×
25.08.2017
217.015.b4d9

Результат интеллектуальной деятельности: Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м и повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция. Мокрое измельчение стехиометрической смеси карбоната стронция и оксида железа проводят в кислой среде, содержащей силикат кальция, полиакриловую кислоту и изопропиловый спирт при следующем соотношении компонентов, мас.%: полиакриловая кислота 0,2-0,6, изопропиловый спирт 4,0-10,0, силикат кальция 0,3-1,2, вода 28-45, стехиометрическая смесь карбоната стронция и оксида железа - остальное. 1 табл., 3 пр.

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция.

Известен способ получения гексаферритов, включающий смешивание исходной смеси карбоната бария или стронция с оксидом железа сухим измельчением в вибромельнице, синтез гексаферрита из полученной смеси прокалкой, измельчение синтезированной шихты, прессование заготовок из измельченной шихты и спекание (авт. свид. CCCP N 1406645 и 1549387).

Сухое измельчение смеси исходных ферритообразующих компонентов не обеспечивает требуемой активности смеси при последующем синтезе гексаферрита, что требует повышения температуры синтеза шихты.

Наиболее близким к предложенному является способ мокрого измельчения шихты, позволяющий повысить активность шихты к синтезу (Летюк Л.М., Журавлев Г.И. Химия и технология ферритов. Л.: Химия. 1983. - 256 с.). Однако достигаемая активность не достаточна для заметного снижения температуры спекания.

Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м и повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция.

Технический результат достигается тем, что проводят мокрое измельчение в среде, содержащей силикат кальция, полиакриловую кислоту и изопропиловый спирт при следующем соотношении компонентов, мас.%:

Полиакриловая кислота 0,2-0,6
Изопропиловый спирт 4,0-10,0
Силикат кальция 0,3-1,2
Вода 28-45
Стехиометрическая смесь карбоната
стронция и оксида железа остальное

Сущность изобретения состоит в следующем. Силикат кальция позволяет повысить уровень параметров стронциевого феррита. С другой стороны, измельчение силиката кальция в водной среде приводит к насыщению водной среды ионами кальция и аниона кремниевой кислоты, которые при последующей сушке оседают на поверхности частиц в виде гелеобразных прослоек гидроксидов и силикатов, что позволяет повысить активность шихты при синтезе гексаферрита. Молекулы изопропилового спирта, разлагая частицы карбоната стронция на гидроксиды стронция с выделением углекислого газа, вызывают насыщение водной среды гидроксидами стронция. Полиакриловая кислота, связываясь с катионами кальция и стронция, образует нерастворимые комплексы, которые оседают на поверхности частиц в виде активных гелеобразных прослоек. В результате заметно повышается активность исходных ферритобразующих компонентов к синтезу, позволяющая снизить температуру синтеза гексаферрита стронция. Снижение температуры синтеза позволяет получить более активные к спеканию тонкодисперсные порошки гексаферрита, позволяющее снизить температуру спекания сырых прессованных заготовок гексаферрита.

Пределы содержания полиакриловой кислоты - 0,2-0,6 мас.%, изопропилового спирта - 4-10 мас.%, силиката кальция - 0,3-1,2 мас.%, воды - 28-45 мас.% выбраны из следующих соображений. Для обеспечения снижения температуры спекания Тспекания, °C, значения не должны превышать для полиакриловой кислоты - 0,6 мас.%, изопропилового спирта - 10 мас.%, силиката кальция - 1,2 мас.%, воды - 45 мас.%. При содержании полиакриловой кислоты меньше 0,2 мас.%, изопропилового спирта меньше 4 мас.%, карбоната кальция - меньше 0,3 мас.%, воды меньше 28 мас.%, гексаферрит стронция обладает недостаточной величиной коэрцитивной силы по намагниченности.

Данные о влиянии измельчения по предлагаемому способу и прототипу приведены в таблице. Результаты получены усреднением десяти замеров. Как видно из данных, использование предлагаемого способа измельчения позволяет заметно снизить температуру обжига шихты, обеспечивающую удельную намагниченность не менее 50 нТл⋅м3/кг, и последующего спекания прессованных заготовок, повысить коэрцитивную силу по намагниченности и остаточную индукцию стронциевых ферритов.

Пример 1. Проводили мокрое измельчение в вибромельнице М-10 смеси карбоната стронция SrCO3 ТУ 95-2326-91 марки «ч», силиката кальция CaSiO3 (0,3 мас.%) и оксида железа Fe2O3 ТУ 14-106-340-89 марки «ч», полиакриловой кислоты (0,2 мас.%) (ТУ 6-01-1260-81), изопропилового спирта (4,0 мас.%) (ТУ 6-09-402-87), воды (28% масс). Силикат кальция синтезировали из стехиометрической смеси карбоната кальция CaCO3 (ГОСТ 4530-76 «хч» и оксида кремния SiO2 (ТУ 6-09-3379-79 «чда») при температуре 850°C в течение 3 часов после совместного сухого измельчения в вибрационной мельнице 2 часа. Синтезированный силикат повторно измельчали в вибрационной мельнице 2 часа сухим методом. Для сравнения проводили мокрое измельчение смеси карбоната стронция и оксида железа согласно прототипу без добавок. После сушки приготовленные смеси прокаливали в печи ТК-4000 при температуре 800-1000°C. Время нахождения шихты в зоне с максимальной температурой в печи составило 3 часа. Синтезированную шихту во всех опытных партиях измельчали мокрым способом в аттриторе «Арарат» в течение 2 часов с добавлением воды в количестве 40 мас.%. Из суспензии после мокрого измельчения прессовали заготовки в виде пластин 20×40×5 мм в магнитном поле с напряженностью 700 кА/м на прессе 06ФФГ. После сушки заготовки спекали в туннельной печи «Ель» в интервале температур от 1100 до 1200°C. Температура синтеза 890°C, температура спекания Тспекания=1140°C, коэрцитивная сила по намагниченности Hci=291 кА/м, остаточная индукция Br=0,40 Тл.

Пример 2. Проводили мокрое измельчение в вибромельнице М-10 смеси карбоната стронция SrCO3 ТУ 95-2326-91 марки «ч», силиката кальция CaSiO3 (0,7 мас.%) и оксида железа Fe2O3 ТУ 14-106-340-89 марки «ч», полиакриловой кислоты (0,4 мас.%) (ТУ 6-01-1260-81), изопропилового спирта (7,0 мас.%) (ТУ 6-09-402-87), воды (36% масс). Силикат кальция синтезировали из стехиометрической смеси карбоната кальция CaCO3 (ГОСТ 4530-76 «хч» и оксида кремния SiO2 (ТУ 6-09-3379-79 «чда») при температуре 850°C в течение 3 часов после совместного сухого измельчения в вибрационной мельнице 2 часа. Синтезированный силикат повторно измельчали в вибрационной мельнице 2 часа сухим методом. Для сравнения проводили мокрое измельчение смеси карбоната стронция и оксида железа согласно прототипу без добавок. После сушки приготовленные смеси прокаливали в печи ТК-4000 при температуре 800-1000°C. Время нахождения шихты в зоне с максимальной температурой в печи составило 3 часа. Синтезированную шихту во всех опытных партиях измельчали мокрым способом в аттриторе «Арарат» в течение 2 часов с добавлением воды в количестве 40 мас.%. Из суспензии после мокрого измельчения прессовали заготовки в виде пластин 20×40×5 мм в магнитном поле с напряженностью 700 кА/м на прессе 06ФФГ. После сушки заготовки спекали в туннельной печи «Ель» в интервале температур от 1100 до 1200°C. Температура синтеза Тсинтеза=880°C, температура спекания Тспекания=1130°C, коэрцитивная сила по намагниченности Hci=299 кА/м, остаточная индукция Br=0,41 Тл.

Пример 3. Проводили мокрое измельчение в вибромельнице М-10 смеси карбоната стронция SrCO3 ТУ 95-2326-91 марки «ч», силиката кальция CaSiO3 (1,2 мас.%) и оксида железа Fe2O3 ТУ 14-106-340-89 марки «ч», полиакриловой кислоты (0,6 мас.%) (ТУ 6-01-1260-81), изопропилового спирта (10,0 мас.%) (ТУ 6-09-402-87), воды (45% масс). Силикат кальция синтезировали из стехиометрической смеси карбоната кальция CaCO3 (ГОСТ 4530-76 «хч» и оксида кремния SiO2 (ТУ 6-09-3379-79 «чда») при температуре 850°C в течение 3 часов после совместного сухого измельчения в вибрационной мельнице 2 часа. Синтезированный силикат повторно измельчали в вибрационной мельнице 2 часа сухим методом. Для сравнения проводили мокрое измельчение смеси карбоната стронция и оксида железа согласно прототипу без добавок. После сушки приготовленные смеси прокаливали в печи ТК-4000 при температуре 800-1000°C. Время нахождения шихты в зоне с максимальной температурой в печи составило 3 часа. Синтезированную шихту во всех опытных партиях измельчали мокрым способом в аттриторе «Арарат» в течение 2 часов с добавлением воды в количестве 40 мас.%. Из суспензии после мокрого измельчения прессовали заготовки в виде пластин 20×40×5 мм в магнитном поле с напряженностью 700 кА/м на прессе 06ФФГ. После сушки заготовки спекали в туннельной печи «Ель» в интервале температур от 1100 до 1200°C. Температура синтеза Тсинтеза=890°C, температура спекания Тспекания=1140°C, коэрцитивная сила по намагниченности Hci=286 кА/м, остаточная индукция Br=0,40 Тл.

Источник поступления информации: Роспатент

Показаны записи 301-310 из 352.
18.10.2019
№219.017.d7d5

Магнитомягкий нанокристаллический материал на основе железа

Изобретение относится к области металлургии, в частности к аморфным и нанокристаллическим магнитомягким сплавам на основе железа, получаемым в виде тонкой ленты литьем расплава на поверхность охлаждающего тела и его скоростной закалкой и используемым, в основном, для изготовления из ленты...
Тип: Изобретение
Номер охранного документа: 0002703319
Дата охранного документа: 16.10.2019
24.10.2019
№219.017.da36

Способ раскатки гильзы в трубу

Изобретение относится к области горячей прокатки труб. Способ раскатки гильзы в трубу включает прокатку нагретой гильзы в калибре валков, оси которых перпендикулярны направлению прокатки, с деформированием ее на оправке, размещенной в калибре, последующий реверс валков, кантовку гильзы на 90° и...
Тип: Изобретение
Номер охранного документа: 0002703929
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.daa4

Способ определения напряженного состояния массива горных пород

Изобретение относится к горному делу и предназначено для определения величины вертикального напряжения в конструктивных элементах систем разработки, например целиках. Способ включает бурение скважины с отбором керна, который подвергают направленному вдоль диаметра возрастающему механическому...
Тип: Изобретение
Номер охранного документа: 0002704086
Дата охранного документа: 23.10.2019
04.11.2019
№219.017.de38

Способ обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина в

Изобретение относится к области биотехнологии, а именно к обратимому ингибированию в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина В. Способ включает введение в среду, содержащую опухолевые клетки Huh7 гепатоцеллюлярной карциномы человека,...
Тип: Изобретение
Номер охранного документа: 0002704998
Дата охранного документа: 01.11.2019
04.11.2019
№219.017.de7e

Способ получения металлургического глинозема кислотно-щелочным способом

Изобретение может быть использовано при переработке низкосортного высококремнистого алюмосодержащего сырья. Для получения металлургического глинозема каолиновые глины выщелачивают в автоклаве соляной кислотой в течение 60-180 мин при температуре 130-190°C. Пульпу после выщелачивания фильтруют...
Тип: Изобретение
Номер охранного документа: 0002705071
Дата охранного документа: 01.11.2019
08.11.2019
№219.017.df51

Способ изготовления анизотропных гексагональных ферритов типа м

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры. Изготовление анизотропных гексаферритов типа М включает...
Тип: Изобретение
Номер охранного документа: 0002705201
Дата охранного документа: 06.11.2019
14.11.2019
№219.017.e163

Плазмотрон для плазменно-селективного припекания металлических порошков

Изобретение относится к плазмотрону для наплавки металлического порошка. Плазмотрон содержит защитное электрически нейтральное сопло с патрубком для подачи присадочного порошка, плазменное сопло с патрубком для подачи газа, соединенное с положительным полюсом источника питания постоянного тока,...
Тип: Изобретение
Номер охранного документа: 0002705847
Дата охранного документа: 12.11.2019
15.11.2019
№219.017.e235

Нанокомпозитные материалы на основе металлических псевдосплавов для контактов переключателей мощных электрических сетей с повышенными физико-механическими свойствами

Изобретение относится к области электротехники и нанотехнологии, в частности к разработке нанокомпозиционных электроконтактных, жаропрочных, электроэрозионностойких, электротехнических, наноструктурированных материалов на основе меди (Си), которые могут быть использованы в производстве силовых...
Тип: Изобретение
Номер охранного документа: 0002706013
Дата охранного документа: 13.11.2019
19.11.2019
№219.017.e36d

Способ лечения онкологических заболеваний с помощью инъекций лекарственного препарата

Изобретение относится к медицине и может быть использовано для лечения онкологических заболеваний. Для этого вводят водосодержащую суспензию липосом одинакового диаметра с инкапсулированным противоопухолевым лекарственным препаратом. Перед введением суспензии липосом одинакового диаметра с...
Тип: Изобретение
Номер охранного документа: 0002706356
Дата охранного документа: 18.11.2019
21.11.2019
№219.017.e456

Способ лечения онкологических заболеваний с помощью инъекций лекарственного препарата

Изобретение относится к области медицины, а именно, к онкологии и может быть использовано при лечении опухолей. Способ включает введение водосодержащей суспензии липосом одинакового диаметра с инкапсулированным противоопухолевым лекарственным препаратом. Перед введением суспензии липосом...
Тип: Изобретение
Номер охранного документа: 0002706427
Дата охранного документа: 19.11.2019
Показаны записи 221-228 из 228.
27.04.2019
№219.017.3d45

Способ синтеза нанокомпозитов ag/c

Изобретение относится к области химии и нанотехнологии. Способ синтеза нанокомпозитов Ag/C включает приготовление совместного раствора полиакрилонитрила (ПАН) и нитрата серебра в диметилформамиде (ДМФА), выдержку до полного растворения всех компонентов, удаление диметилформамида путем...
Тип: Изобретение
Номер охранного документа: 0002686223
Дата охранного документа: 24.04.2019
29.04.2019
№219.017.445a

Способ получения радиопоглощающего магний-цинкового феррита

Изобретение относится к технологии получения радиопоглощающего магний-цинкового феррита, который может найти широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры. Техническим результатом изобретения является получение дешевого...
Тип: Изобретение
Номер охранного документа: 0002454747
Дата охранного документа: 27.06.2012
14.06.2019
№219.017.82cb

Пьезокерамический материал

Изобретение относится к области сегнетожестких пьезокерамических материалов, устойчивых к электрическим и механическим воздействиям, предназначенных для ультразвуковых устройств и работающих при сильных электрических и механических воздействиях. Материал включает оксиды свинца, кадмия,...
Тип: Изобретение
Номер охранного документа: 0002691424
Дата охранного документа: 13.06.2019
19.06.2019
№219.017.89a3

Сверхширокодиапазонный поглотитель электромагнитных волн для безэховых камер и экранированных помещений

Изобретение относится к радиофизике, антенной технике и может найти применение при создании поглотителей электромагнитных волн, используемых для оснащения сверхширокодиапазонных многофункциональных безэховых камер (БЭК) и экранированных помещений, обеспечивающих проведение радиотехнических...
Тип: Изобретение
Номер охранного документа: 0002453953
Дата охранного документа: 20.06.2012
19.06.2019
№219.017.89e3

Способ получения нанокомпозита feni/пиролизованный полиакрилонитрил

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/пиролизованный полиакрилонитрил (ППАН). Способ получения нанокомпозита включает приготовление раствора FeCl·6НО, NiCl·6НО и ПАН (М=1·10) в диметилформамиде (ДМФА), выдерживание до растворения FеCl·6НO, NiCl·6HO и ПАН в ДМФА,...
Тип: Изобретение
Номер охранного документа: 0002455225
Дата охранного документа: 10.07.2012
08.11.2019
№219.017.df51

Способ изготовления анизотропных гексагональных ферритов типа м

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры. Изготовление анизотропных гексаферритов типа М включает...
Тип: Изобретение
Номер охранного документа: 0002705201
Дата охранного документа: 06.11.2019
15.05.2023
№223.018.5739

Способ синтеза нанокомпозитов nicocu/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава), а именно к способу синтеза нанокомпозита NiCoCu/C. Способ включает приготовление совместного раствора полиакрилонитрила, Со(СНСОО)⋅4HO, Ni(CHCOO)⋅4HO, (CHCOO)Cu⋅HO в диметилформамиде при температуре...
Тип: Изобретение
Номер охранного документа: 0002770599
Дата охранного документа: 18.04.2022
03.06.2023
№223.018.765b

Способ изготовления филамента для 3d-5d-печати с заданными магнитными свойствами

Изобретение относится к технологиям изготовления филамента для 3D-5D принтеров. Предложен способ изготовления филамента, заключающийся в растворении полимера в растворителе до достижения гомогенизации с последующим добавлением порошка магнитного материала от 5 до 15 % масс. к общей массе и...
Тип: Изобретение
Номер охранного документа: 0002796571
Дата охранного документа: 25.05.2023
+ добавить свой РИД