.dad2

Результат интеллектуальной деятельности: Способ получения сплава из порошков металлов с разницей температур плавления

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цветной металлургии, в частности к способу получения сплава из порошков металлов с разницей температур плавления с помощью пучка релятивистских электронов на плоских подложках из титана и может быть использовано для создания биоинертных сплавов для медицинских приложений. Готовят порошковую смесь из модифицирующего, смачивающего и флюсообразующего компонентов при следующем соотношении компонентов, мас.%: модифицирующий компонент 36-48, смачивающий компонент 12-24, флюсообразующий компонент - остальное. Затем наносят порошковую смесь на металлическую подложку. Помещают подложку с нанесенным на нее слоем порошковой смеси под сканирующий пучок релятивистских электронов. Массовую толщину слоя порошка (σ) определяют из соотношения σ=K⋅(Е-b), где K=(0,2-0,4) [г⋅см⋅МэВ], E - энергия электронов в МэВ, b=0,21 МэВ. Проводят обработку каждой точки подложки в течение 0,5-2,0 секунд с получением наплавленного слоя. В качестве модифицирующего компонента используют порошок ниобия. Техническим результатом изобретения является получение сплава с заданным элементным составом и структурой, преимущественно, медицинского назначения. 3 з.п. ф-лы, 1 ил., 2 пр., 2 табл.

Изобретение относится к области цветной металлургии и может быть использовано для создания сплавов из порошков металлов с разницей в температуре плавления с помощью пучка релятивистских электронов на плоских подложках из титана. Изобретение может быть использовано для создания биоинертных сплавов для медицинских приложений с варьируемой концентрацией элементов сплава.

Известны способы изготовления коррозионно-стойких материалов из сплавов системы Ta-Nb-Ti из работы Karen Alves de Souza, Alain Robin. Influence of concentration and temperature on the corrosion behavior of titanium, titanium-20 and 40% tantalum alloys and tantalum in sulfuric acid solutions, Materials Chemistry and Physics 103 (2007), c. 351-360 [1], а также из работы K. Kapoor, Vivekanand Kain, T. Gopalkrishna, T. Sanyal, P.K. De. High corrosion resistant Ti - 5% Ta - 1.8% Nb alloy for fuel reprocessing application, Journal of Nuclear Materials 322 (2003) 36-44 [2], согласно которым для изготовления отливки с заданным процентным содержанием компонентов берутся исходные чистые материалы в соотношении, совпадающем с заданным соотношением элементов в сплаве. Куски исходных чистых компонентов помещают в вакуумную электродуговую печь. С целью достижения однородности по составу сплава переплав повторяют от 3 до 10 раз, переворачивая получившийся слиток после каждого переплава. Получившийся слиток подвергают термообработке при температуре 1200°C в течение 48 часов. Многократный переплав и последующий отжиг необходимы для ликвидации последствий ликвации и сегрегации, сопровождающих переплав, вследствие большой разницы в температурах плавления и удельных весах компонентов сплава. Для получения плоских пластин слиток сначала подвергают горячей экструзии с целью формирования прутка, затем холодному обжиму или штамповке с целью уменьшения поперечного размера прутка, после чего осуществляют отжиг и финальную прокатку с целью формирования пластин заданной толщины.

Недостаток известного способа заключается в использовании большого числа дорогостоящих, длительных операций, которые должны проводиться в вакууме или инертной среде, а также в том, что затруднено получение изделий большого размера. Для достижения гомогенности (однородности) состава сплава требуется проводить многократную переплавку. Материал тигля может реагировать со сплавом, тем самым загрязняя его.

Известен способ гарнисажной плавки тугоплавких материалов из работы Оптимизация тепловой работы тигля при вакуумно-дуговой гарнисажной плавке / М.Л. Жадкевич, В.В. Тэлин, С.М. Теслевич, А.Б. Лесной, В.Ф. Демченко, В.А. Шаповалов // Соврем. электрометаллургия. - 2005. - №3. - С. 47-50, согласно которому шихта переплавляется с помощью электродугового метода с расходуемым или не расходуемым электродами. При этом на поверхности тигля, который обычно охлаждается водой, образуется затвердевший слой сплава, который защищает слиток от взаимодействия с тиглем.

Недостаток известного способа также заключается в использовании большого числа дорогостоящих, длительных операций, которые должны проводиться в вакууме или инертной среде, а также в том, что затруднено получение изделий большого размера. Для достижения гомогенности (однородности) состава сплава требуется проводить многократную переплавку.

Известен способ электронно-лучевой плавки тугоплавких материалов из работы Зеликман А.Н., Коршунов Б.Г. "Металлургия редких металлов", 1991, согласно которому шихта переплавляется с помощью пучка электронов. Плавка происходит в вакууме.

Недостаток известного способа также заключается в использовании большого числа дорогостоящих, длительных операций, которые должны проводиться в вакууме или инертной среде, а также в том, что затруднено получение изделий большого размера.

Наиболее близким техническим решением, выбранным за прототип, является способ формирования антикоррозионного покрытия на титановых изделиях с применением сфокусированного пучка релятивистских электронов, выведенного в атмосферу, патент RU 2443800, С23С 24/10, С23С 14/10, опубл. 27.02.2012. Известный способ включает нанесение на обрабатываемую поверхность титанового сплава слоя порошка, содержащего флюсообразующий компонент и модифицирующий компонент. При этом массовую толщину слоя порошка σ [г/см2] определяют по формуле σ=K⋅(E-b), где K=(0,2-0,4) [г⋅см-2⋅МэВ-1], E - энергия электронов в МэВ, b=0,21 МэВ. Подложка из титанового сплава с помещенным на нее слоем порошка поступательно перемещается под сканирующим электронным пучком со скоростью, обеспечивающей длительность воздействия пучка на каждую точку поверхности, не превышающую удвоенную величину отношения квадрата глубины проникновения электронов в обрабатываемый материал к величине его температуропроводности.

Основной недостаток известного способа заключается в том, что он предназначен для формирования антикоррозийного покрытия с целью защиты подложки от воздействия различными реагентами и не может быть использован для получения сплавов медицинского назначения.

Задачей предлагаемого изобретения является разработка способа получения сплава из порошков металлов с разницей температур плавления.

Техническим результатом предлагаемого изобретения является получение сплава с заданным элементным составом и структурой, преимущественно, медицинского назначения.

Указанный технический результат достигается тем, что в способе получения сплава из порошков металлов с разницей температур плавления, включающем:

- приготовление порошковой смеси из компонентов: смачивающего в виде порошка титана; флюсообразующего в виде смеси фтористых солей CaF2 и LiF и модифицирующего;

- нанесение порошковой смеси на титановую подложку, помещение подложки с нанесенным на нее слоем порошковой смеси под сканирующий пучок релятивистских электронов, при этом массовую толщину слоя порошка (σ) определяют из соотношения σ=K⋅(E-b), где K=(0,2-0,4) [г⋅см-2⋅МэВ-1], Е - энергия электронов в МэВ, b=0,21 МэВ,

- проведение обработки каждой точки титановой подложки в течение 0,5-2,0 с с получением наплавленного слоя, причем описанный цикл наплавки проводят по меньшей мере один раз, при этом в качестве модифицирующего компонента используют порошок ниобия при следующем соотношении компонентов, мас.%:

модифицирующий компонент 36-48
смачивающий компонент 12-24
флюсообразующий компонент остальное,

далее наплавленный слой срезают с титановой подложки на толщину наплавки.

При необходимости срезанный наплавленный слой подвергают дополнительной переплавке.

При необходимости описанный цикл наплавки повторяют многократно, используя в каждом следующем цикле наплавки порошковую смесь с разным соотношением компонентов в заявленных пределах для получения градиентной по составу структуры наплавленных слоев.

При необходимости описанный цикл наплавки повторяют многократно, используя в каждом следующем цикле наплавки порошковую смесь с одинаковым соотношением компонентов в заявленных пределах.

Сущность предлагаемого изобретения заключается в следующем.

На металлическую подложку помещают слои из порошковых смесей модифицирующего, смачивающего и флюсообразующего компонентов.

При приготовлении порошковой смеси используют в качестве модифицирующего компонента порошок ниобия, в качестве смачивающего компонента порошок титана, в качестве флюсообразующего компонента смесь фтористых солей: CaF2 и LiF.

Флюсообразующий компонент - смесь фтористых солей: CaF2 и LiF служит для защиты от атмосферного воздействия.

После чего металлическая подложка перемещалась под сканирующим пучком релятивистских электронов в направлении своей длины. Сканирование релятивистского электронного пучка производилось в направлении ширины подложки с размахом, совпадающим с шириной подложки. В качестве источника релятивистского электронного пучка использовался промышленный ускоритель электронов марки ЭЛВ-6, серийно выпускающийся Институтом ядерной физики Сибирского отделения РАН. Ускоритель снабжен устройством выпуска пучка в атмосферу. Энергия электронов пучка Е устанавливалась Е=1,4 МэВ, что соответствует релятивистскому диапазону энергий электронов. Массовая толщина слоя порошка (σ), помещаемого на основу, измерялась в г/см2 и определялась исходя из значения энергии электронов в пучке по формуле σ=K⋅(E-b). Массовая толщина слоя порошковой смеси, помещаемого на титановую пластину, рассчитывалась исходя из значения энергии электронов в пучке по формуле σ=K⋅(E-b), где K=(0,2-0,4) [г⋅см-2⋅МэВ-1], Е - энергия электронов в МэВ, b=0,21 МэВ

Значения коэффициента выбирались в пределах, установленных формулой изобретения и варьировались в этих пределах для получения разных степеней легирования наплавленных слоев получаемого материала. Проводят обработку сканирующим пучком релятивистских электронов каждой точки подложки с нанесенной на нее смесью порошков в течение 0,5-2,0 секунд с получением наплавленного слоя. Время обработки выбрано на основе результатов проведенных экспериментов.

По значению времени обработки определяют скорость перемещения подложки с нанесенной на нее порошковой смесью под пучком v [см/с] по формуле где d - диаметр пучка. Качество наплавленных слоев определялось по результатам металлографических исследований поперечных сечений образцов получаемого сплава. Циклы наплавки повторялись до 5 раз на одной подложке при совпадающих условиях с целью повышения концентрации легирующих компонентов.

Также были проведены эксперименты по описанному циклу наплавки, используя металлические подложки толщиной 8-12 мм.

Также были проведены эксперименты по описанному циклу наплавки, используя порошковую смесь с варьируемым (одинаковым или разным) соотношением исходных компонентов для получения заданного элементного состава наплавленных слоев.

Варьированием количеством наплавок и составом порошковой смеси можно задавать элементный состав получаемого сплава, получаемого по предлагаемому способу, а также толщину получаемого сплава без изменения его элементного состава.

Исследование структуры и химического состава образцов показало отсутствие загрязнений и трещин в наплавленных слоях. Структура и химический состав полученных сплавов однородны по глубине наплавленного слоя.

Степень легирования при получении сплава может быть увеличена за счет многократной наплавки одних и тех же легирующих порошковых компонентов, поскольку глубина проплавления при каждой последующей наплавке возрастает незначительно или остается прежней, а толщина наплавленного слоя получаемого сплава растет.

Массовая толщина порошковой смеси выбирается из расчета, чтобы энергия электронов практически полностью поглощалась в порошковом слое. В процессе обработки сканирующим пучком релятивистских электронов флюсовый компонент плавится в первую очередь и защищает порошковую смесь от окисления на начальной стадии воздействия электронным пучком, далее плавится смачивающий компонент, он заполняет поры между тугоплавкими частицами модифицирующего компонента, уменьшая тем самым площадь активной поверхности, взаимодействующей с кислородом. Расплавившийся смачивающий компонент смачивает также титановую основу, после чего тепло за счет теплопроводности передается верхнему слою основы, он плавится, и в расплаве растворяются тугоплавкие частицы модифицирующего компонента.

Описанный цикл наплавки осуществляют, например, в воздушной, инертной среде или в вакууме.

В общем случае пробег электронов в среде сильно зависит от их энергии. Если присутствует воздушная среда, то энергия тратится на торможение электронов. Так как в большинстве известных методов используются, в основном, невысокоэнергетические источники электронов, то этот параметр (энергия электронов) является критическим. Инертная среда помогает не допустить образование оксидной пленки на поверхности порошков (для этой цели также используется флюс). В предлагаемом изобретении используется высокоэнергетический источник с энергией электронов, достаточной, чтобы преодолевать воздушную среду и иметь необходимый пробег в материале. Для уменьшения энергетических потерь можно использовать вакуумную среду.

Полученные наплавленные слои срезают в количестве, необходимом для формирования объемных изделий, и подвергают общему переплаву с целью формирования изделий необходимой формы, а исходную подложку используют повторно для следующих циклов наплавки или же вместе с подложкой подвергают последующей переплавке.

На фиг. 1а приведен график зависимости содержания/концентрации ниобия в верхнем (последнем для образца) наплавленном слое (в нижних слоях концентрация может быть меньше) в зависимости от количества наплавок.

Из графика видно, что падение концентрации ниобия для образца с 5-ю наплавками связано с уменьшением содержания ниобия в шихте. Авторам важно было получить максимально возможную толщину наплавленного слоя, а не максимально возможную концентрацию ниобия. На образце с 4-мя наплавками уже видно, что концентрация ниобия для материала медицинского назначения излишне высока (что будет также нерентабельно при производстве предлагаемого сплава).

Таким образом, можно варьировать элементным составом предлагаемого сплава путем изменения массовой концентрации порошка ниобия в шихте и количества наплавок.

На фиг. 1б приведен график зависимости суммарной толщины наплавленных слоев в зависимости от количества наплавок.

Из графика видно, что увеличение количества наплавок приводит к существенному увеличению толщины наплавленного слоя, при этом состав шихты не влияет на толщину наплавленного слоя.

Пример 1.

Берут на 22,5 г порошковой смеси состава по п. 1 таблицы 1.

На большую грань подложки в виде пластины технического титана марки ВТ-1, например, размером 5×10 см и толщиной 8-12 мм наносят слой порошковой смеси указанного состава. Массовая толщина слоя порошковой смеси, помещаемого на титановую пластину, составила 0,45 г/см2.

Далее титановую пластину с нанесенным на нее слоем порошковой смеси перемещают под сканирующим электронным пучком в направлении своей длины (10 см). Сканирование релятивистского электронного пучка производят в направлении ширины пластины с размахом, совпадающим с шириной пластины (5 см).

Источником релятивистского электронного пучка являлся вышеупомянутый промышленный ускоритель электронов марки ЭЛВ-6. Расстояние от отверстия вывода пучка в атмосферу до обрабатываемой поверхности составляло 9 см, при этом диаметр пучка на обрабатываемой поверхности титановой пластины был равен 1,2 см. Скорость перемещения электронного пучка составляла 1 см/с.

В процессе обработки флюсообразующий (CaF2 и LiF) компонент плавится в первую очередь, он заполняет поры между тугоплавкими частицами ниобия в смеси с титаном, уменьшая тем самым площадь активной поверхности, взаимодействующей с кислородом. Далее плавится смачивающий металлический титановый компонент порошка. Расплавившийся порошок титана смачивает также титановую основу, после чего тепло за счет теплопроводности передается верхнему слою основы, он плавится, и в расплаве растворяются тугоплавкие частицы ниобия.

Качество наплавленного слоя определяют по результатам металлографических исследований поперечных сечений образца с наплавкой.

Пример 2.

Берут на 22,5 г порошковой смеси состава по п. 6 таблицы 1.

На большую грань подложки в виде пластины технического титана марки ВТ-1, например, размером 5×10 см и толщиной 8-12 мм наносят слой порошковой смеси указанного состава. Массовая толщина слоя порошковой смеси, помещаемого на титановую пластину, составила 0,45 г/см2.

Далее титановую пластину с нанесенным на нее слоем порошковой смеси перемещают под сканирующим электронным пучком в направлении своей длины (10 см). Сканирование релятивистского электронного пучка производят в направлении ширины пластины с размахом, совпадающим с шириной пластины (5 см).

Источником релятивистского электронного пучка являлся вышеупомянутый промышленный ускоритель электронов марки ЭЛВ-6. Расстояние от отверстия вывода пучка в атмосферу до обрабатываемой поверхности составляло 9 см, при этом диаметр пучка на обрабатываемой поверхности титановой пластины был равен 1,2 см. Скорость перемещения электронного пучка составляла 1 см/с.

В процессе обработки флюсообразующий (CaF2 и LiF) компонент плавится в первую очередь, он заполняет поры между тугоплавкими частицами ниобия, уменьшая тем самым площадь активной поверхности, взаимодействующей с кислородом. Далее тепло за счет теплопроводности передается верхнему слою титановой основы, он плавится, и в расплаве растворяются тугоплавкие частицы ниобия.

Качество наплавленного слоя определяют по результатам металлографических исследований поперечных сечений образцов с наплавкой.

Аналогично примеру 1 осуществляют другие примеры 2-5 выполнения предлагаемого способа, при этом концентрации исходных компонентов в составах порошковой смеси, наносимой на поверхность титановой пластины, удовлетворяли формуле изобретения, см. таблицы 1-2. В таблице 2 приведен компонентный состав порошковой смеси на разных циклах наплавки для образца 5.

Исследование структуры и химического состава образцов полученного сплава показало отсутствие загрязнений и трещин в наплавках. Структура и химический состав однородны по глубине наплавленного слоя.

Для осуществления предлагаемого способа возможно использование не только порошков Ti (1933±20 K), Nb (2741 K), а также, например, порошков Та (3290 K), Hf (2506 K), Zr (2125 K).

Предлагаемым способом возможно получение сплава медицинского назначения с различной концентрацией легирующих компонентов, прогнозируемой структурой и свойствами.


Способ получения сплава из порошков металлов с разницей температур плавления
Источник поступления информации: Роспатент

Показаны записи 51-60 из 63.
13.02.2020
№220.018.01f0

Износостойкий композиционный материал на основе алюминия и способ его получения

Изобретение относится к области порошковой металлургии, а именно к композиционным материалам (КМ) с алюминиевой матрицей, используемым в узлах трения скольжения. Износостойкий композиционный материал на основе алюминия содержит кремний и олово, при этом он содержит алюминий в виде матрицы,...
Тип: Изобретение
Номер охранного документа: 0002714005
Дата охранного документа: 11.02.2020
27.02.2020
№220.018.0686

Способ получения кальцийфосфатного покрытия на образце

Изобретение относится к способам нанесения кальцийфосфатных покрытий и может быть использовано в медицине при изготовлении имплантатов с биоактивным покрытием. Способ включает распыление мишени, содержащей, по крайней мере, одно кальцийфосфатное соединение, в плазме высокочастотного разряда в...
Тип: Изобретение
Номер охранного документа: 0002715055
Дата охранного документа: 25.02.2020
19.03.2020
№220.018.0d41

Способ комплексной упрочняющей обработки изделия из титанового сплава ti-6al-4v, полученного методом аддитивного производства

Изобретение относится к металлургии, а именно упрочняющей обработке изделий аддитивного производства для повышения их трибологических свойств, и может быть использовано в различных областях машиностроения для упрочнения поверхностей деталей. Способ комплексной упрочняющей обработки изделия из...
Тип: Изобретение
Номер охранного документа: 0002716926
Дата охранного документа: 17.03.2020
17.04.2020
№220.018.156a

Способ получения гранулированной металлопорошковой композиции (фидстока) и композиция, полученная данным способом

Изобретение относится к области обработки металлических порошков, а именно к получению гранулированных материалов (фидстоков), используемых для получения металлических изделий методом инжекционного формования/литья под давлением и аддитивного производства. Проводят деагломерацию и...
Тип: Изобретение
Номер охранного документа: 0002718946
Дата охранного документа: 15.04.2020
01.05.2020
№220.018.1a8f

Применение пористых наноструктур fe2o3 для преодоления устойчивости бактерий к антибиотикам

Группа изобретений относится к медицине, а именно к потенцированию действия антибиотиков, и может быть использована для лечения ран кожного покрова и мягких тканей, инфицированных множественно-устойчивыми бактериями. Для этого применяют пористые наноструктуры FeO (гематит), обладающие свойством...
Тип: Изобретение
Номер охранного документа: 0002720238
Дата охранного документа: 28.04.2020
20.05.2020
№220.018.1dff

Способ аддитивного производства изделий из высокопрочных алюминиевых сплавов с функционально-градиентной структурой

Изобретение относится к способу аддитивного производства изделий из высокопрочных алюминиевых сплавов с функционально-градиентной структурой. По меньшей мере часть изделия изготавливают путем подачи по меньшей мере двух проволок в ванну расплава, их плавления высокоэнергетическим воздействием...
Тип: Изобретение
Номер охранного документа: 0002721109
Дата охранного документа: 15.05.2020
23.05.2020
№220.018.2018

Способ лазерной сварки алюминиево-магниевых сплавов

Изобретение относится к лазерно-дуговой сварке алюминиево-магниевых сплавов с содержанием Mg от 2 до 7%. Способ включает размещение источников лазерного излучения и сварочной дуговой горелки на одной каретке для их синхронного перемещения. Фокальную плоскость лазерного луча с диаметром пятна,...
Тип: Изобретение
Номер охранного документа: 0002721613
Дата охранного документа: 21.05.2020
12.04.2023
№223.018.460b

Высокопрочный антифрикционный композит на основе полиэфирэфиркетона для медицины и способ его изготовления

Изобретение относится к антифрикционным композитным материалам на основе термопластичных полимеров и может использоваться в медицинских или ветеринарных целях для изготовления деталей суставных имплантатов, а также к способу их изготовления. Предложен высокопрочный антифрикционный композит на...
Тип: Изобретение
Номер охранного документа: 0002729653
Дата охранного документа: 11.08.2020
12.04.2023
№223.018.471f

Способ получения прутков круглого сечения из титанового сплава (варианты)

Изобретение относится к металлургии, а именно к получению прутков круглого сечения из титанового сплава. Заявлены варианты способа получения прутков круглого сечения из титанового сплава. Способ включает нагрев заготовок до температуры ниже температуры полиморфного превращения титанового...
Тип: Изобретение
Номер охранного документа: 0002756077
Дата охранного документа: 27.09.2021
20.05.2023
№223.018.6800

Способ получения антимикробной композитной наноструктуры бемит-серебро или байерит-серебро и способ получения антимикробной композитной наноструктуры γ-оксид алюминия-серебро

Группа изобретений относится к химической технологии и может быть использована в производстве композитных наноструктур оксидов/гидроксидов алюминия, предназначенных для использования в качестве компонентов сорбционно-антимикробных материалов для очистки воды и обеззараживания, лечения раневых...
Тип: Изобретение
Номер охранного документа: 0002794900
Дата охранного документа: 25.04.2023
Показаны записи 41-50 из 50.
20.03.2019
№219.016.e7ef

Способ получения сварного соединения разнородных металлических материалов

Изобретение может быть использовано при изготовлении сварных конструкций из разнородных материалов, в частности, в самолетостроении, судостроении, химическом и энергетическом машиностроении. Соединение заготовок из разнородных материалов осуществляют через промежуточную вставку, изготовленную...
Тип: Изобретение
Номер охранного документа: 0002470755
Дата охранного документа: 27.12.2012
29.05.2019
№219.017.6479

Кальций-фосфатное покрытие на титане и титановых сплавах и способ его нанесения

Изобретение относится к медицинской технике, а именно к технологии формирования покрытий на поверхности имплантатов, изготовленных из титана, находящегося в рекристаллизованном и в наноструктурном состоянии. Покрытие содержит, мас.%: титанат кальция 7-9; пирофосфат титана 16-28;...
Тип: Изобретение
Номер охранного документа: 0002291918
Дата охранного документа: 20.01.2007
29.05.2019
№219.017.6689

Дентальный внутрикостный имплантат

Изобретение относится к медицине и предназначено для использования в стоматологии в качестве фиксирующего элемента зубных протезов. Дентальный внутрикостный имплантат выполнен из объемного наноструктурного титана в виде стержня с резьбой, между витками которой выполнена спиральная канавка, в...
Тип: Изобретение
Номер охранного документа: 0002376955
Дата охранного документа: 27.12.2009
29.05.2019
№219.017.6910

Способ деформирования для получения заготовок в субмикрокристаллическом и наноструктурированном состоянии и устройство для его осуществления

Изобретение относится к обработке металлов давлением и может быть использовано при получении заготовок многогранной или круглой форм с высоким уровнем физико-механических свойств. Исходную заготовку подвергают последовательной по циклам деформационной обработке и последующей многоходовой...
Тип: Изобретение
Номер охранного документа: 0002436847
Дата охранного документа: 20.12.2011
05.07.2019
№219.017.a5df

Способ получения модифицированного биопокрытия на имплантате из титана (варианты)

Изобретение относится к четырем вариантам способа получения модифицированного биопокрытия на имплантате из титана. Один из вариантов способа включает анодирование имплантата импульсным током в условиях искрового микроразряда в водном растворе ортофосфорной кислоты, содержащем соединения кальция...
Тип: Изобретение
Номер охранного документа: 0002693468
Дата охранного документа: 03.07.2019
27.11.2019
№219.017.e717

Способ получения композиционного материала на основе alo -ticn

Изобретение относится к производству композиционного материала на основе AlO-TiCN и может быть использовано в инструментальной промышленности при производстве сменных многогранных режущих пластин. Для получения композиционного материала осуществляют подготовку порошковой смеси шихты, состоящей...
Тип: Изобретение
Номер охранного документа: 0002707216
Дата охранного документа: 25.11.2019
22.01.2020
№220.017.f8be

Устройство для фиксации позвоночных сегментов

Изобретение относится к медицине. Устройство для фиксации позвоночных сегментов включает пластину (1) и винты (7). Пластина выполнена в виде прямоугольника с вогнутыми сторонами и скругленными углами и с четырьмя отверстиями (2) на углах. Винты выполнены в виде головки и стержня с резьбовой...
Тип: Изобретение
Номер охранного документа: 0002711612
Дата охранного документа: 17.01.2020
27.02.2020
№220.018.0686

Способ получения кальцийфосфатного покрытия на образце

Изобретение относится к способам нанесения кальцийфосфатных покрытий и может быть использовано в медицине при изготовлении имплантатов с биоактивным покрытием. Способ включает распыление мишени, содержащей, по крайней мере, одно кальцийфосфатное соединение, в плазме высокочастотного разряда в...
Тип: Изобретение
Номер охранного документа: 0002715055
Дата охранного документа: 25.02.2020
16.05.2023
№223.018.5f18

Способ получения антибактериального кальцийфосфатного покрытия на ортопедическом имплантате, имеющем форму тела вращения и оснастка для его осуществления (варианты)

Группа изобретений относится к области медицины, а именно к ортопедии и травматологии, и раскрывает способы нанесения антибактериальных кальцийфосфатных покрытий на ортопедические имплантаты, в частности интрамедуллярные фиксаторы и пины. Способ включает распыление мишени, в плазме...
Тип: Изобретение
Номер охранного документа: 0002745726
Дата охранного документа: 31.03.2021
17.06.2023
№223.018.810f

Способ получения модифицированного биопокрытия с микрочастицами трикальцийфосфата и/или волластонита на имплантате из магниевого сплава

Изобретение относится к области гальванотехники и может быть использовано для обработки поверхности биорезорбируемых магниевых имплантатов при их изготовлении для травматологии, ортопедии и различных видов пластической хирургии. Способ включает микродуговое оксидирование (МДО) имплантата в...
Тип: Изобретение
Номер охранного документа: 0002763091
Дата охранного документа: 27.12.2021
+ добавить свой РИД