×
03.06.2023
223.018.765b

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ФИЛАМЕНТА ДЛЯ 3D-5D-ПЕЧАТИ С ЗАДАННЫМИ МАГНИТНЫМИ СВОЙСТВАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологиям изготовления филамента для 3D-5D принтеров. Предложен способ изготовления филамента, заключающийся в растворении полимера в растворителе до достижения гомогенизации с последующим добавлением порошка магнитного материала от 5 до 15 % масс. к общей массе и перемешиванием, затем растворитель выпаривают до получения твёрдого композита в форме прямоугольной пластины, после этого пластины измельчают, экструдируют и охлаждают. Технический результат – изготовление филаментов с заранее заданными магнитными свойствами, за счёт контролируемого распределения магнитных частиц в объеме филамента. 11 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к технологиям трехмерной печати, в частности, к способу изготовления филамента для 3D-5D принтеров.

С началом всеобщей цифровизации и автоматизации и появления новых способов производства значительно сократилось время и количество средств, необходимых для разработки новых продуктов и выведения их на рынок. При этом всё больше и больше используется потенциал аддитивных технологий, благодаря которым значительно уменьшаются время и начальные вложения для создания прототипов и дальнейшего мелко- и среднесерийного производства.

В настоящее время эта проблема решается применением аддитивных технологий с использованием 3D-5D принтеров различных конструкций.

Наибольшим потенциалом по соотношению цена-качество обладают принтеры, работающие по принципу послойного наплавления. Расходным материалом для таких принтеров служат термопластичные полимеры в виде нитей или прутков, называемые филаментами.

Одним из главных преимуществ помимо доступной цены является возможность изготовления изделий, состоящих из разных материалов.

При этом востребованными являются композитные филаменты, которые позволяют сократить срок изготовления изделия за счет сокращения числа используемых филаментов, а также в некоторых случаях позволяют придать дополнительные свойства изделию.

Известен способ изготовления филамента для 3D печати по европейскому патенту №ЕР2676784 (опубликован 12.02.2020 г.), содержащего полукристаллический полимерный армирующий участок, который проходит непрерывно по длине нити и твердую полимерную матричную часть, которая также проходит непрерывно по длине нити. Указанный композитный филамент позволяет получить более прочное изделие.

Известен также способ изготовления филамента для 3D печати, по европейскому патенту EP3592532 (опубликован 07.07.2021), содержащий сердцевину и оболочку, отличающиеся температурой плавления и стеклования.

В известных филаментах свойства изделия определяются свойствами составляющих его компонентов.

При этом, особенно в 4D и 5D технологиях, востребованы материалы, свойства которых, или изделия из которых, управлялись бы с помощью внешних воздействий, например, с помощью магнитных полей. Для этих целей необходимо создание филаментов с определенными магнитными свойствами.

Из уровня техники способы изготовления филаментов с заранее заданными магнитными свойствами неизвестны.

Техническим результатом, на получение которого направлено изобретение, является разработка способа изготовления филаментов с заранее заданными магнитными свойствами, за счет контролируемого распределения магнитных частиц в объеме филамента.

Технический результат достигается в способе, в котором вначале проводят полное растворение полимера в растворителе до достижения гомогенизации, после чего добавляют порошок магнитного материала в количестве от 5 до 15 % масс. к общей массе композита и перемешивают, затем выпаривают растворитель до получения твердого композита в форме прямоугольной пластины и измельчают, а из полученных гранул с помощью экструдера и последующего охлаждения изготавливают филамент.

При этом магнитные свойства получаемого филамента определяются количеством и свойствами добавляемого магнитного материала и могут быть выбраны предварительно.

Предпочтительно в качестве полимера используют полилактид (PLA).

Предпочтительно в качестве растворителя используют дихлорметан (CH2Cl2).

В одном из вариантов гранулы полимера PLA растворяют в дихлорметане в массовом соотношении 1:40.

Предпочтительно используют магнитные материалы со структурой шпинели, общей формулой AB2O4, где A – двухвалентный катион (например, Fe, Ni, Zn, Co, Mn), или их комбинации, B – трехвалентный катион (Fe3+).

При этом начальная магнитная проницаемость, коэрцитивная сила, индукция насыщения, критическая частота и удельное сопротивление магнитного материала задается методом его изготовления (например, золь-гель самосгорания, твердофазный синтез, соосаждения) и способом катионного замещения.

Предпочтительно порошок магнитного материала используют с размером частиц менее 40 мкм, предварительно отсеянных с применением вибрационного сита.

В одном из вариантов полученный раствор с добавками из магнитных частиц смешивают в течение 60 минут при температуре 20°C.

Предпочтительно полученный раствор распределяют на стеклянной подложке и выпаривают растворитель в форме, обеспечивающей получение твердого материала в виде пластин.

В одном из вариантов раствор сушат до твердого состояния в течение 12 часов при температуре, не превышающей 40°С, после чего полученные пластины снимают с подложки, промывают в дистиллированной воде и сушат в течение 12 часов при температуре 40°С в сухожаровом шкафу.

Предпочтительно измельчение твердого материала осуществляют до гранул прямоугольной формы со средним размером 2х2х0,2 мм.

Предпочтительно охлаждение после экструзии проводят при температурах из диапазона 180-210°С в постоянном внешнем магнитном поле с напряженностью магнитного поля вплоть до 5 кЭ.

Предпочтительно направление и величину индукции внешнего магнитного поля выбирают в зависимости от требуемого пространственного распределения (например, гомогенное или градиентное) магнитных частиц в филаменте.

Предпочтительно для реализации способа используют экструдер шнекового типа с нагревателем, обеспечивающий получение филамента диаметром 1,78 мм.

Получение филамента заявленным способом иллюстрируется на фиг.1, где: 1 – гранулы, полученные из высушенных пластин; 2 – экструдер шнекового типа; 3 – кольцевой нагреватель; 4 – сопло; 5 – источник магнитного поля (соленоид); 6 – ванна для охлаждения полимера; 7 – филамент.

Изобретение реализуется в следующем способе изготовления филамента. Гранулы полилактида (PLA) растворяют в дихлорметане CH2Cl2 в массовом соотношении 1:40, с одновременным смешиванием до получения однородной массы. В полученный раствор добавляют порошок магнитных частиц размером менее 40 мкм, который предварительно отсеивают с применением вибрационного сита, в количестве 5% масс. от общей массы композита. Полученный раствор с добавками из магнитных частиц смешивают в течение 60 минут при температуре 20°C. Затем этот раствор распределяют в прямоугольные формы высотой до 1 мм со стеклянным основанием и сушат при температуре 30°C в течение 12 часов до получения твердых пластин толщиной 0,2-0,3 мм. Полученные в результате сушки пластины снимают с подложки, промывают в дистиллированной воде и повторно сушат в течение 12 часов при температуре 40°С в сухожаровом шкафу. Затем пластины механически измельчают на гранулы 1 в форме хлопьев прямоугольной формы со средними размерами в диапазоне 2х2х0,2 мм. Полученные из пластин гранулы 1 загружают в экструдер шнекового типа 2, снабженный нагревателем 3, установленным на трубке экструдера 2 с соплом 4, что позволяет выдавливать расплавленную массу через сопло 4 для получения, в результате затвердевания полимера, филамента 7 нужного диаметра. Между выходным соплом 4 и ванной 6 для охлаждения полимера установлен источник магнитного поля 5 с регулируемой напряженностью магнитного поля для получения контролируемого пространственного распределения магнитных добавок в объеме филамента 7. Вращающийся вал 8 используется для подачи филамента в ванну 6. При этом магнитное поле было направлено вдоль направления выдавливания расплавленной массы. В качестве источника магнитного поля 5 использован соленоид, снабженный системой охлаждения, с внутренним диаметром около 10 мм и длиной около 50 мм и питаемый от источника постоянного тока. Напряженность магнитного поля создаваемого в центре соленоида 5 составляла в настоящем примере реализации способа 5 кЭ (и могла регулироваться в диапазоне от нуля до 5 кЭ), а температура экструзии была равна 185°С, которая оказалась оптимальной. Диапазон температур, создаваемых нагревателем экструдера, составлял при этом 180-210°С. Скорость вращения ротора экструдера составляла 15 об/мин. Диаметр полученной филаментной нити составил 1.75 мм ±0.05 мм. В результате, указанного примера реализации способа, был получен филамент, намагниченность насыщения которого составила 2.7±0.3 ед. СГС/г при намагниченности насыщения чистого CoFe2O4 53±5 ед. СГС/г, что соответствует 5 % концентрации массовой доли магнитных добавок.

Аналогичная пропорциональность была обнаружена для намагниченности насыщения филаментов при добавлении большего количества порошка магнитных частиц кобальтового феррита CoFe2O4 вплоть до 15% от общей массы композита.

Таким образом был достигнут заявленный технический результат в виде разработки способа изготовления филаментов намагниченность которых задается в процессе изготовления массовой долей добавляемых магнитных частиц и пропорциональна их намагниченности, за счет контролируемого распределения магнитных частиц в объеме филамента.

Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
20.06.2018
№218.016.64a3

Микроманипулятор на основе бимагнитных микропроводов с сердцевиной, покрытой асимметричной внешней оболочкой, и способы его использования

Группа изобретений относится к области механики, микросистемной техники и наномеханики, в частности к технике манипуляторов (пинцетов) для захвата и перемещения нано- и микрообъектов. Сущность изобретений заключается в том, что микроманипулятор содержит, по крайней мере, один манипулирующий...
Тип: Изобретение
Номер охранного документа: 0002658108
Дата охранного документа: 19.06.2018
21.07.2018
№218.016.72eb

Устройство мозг-машинного интерфейса для дистанционного управления экзоскелетными конструкциями

Изобретение относится к информационным технологиям и нейрофизиологии и может быть использовано для мозг-машинного интерфейса. Устройство выполнено в виде носимого беспроводного устройства с возможностью регистрации электрофизиологических и биометрических параметров оператора. Устройство...
Тип: Изобретение
Номер охранного документа: 0002661756
Дата охранного документа: 19.07.2018
23.08.2019
№219.017.c2f7

Датчик температуры для устройства оптогенетического контроля функций мозга

Изобретение относится к области медицинской техники, а более конкретно к конструкции тонкопленочных платиновых резисторов для изготовления температурных датчиков в составе устройства оптогенетического контроля функций мозга, вживляемых в мозг живого организма. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002698014
Дата охранного документа: 21.08.2019
06.07.2020
№220.018.2ffb

Датчик постоянного магнитного поля на основе магнитоплазмонного кристалла

Изобретение относится к технике измерений постоянных магнитных полей и может быть использовано для создания на его основе магнитооптических приборов. Технический результат – расширение арсенала датчиков для измерения постоянного магнитного поля на локальных участках. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002725650
Дата охранного документа: 03.07.2020
26.05.2023
№223.018.7025

Рентгеновский трансфокатор на основе рефракционных линз

Использование: для инструментальной фокусировки, ступенчатого изменения фокусного расстояния рентгенооптической системы, управления параметрами потока рентгеновского излучения (РИ) и синхротронного излучения (СИ) в каналах СИ. Сущность изобретения заключается в том, что рентгеновский...
Тип: Изобретение
Номер охранного документа: 0002796201
Дата охранного документа: 17.05.2023
Показаны записи 1-10 из 21.
20.10.2014
№216.013.007c

Система для получения нанопленок сплавов гейслера

Изобретение относится к области получения нанопленок сплавов Гейслера и в связи с наличием в них большого магнитокалорического эффекта может быть использовано при исследовании и создании рабочего тела экологичных и высокоэффективных холодильников и тепловых насосов, работающих вблизи комнатной...
Тип: Изобретение
Номер охранного документа: 0002531516
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.0315

Способ получения наноразмерных пленок феррита

Изобретение относится к технологии получения наноразмерных пленок мультиферроиков и может найти применение в производстве высокодобротных магнитооптических устройств обработки и хранения информации, магнитных сенсоров, емкостных электромагнитов, магнитоэлектрических элементов памяти, невзаимных...
Тип: Изобретение
Номер охранного документа: 0002532187
Дата охранного документа: 27.10.2014
10.01.2015
№216.013.171c

Способ спекания радиопоглощающих магний-цинковых ферритов

Изобретение относится к порошковой металлургии, в частности к получению радиопоглощающих ферритов. Может использоваться в электронной и радиопромышленности. Ферритообразующие оксиды магния, цинка и железа смешивают и синтезируют ферритовый порошок в печах в воздушной среде. Затем измельчают,...
Тип: Изобретение
Номер охранного документа: 0002537344
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.20bc

Спектральный эллипсометр с устройством магнитодинамических измерений

Изобретение относится к области in situ контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п....
Тип: Изобретение
Номер охранного документа: 0002539828
Дата охранного документа: 27.01.2015
20.03.2015
№216.013.3201

Способ измерения параметров наноразмерных магнитных пленок

Изобретение относится к измерительной технике, представляет собой способ измерения магнитных свойств и толщины наноразмерных магнитных пленок и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и...
Тип: Изобретение
Номер охранного документа: 0002544276
Дата охранного документа: 20.03.2015
20.04.2015
№216.013.41cf

Способ получения ферритовых изделий

Изобретение относится к порошковой металлургии. Способ получения ферритовых изделий включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания облучением...
Тип: Изобретение
Номер охранного документа: 0002548345
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.47a3

Спектральный магнитоэллипсометр с устройством для магниторезистивных измерений

Изобретение относится к измерительной технике, представляет собой спектральный магнитоэллипсометр и предназначено для контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур. Магнитоэллипсометр содержит источник излучения с монохроматором, плечо поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002549843
Дата охранного документа: 27.04.2015
20.09.2015
№216.013.7d03

Сверхчувствительный интеллектуальный магнитоимпедансный датчик с расширенным диапазоном рабочих температур

Изобретение относится к измерительной технике и представляет собой сверхчувствительный интеллектуальный магнитометрический датчик (МИ датчик) с расширенным диапазоном рабочих температур области. Датчик включает магнитоимпедансный элемент (МИ элемент) с двумя катушками, выполненными одна над...
Тип: Изобретение
Номер охранного документа: 0002563600
Дата охранного документа: 20.09.2015
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.abde

Способ получения наноразмерных частиц гексаферрита стронция

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002612289
Дата охранного документа: 06.03.2017
+ добавить свой РИД