×
25.08.2017
217.015.b61d

Результат интеллектуальной деятельности: Способ нахождения соответствия особых точек цифровых изображений

Вид РИД

Изобретение

Аннотация: Изобретение относится к цифровой обработке изображений. Техническим результатом является сокращение времени нахождения соответствия особых точек двух изображений за счет уменьшения размерности дескриптора особой точки цифрового изображения. В способе выделяют особые точки цифрового изображения, вычисляют дескриптор каждой особой точки первого и второго цифровых изображений при помощи вейвлет-преобразования, формируют окрестность особой точки цифрового изображения из пикселей цифрового изображения, осуществляют вейвлет-преобразование окрестности особой точки цифрового изображения, составляют дескриптор в виде вектора значений основных коэффициентов вейвлет-преобразования цифрового изображения, вычисляют евклидово расстояние между векторами дескрипторов особых точек первого и второго цифровых изображений, сравнивают дескрипторы особых точек первого и второго цифровых изображений, для каждой особой точки первого цифрового изображения находят единственную предварительно соответствующую особую точку второго цифрового изображения и для каждой особой точки второго цифрового изображения находят единственную предварительно соответствующую особую точку первого цифрового изображения; если особой точке А первого цифрового изображения предварительно поставлена в соответствие особая точка Б второго цифрового изображения, такая что этой особой точке Б второго цифрового изображения предварительно поставлена в соответствие особая точка А первого цифрового изображения, то считают особую точку А первого цифрового изображения соответствующей особой точке Б второго цифрового изображения, а особую точку Б второго цифрового изображения соответствующей особой точке А первого цифрового изображения. 5 ил.

Областью техники, к которой относится предлагаемый способ, является цифровая обработка изображений.

Известными аналогами предлагаемого способа являются нижеперечисленные способы.

Известен способ SIFT (Scale Invariant Feature Transform), в котором осуществляют выделение особых точек при помощи вычисления лапласиана гауссиана, вычисляют дескриптор каждой особой точки первого и второго цифровых изображений при помощи гистограммы ориентации градиентов, осуществляют сравнение каждого дескриптора особой точки первого цифрового изображения для нахождения соответствий особых точек цифрового изображения (Патент США 6711293, МПК G06K 9/46, оп. 23.03.2004).

Известен дескриптор PCA-SIFT (Ke Y., Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors // Computer Vision and Pattern Recognition (CVPR'04), Vol. 2, 2004. - pp. 506-513), являющийся модификацией способа SIFT. На начальном этапе вычисляются значения магнитуды и ориентации градиента. Для каждой особой точки рассматривается окрестность размером 41*41 пиксель с центром в точке, которая является особой. Строится карта градиентов вдоль вертикального и горизонтального направлений. Далее выполняется построение SIFT-дескриптора. Для результирующего набора SIFT-дескрипторов осуществляется снижение размерности векторов до 32 элементов посредством анализа главных компонент (Principal Component Analysis, РСА).

Дескрипторы семейства HOG (Histograms of Oriented Gradients), включающие дескрипторы SHOG, PHOG, OHOG, GHOG (Dalal N., Triggs B. Histograms of Oriented Gradients for Human Detection // INRIA. - 2005), основаны на вычислении гистограммы градиентов интенсивности небольших участков изображения и объединении их в единую гистограмму.

Дескриптор GLOH (Gradient location-orientation histogram) (Mikolajczyk K., Schmid С.A Performance Evaluation of Local Descriptors // IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 10, 2005. - pp. 1615-1630) является модификацией SIFT-дескриптора, который построен с целью повышения надежности. Вычисляется SIFT дескриптор, далее используется полярная сетка разбиения окрестности на бины: 3 радиальных блока с радиусами 6, 11 и 15 пикселей и 8 секторов. В результате получается вектор, содержащий 272 компоненты, который проецируется в пространство размерности 128 посредством использования анализа главных компонент (РСА).

Детектор DAISY (Tola Е., Lepetit V., Fua P. A Fast Local Descriptor for Dense Matching // IEEE Conference on Computer Vision and Pattern Recognition (CVPR'08), 2008. - pp. 1-8) изначально вводится для решения задачи сопоставления изображений в случае значительных внешних изменений, т.е. данный дескриптор в отличие от ранее рассмотренных работает на плотном множестве пикселей всего изображения. При этом показано, что дескриптор DAISY работает быстрее, чем SIFT, запущенный на плотном множестве пикселей. В DAISY использованы идеи построения SIFT-и GLOH- дескрипторов. Так, аналогично GLOH выбирается круговая окрестность особой точки, при этом бины представляются не частичными секторами, а окружностями.

Известен способ SURF (Speeded Up Robust Features), который отличается от способа SIFT тем, что дескрипторы особых точек цифрового изображения вычисляют при помощи нахождения матрицы Гессе, а вычисление дескрипторов осуществляется при помощи фильтров Хаара (Патент США 8670619, МПК G06K 9/46, оп. 11.03.2014).

Локальные бинарные шаблоны (ЛБШ) (Local Binary Patterns, LBP) (Ojala Т., M., Harwood D. (1996), "A Comparative Study of Texture Measures with Classification Based on Feature Distributions", Pattern Recognition, vol. 29, pp. 51-59) представляет собой описание окрестности пикселя изображения в двоичной форме. Оператор ЛБШ, который применяется к пикселю изображения, использует восемь пикселей окрестности, принимая центральный пиксель в качестве порога. Пиксели, которые имеют значения больше, чем центральный пиксель (или равное ему), принимают значения "1", те, которые меньше центрального, принимают значения "0". Таким образом, получается восьмиразрядный бинарный код, который описывает окрестность пикселя. Этот подход используется для описания текстуры областей.

Дескриптор LESH (Local Energy based Shape Histogram) (Sarfraz, S., Hellwich, O.: "Head Pose Estimation in Face Recognition across Pose Scenarios", Proceedings of VISAPP 2008, Int. conference on Computer Vision Theory and Applications, Madeira, Portugal, pp. 235-242, January 2008) основан на построении локальной энергетической модели при помощи фильтров Табора. Дескриптор используется только для задач распознавания лиц.

BRIEF-дескриптор (Binary Robust Independent Elementary Features) (Calonder M., Lepetit V, Strecha C., Fua P. BRIEF: Binary Robust Independent Elementary Features // 11th European Conference on Computer Vision (ECCV), 2010) предназначен для распознавания одинаковых участков изображения. Алгоритм распознавания сводится к построению случайного леса или наивного байесовского классификатора на некотором тренировочном множестве изображений и последующей классификации участков тестовых изображений. Небольшое количество операций обеспечивается за счет представления вектора признаков в виде бинарной строки, и как следствие, использования в качестве меры сходства расстоянии Хэмминга. На основе дескриптора BRIEF также базируется дескриптор ORB (Rublee E., Rabaud V., Konolige K., Bradski G "ORB: an efficient alternative to SIFT or SURF", Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011). Однако, только на некоторых тестовых изображениях точность детектирования с помощью BRIEF превышает точность SURF-дескрипторов.

Основным недостатком вышеперечисленных способов является большой размер дескриптора особой точки цифрового изображения, размерность которых составляет 64-128 элементов (чисел).

Задача, на решение которой направлено предлагаемое решение, является сокращение времени нахождения соответствий между точками двух цифровых изображений и уменьшение количества операций сравнения.

Поставленная задача решается тем, что в способе нахождения соответствия особых точек цифровых изображений для двух цифровых изображений выделяют особые точки цифрового изображения, вычисляют дескриптор каждой особой точки первого и второго цифровых изображений при помощи вейвлет-преобразования, для чего формируют окрестность особой точки цифрового изображения из пикселей цифрового изображения, осуществляют вейвлет-преобразование окрестности особой точки цифрового изображения с заданным конечным уровнем вейвлет-преобразования цифрового изображения, составляют дескриптор в виде вектора значений основных коэффициентов вейвлет-преобразования цифрового изображения, вычисляют евклидово расстояние между векторами дескрипторов особых точек первого и второго цифровых изображений, сравнивают дескрипторы особых точек первого и второго цифровых изображений, для каждой особой точки первого цифрового изображения находят единственную предварительно соответствующую особую точку второго цифрового изображения и для каждой особой точки второго цифрового изображения находят единственную предварительно соответствующую особую точку первого цифрового изображения; если особой точке А первого цифрового изображения предварительно поставлена в соответствие особая точка Б второго цифрового изображения, такая что этой особой точке Б второго цифрового изображения предварительно поставлена в соответствие особая точка А первого цифрового изображения, то считают особую точку А первого цифрового изображения соответствующей особой точке Б второго цифрового изображения, а особую точку Б второго цифрового изображения соответствующей особой точке А первого цифрового изображения.

Техническим результатом, достигаемым предлагаемым решением является то, что нахождение соответствия особых точек двух изображений осуществляется быстрее в 4 раза по сравнению с методом SIFT и в 8 раз по сравнению с методом SURF вследствие уменьшения количества операций сравнения за счет уменьшения размерности дескриптора особой точки цифрового изображения до 16 элементов.

Под цифровым изображением в данном случае понимают цветное растровое цифровое изображение, которое представляет собой двумерную дискретную функцию f(x, у) дискретных величин x, y, которая представляет собой цифровой сигнал значений интенсивности цвета, представленного в каком-либо цветовом пространстве, в точках плоскости, где x и y - координаты пикселя. Пиксель - это наименьший логический элемент двумерного цифрового изображения в растровой графике.

Особыми точками называют те точки цифрового изображения, которые содержат основную информацию о цифровом изображении. Особые точки обычно располагаются в местах сильного перепада яркости пикселей цифрового изображения, на границах и краях объектов. Особой точкой x' изображения называется точка, чья окрестность отличается от окрестностей близлежащих точек по выбранной мере, т.е. , где Ωx - окрестность точки х.

На фиг. 1 представлено устройство, с помощью которого может быть осуществлен предлагаемый способ. Устройство содержит: 1 - центральный процессор, 2 - блок оперативной памяти, 3 - накопитель на магнитном диске, 4 - видеомонитор, 5 - компьютерную мышь, 6 - клавиатуру. Входы центрального процессора 1 соединены с выходами блока оперативной памяти 2, накопителя на магнитном диске 3, компьютерной мыши 5 и клавиатуры 6. Выходы центрального процессора 1 соединены с входами блока оперативной памяти 2, накопителя на магнитном диске 3 и видеомонитора 4.

Осуществление предлагаемого способа нахождения соответствия особых точек цифровых изображений выполняют следующим образом. Сначала производят включение устройства, блок-схема которого приведена на фиг. 1, в сеть питания. Затем осуществляют загрузку программы, являющейся инструкцией для центрального процессора 1 по выполнению действий для осуществления нахождения соответствия особых точек цифровых изображений согласно алгоритма в блок оперативной памяти 2 при помощи сигналов от компьютерной мыши 5 и клавиатуры 6. Программу нахождения соответствия особых точек цифровых изображений предварительно сохраняют также на накопителе на магнитном диске 3.

В качестве входных данных для нахождения соответствия особых точек цифровых изображений используют цифровые растровые изображения, которые предварительно получены с любого цифрового устройства получения цифровых растровых изображений и сохранены на накопителе на магнитном диске 3. Далее при помощи выполнения инструкций загруженной программы нахождения соответствия особых точек цифровых изображений на центральном процессоре 1 осуществляют загрузку первого цифрового изображения, например, как на фиг. 2, с накопителя на магнитном диске 3 в блок оперативной памяти 2 при помощи управляющих сигналов от компьютерной мыши 5 и клавиатуры 6. После этого при помощи выполнения инструкций загруженной программы нахождения соответствия особых точек цифровых изображений на центральном процессоре 1 осуществляют загрузку второго цифрового изображения, например, как на фиг. 3, с накопителя на магнитном диске 3 в блок оперативной памяти 2 при помощи управляющих сигналов от компьютерной мыши 5 и клавиатуры 6. Далее посредством центрального процессора 1 в блоке оперативной памяти 2 осуществляют выделение особых точек цифрового изображения на первом и втором цифровых изображениях при помощи метода выделения особых точек вейвлет-преобразования (Ляшева С.А., Медведев М.В., Шлеймович М.П. Распознавание объектов на местности в системе управления БЛА // Научно-технический журнал «Авиационная техника», №3, 2014, с. 64-66).

После этого для каждой особой точки первого цифрового изображения осуществляют построение цифрового изображения окрестности особой точки цифрового изображения, формируя его из 16*16 пикселей, соседних с пикселем особой точки цифрового изображения.

Затем каждое полученное цифровое изображение окрестности особой точки первого цифрового изображения подвергают вейвлет-преобразованию цифрового изображения до заданного конечного уровня вейвлет-преобразования цифрового изображения.

Вейвлет-преобразование цифрового изображения - это его представление в виде обобщенного ряда Фурье по системе базисных масштабирующих функций согласно формуле (1)

и направленных вейвлет-функций по формуле (2)

где ϕ - масштабирующая функция,

ψ - вейвлет-функция,

Н - направление вейвлетов по горизонтали,

V - направление вейвлетов по вертикали,

D - направление вейвлетов по диагонали,

j, m, n - целые числа, m определяет положение функции на оси x, n - положение функции ϕj,m,n(x,y) на оси y, j определяет ширину функции, индекс i служит для идентификации направления вейвлетов по горизонтали, вертикали и диагонали (Гонсалес Р., Вудс. Р., Цифровая обработка изображений, 2005).

В данном способе в качестве базиса вейвлет-преобразования используются вейвлеты Хаара (Гонсалес Р., Вудс. Р., Цифровая обработка изображений, 2005). В этом случае масштабирующая и вейвлет-функции запишутся в виде формул (3-6)

где

Тогда дискретное вейвлет-преобразование изображения ƒ(x,y) определяется следующим образом (11)

где

где М - размер цифрового изображения по горизонтали,

N - размер цифрового изображения по вертикали,

j0 - целое число, задающее произвольный начальный масштаб,

Wϕ - коэффициенты, образующие усредненное изображение, например, как на фиг. 4 усредненное цифровое изображение 7 для второго уровня вейвлет-преобразования цифрового изображения фиг. 2,

коэффициенты определяют горизонтальные, вертикальные и диагональные детализирующие коэффициенты масштабов j вейвлет-преобразования цифрового изображения. Например, на фиг. 4 представлены горизонтальные детализирующие коэффициенты 8, вертикальные детализирующие коэффициенты 9 и диагональные детализирующие коэффициенты 10 второго уровня вейвлет-преобразования цифрового изображения фиг. 2, горизонтальные детализирующие коэффициенты 11, вертикальные детализирующие коэффициенты 12 и диагональные детализирующие коэффициенты 13 первого уровня вейвлет-преобразования цифрового изображения фиг. 2.

Исходное цифровое изображение ƒ(x,y) может быть восстановлено по данным коэффициентам Wϕ и при помощи обратного дискретного вейвлет-преобразования цифрового изображения.

Полученное усредненное цифровое изображение Wϕ подвергают повторному вейвлет-преобразованию заданное количество раз и, таким образом, получают разложение цифрового изображения на вейвлет-коэффициенты вейвлет-преобразования цифрового изображения на нескольких уровнях детализации вейвлет-преобразования цифрового изображения. Например, осуществляют вейвлет-преобразование цифрового изображения фиг. 2 до второго уровня детализации вейвлет-преобразования цифрового изображения и получают цифровое изображение как на фиг. 4.

В результате для каждой окрестности особой точки первого цифрового изображения получают основные коэффициенты вейвлет-преобразования цифрового изображения согласно формуле (14).

где u - конечный масштаб вейвлет-преобразования изображения.

Затем те же самые действия выполняют для второго цифрового изображения.

После этого по формуле (15) для каждой особой точки первого и второго цифровых изображений составляют дескриптор особой точки цифрового изображения в виде вектора значений основных коэффициентов вейвлет-преобразования окрестности особой точки цифрового изображения.

После этого при помощи центрального процессора 1 осуществляют вычисление евклидова расстояния между каждым вектором дескриптора особой точки первого цифрового изображения и каждым вектором дескриптора особой точки второго цифрового изображения.

При этом для каждой особой точки первого цифрового изображения в качестве предварительно соответствующей особую точку второго цифрового изображения с минимальным расстоянием.

После этого осуществляют вычисление евклидова расстояния между каждым вектором дескриптора особой точки второго цифрового изображения и каждым вектором дескриптора особой точки первого цифрового изображения.

При этом для каждой особой точки второго цифрового изображения в качестве предварительно соответствующей выбирают особую точку первого цифрового изображения с минимальным расстоянием.

Если особой точке А первого цифрового изображения предварительно соответствующей является особая точка Б второго цифрового изображения, такая что этой особой точке Б второго цифрового изображения предварительно соответствующей является особая точка А первого цифрового изображения, то считают особую точку А первого цифрового изображения соответствующей особой точке Б второго цифрового изображения, а особую точку Б второго цифрового изображения соответствующей особой точке А первого цифрового изображения.

Для визуального отображения результата при помощи центрального процессора 1 формируют цифровое изображение, состоящее из первого (фиг. 2) и второго цифровых изображений (фиг. 3), на нем отмечают особые точки первого и второго цифровых изображений, линиями соединяют соответствующие особые точки первого и второго цифрового изображения, например, как на фиг. 5, и выводят на видеомонитор 4.

Предлагаемый способ позволяет осуществлять получение дескриптора особой точки цифрового изображения размерностью в 16 элементов (чисел), что приводит к сокращению времени нахождения соответствий между точками двух цифровых изображений и уменьшению количества операций сравнения.

Способ нахождения соответствия особых точек цифровых изображений, при котором для двух цифровых изображений выделяют особые точки цифрового изображения, вычисляют дескриптор каждой особой точки первого и второго цифровых изображений при помощи вейвлет-преобразования, для чего формируют окрестность особой точки цифрового изображения из пикселей цифрового изображения, осуществляют вейвлет-преобразование окрестности особой точки цифрового изображения с заданным конечным уровнем вейвлет-преобразования цифрового изображения, составляют дескриптор в виде вектора значений основных коэффициентов вейвлет-преобразования цифрового изображения, вычисляют евклидово расстояние между векторами дескрипторов особых точек первого и второго цифровых изображений, сравнивают дескрипторы особых точек первого и второго цифровых изображений, для каждой особой точки первого цифрового изображения находят единственную предварительно соответствующую особую точку второго цифрового изображения и для каждой особой точки второго цифрового изображения находят единственную предварительно соответствующую особую точку первого цифрового изображения; если особой точке А первого цифрового изображения предварительно поставлена в соответствие особая точка Б второго цифрового изображения, такая что этой особой точке Б второго цифрового изображения предварительно поставлена в соответствие особая точка А первого цифрового изображения, то считают особую точку А первого цифрового изображения соответствующей особой точке Б второго цифрового изображения, а особую точку Б второго цифрового изображения соответствующей особой точке А первого цифрового изображения.
Способ нахождения соответствия особых точек цифровых изображений
Способ нахождения соответствия особых точек цифровых изображений
Способ нахождения соответствия особых точек цифровых изображений
Способ нахождения соответствия особых точек цифровых изображений
Способ нахождения соответствия особых точек цифровых изображений
Источник поступления информации: Роспатент

Показаны записи 471-480 из 626.
09.06.2019
№219.017.7b4e

Рамочная антенна

Устройство предназначено для использования на подводных технических средствах, в частности на обитаемых подводных аппаратах. Техническим результатом является повышение взаимной поляризационной развязки рамочной системы между горизонтальной рамкой и вертикальными рамками (не менее 25 дБ), что...
Тип: Изобретение
Номер охранного документа: 0002372696
Дата охранного документа: 10.11.2009
09.06.2019
№219.017.7bfa

Устройство для подъема объектов со дна моря на подводное техническое средство

Изобретение предназначено для подъема объектов со дна моря. Устройство включает проницаемую шахту, установленную в междубортном пространстве, верхний и нижний щиты, грузовую подвижную секцию, установленную на рельсах внутри шахты, и подъемник. В проницаемой шахте над грузовой подвижной секцией,...
Тип: Изобретение
Номер охранного документа: 0002368531
Дата охранного документа: 27.09.2009
09.06.2019
№219.017.7fb3

Седло регулятора расхода горячего газа

Изобретение относится к области машиностроения и предназначено для использования регуляторов расхода горячего газа, работающих на продуктах сгорания ракетных топлив. Седло регулятора расхода горячего газа выполнено из эрозионностойкого металлического сплава и имеет расходное отверстие. Входная...
Тип: Изобретение
Номер охранного документа: 0002464472
Дата охранного документа: 20.10.2012
19.06.2019
№219.017.85d4

Способ формирования прогноза погодных явлений в режиме реального времени и система для его осуществления

Изобретение относится к области метеорологии и может быть использовано при прогнозировании погодных явлений в режиме реального времени. Сущность: непрерывно получают гидрометеорологическую информацию по всей поверхности Земного шара. Формируют и сохраняют 3-мерную глобальную карту погоды с...
Тип: Изобретение
Номер охранного документа: 0002347244
Дата охранного документа: 20.02.2009
22.06.2019
№219.017.8e74

Способ построения приёмопередающего модуля активной фазированной антенной решётки

Изобретение относится к приемопередающим устройствам СВЧ-колебаний, предназначенным для работы в составе активной фазированной антенной решетки (АФАР). Технический результат - снижение размеров приемопередающего модуля и снижение потерь передаваемого и принимаемого сигналов. Достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002692091
Дата охранного документа: 21.06.2019
22.06.2019
№219.017.8e86

Устройство для охлаждения и термостатирования элементов радиоэлектронной аппаратуры радиолокационных станций с использованием плавящихся тепловых аккумуляторов с дополнительным воздушно-жидкостным теплоотводом

Изобретение относится к системам охлаждения и термостатирования приборов и узлов радиоэлектронной аппаратуры (РЭА) радиолокационных станций (РЛС), установленной на военных гусеничных машинах (ВГМ). Предлагается устройство для охлаждения и термостатирования элементов радиоэлектронной аппаратуры...
Тип: Изобретение
Номер охранного документа: 0002692123
Дата охранного документа: 21.06.2019
22.06.2019
№219.017.8eb0

Интеллектуальная система преобразования напряжения постоянного тока для динамически изменяющейся нагрузки

Изобретение относится к электротехнике, в частности к преобразователям, размещаемым в закрытых бункерах подвижных агрегатов с принудительной вентиляцией, состоящим из нескольких модулей преобразования напряжения постоянного тока в напряжение постоянного тока (модулей DC/DC), с гальванической...
Тип: Изобретение
Номер охранного документа: 0002692089
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.9207

Механизм подъема

Изобретение относится к машиностроению. Механизм подъема содержит корпус, электродвигатель, планетарный редуктор как первую ступень механизма, коническую передачу как вторую ступень и выходную ступень с устройством люфтовыбирания, состоящую из шестерни и сектора. Сектор выполнен разрезным, две...
Тип: Изобретение
Номер охранного документа: 0002692323
Дата охранного документа: 24.06.2019
26.06.2019
№219.017.92ae

Устройство для полунатурного моделирования системы управления летательного аппарата с активными головками самонаведения

Изобретение относится к устройствам для полунатурного моделирования системы управления (СУ) с головками самонаведения (ГСН) воздушных и космических летательных аппаратов (ЛА), проведения испытаний и исследований работоспособности и управляемости головок самонаведения ЛА, а также для отладки...
Тип: Изобретение
Номер охранного документа: 0002692456
Дата охранного документа: 24.06.2019
26.06.2019
№219.017.92c5

Способ управления системой электропитания космического аппарата повышенной живучести

Изобретение относится к электротехнике, а именно к автономным системам электропитания (СЭП) космических аппаратов (КА), использующим в качестве первичных источников энергии батареи фотоэлектрические (БФ), а в качестве накопителей энергии - аккумуляторные батареи (АБ). Управляют зарядными и...
Тип: Изобретение
Номер охранного документа: 0002692301
Дата охранного документа: 24.06.2019
Показаны записи 351-355 из 355.
04.04.2018
№218.016.31a3

Вероятностная спутниковая система для мониторинга лесных пожаров

Изобретение относится к вероятностным (т.е. без стабилизации структуры) спутниковым системам наблюдения Земли, c охватом её обширных регионов. Спутники системы, находящиеся на круговых орбитах, оснащены сканирующей широкоугольной оптико-электронной системой ИК-диапазона с линейным фотоприемным...
Тип: Изобретение
Номер охранного документа: 0002645179
Дата охранного документа: 16.02.2018
10.05.2018
№218.016.3bf9

Способ управления самолетом при заходе на посадку

Изобретение относится к способу управления самолетом при заходе на посадку на этапе выравнивания. Для осуществления способа производят измерения радиовысотомером высоты, формируют заданное значение угла тангажа, которое запоминают на минимальной гарантированной высоте работы радиовысотомера,...
Тип: Изобретение
Номер охранного документа: 0002647816
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3f1d

Устройство управления самолетом при заходе на посадку

Устройство управления самолетом при заходе на посадку на этапе выравнивания содержит вычислитель выравнивания на основании данных о высоте и вертикальном ускорении, блок запоминания и стабилизации заданного значения угла тангажа на минимальной гарантированной высоте работы радиовысотомера....
Тип: Изобретение
Номер охранного документа: 0002648537
Дата охранного документа: 26.03.2018
04.06.2019
№219.017.7381

Кессон отъемной части крыла

Изобретение относится к авиастроению и касается аэродинамических поверхностей из полимерных композиционных материалов крыльев большого удлинения, крыльевых устройств и оперения. Кессон отъемной части крыла большого удлинения состоит из верхней панели с интегрированными лонжеронами, соединенной...
Тип: Изобретение
Номер охранного документа: 0002690300
Дата охранного документа: 31.05.2019
17.07.2019
№219.017.b54b

Кессон фюзеляжа

Изобретение относится к области авиастроения. Кессон фюзеляжа состоит из П-образных верхней и нижней панелей, изготовленных из несущих слоев полимерного композиционного материала и заполнителя. В верхнюю панель интегрированы боковые панели фюзеляжа. Высота заполнителя нижней панели превышает...
Тип: Изобретение
Номер охранного документа: 0002694638
Дата охранного документа: 16.07.2019
+ добавить свой РИД