×
15.05.2023
223.018.5739

Результат интеллектуальной деятельности: Способ синтеза нанокомпозитов NiCoCu/C на основе полиакрилонитрила

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава), а именно к способу синтеза нанокомпозита NiCoCu/C. Способ включает приготовление совместного раствора полиакрилонитрила, Со(СНСОО)⋅4HO, Ni(CHCOO)⋅4HO, (CHCOO)Cu⋅HO в диметилформамиде при температуре 25÷50°С и следующем соотношении компонентов (% мас): полиакрилонитрил 4,23-4,38, диметилформамид 84,62-87,53, Со(СНСОО)⋅4HO 3,58-3,70, Ni(CHCOO)⋅4HO 3,59-3,71, (CHCOO)Cu⋅HO 0,69-3,98, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания при температуре 25÷70°С и инфракрасный нагрев полученного твердого остатка в два этапа при давлении 10÷10мм рт.ст., причем предварительный нагрев проводят в течение 5÷15 минут при температуре 100÷200°С со скоростью нагрева не более 20°С/мин, а финальный нагрев проводят в течение 5÷15 минут при температуре 500÷700°С со скоростью нагрева не более 50°С/мин. Технический результат изобретения заключается в упрощении технологии получения нанокомпозита NiCoCu/C с улучшением его характеристик, а также снижении энергетических затрат в процессе проведения способа. 8 ил., 2 табл., 5 пр.

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава) в составе нанокомпозитов NiCoCu/C на основе полиакрилонитрила.

Аналогом предложенного изобретения является способ синтеза наночастиц NiCoCu (Liqianyun Xu, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Ahmed A. Al-Ghamdi, S.Wageh Significant capacitance enhancement induced by cyclic voltammetry in pine needle-like Ni-CoCu multicomponent electrode, Journal of Materials Science & Technology Volume 78, 10 July 2021, Pages 100-109), в котором синтезированы нанокомпозиты, содержащие частицы NiCoCu гидротермальным методом. Для синтеза нанокомпозитов получали совместный раствор NiN2O6⋅6H2O, CoN2O6⋅6H2O, H2O, C2H7NO2 и CO(NH2)2. Затем к вышеуказанному раствору добавляли волокна CuH полученные химическим травлением. Полученный раствор помещали в автоклав и выдерживали при 120°С в течение 240 минут. Диаметр полученных волокон составлял 200÷250 нм.

Недостатки метода заключаются в размере получаемых наночастиц и необходимости предварительного синтеза волокон меди.

Наиболее близким аналогом является способ синтеза (P.V. Gaikwad, R.J. Kamble, S.J. Mane-Gavade, S.R. Sabale, P.D. Kamble, Magneto-structural properties and photocatalytic performance of sol-gel synthesized cobalt substituted Ni-Cu ferrites for degradation of methylene blue under sunlight, Physica B: Condensed Matter Volume 554, 1 February 2019, Pages 79-85), в котором были получены мелкодисперсные порошки Ni0,5-xCoxCu0,5Fe2O4 (х от 0,0 до 0,5), нано-кристаллический материал, включающий NiCoCu, был получен золь-гель методом. Для синтеза использовались нитраты металлов и мочевина, растворенные в дистиллированной воде в стехиометрических пропорциях. Затем рН раствора поддерживали от 9,0 до 9,5 с помощью аммиака. Смесь постепенно нагревали при 100°С при постоянном перемешивании в течение 180 мин до получения геля. Затем высушенный гель сжигали для получения порошка. Приготовленные порошки феррита прокаливали при 850°С в течение 300 мин для достижения оптимальной кристаллизации. В результате были получены кристаллиты Ni0,5-xCoxCu0,5Fe2O4 размером от 35,5 до 44,3 нм. Увеличение концентрации Со от 0 до 0,5 в соединении Ni0,5-xCoxCu0,5Fe2O4 приводило к увеличению намагниченности насыщения от 21,74 до 41,82 emu/g, коэрцитивная сила изменялась в диапазоне от 81 до 302 Э.

Недостатками данного способа являются образование наночастиц в виде оксидов, что значительно ухудшает магнитные характеристики наноком-позита, и более энергетически затратный процесс финального отжига.

Технической задачей является получение упрощенной технологии синтеза нанокомпозита NiCoCu/C.

Технический результат изобретения заключается в упрощении технологии получения нанокомпозита NiCoCu/C с улучшением его характеристик, а также снижении энергетических затрат в процессе проведения способа.

Технический результат достигается следующим образом.

Способ синтеза нанокомпозита NiCoCu/C включает приготовление совместного раствора полиакрилонитрила, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O, (CH3COO)2Cu⋅H2O в диметилформамиде при температуре 25÷50°С и следующем соотношении компонентов (% масс.):

полиакрилонитрил 4,23 - 4,38,
диметилформамид 84,62 - 87,53,
Со(СН3СОО)2⋅4H2O 3,58 - 3,70,
Ni(CH3COO)2⋅4H2O 3,59 - 3,71,
(CH3COO)2Cu⋅H2O 0,69 - 3,98,

последующую выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания при температуре 25÷70°С, инфракрасный нагрев полученного твердого остатка в два этапа при давлении 10-2÷10-3 мм.рт.ст, причем предварительный нагрев проводят в течение 5÷15 минут при температуре 100÷200°С со скоростью нагрева не более 20°С/мин, а финальный нагрев проводят в течение 5÷15 минут при температуре 500÷700°С со скоростью нагрева не более 50°С/мин.

Технический результат изобретения достигается за счет проведения ИК нагрева в одном процессе без использования дополнительных внешних восстановителей, а также сочетания в способе одновременного синтеза наночастиц сплава NiCoCu размером от 10 до 70 нм и углеродной матрицы, защищающей наночастицы сплава NiCoCu от коалесценции и сохраняющей их свойства на воздухе.

Изобретение поясняется чертежом, где на фигурах 1 и 2 показаны дифрактограммы и результаты фазового анализа нанокомпозита NiCoCu/C, синтезированного при температурах 500°С и 700°С соответственно; на фигурах 3, 5, 7 приведены дифрактограммы и результаты фазового анализа нанокомпозита NiCoCu/C с концентрациями ацетата меди 5, 15 и 30 масс. % соответственно; на фигурах 4, 6, 8 представлены по одной из серий микрофотографий нанокомпозита NiCoCu/C с концентрациями ацетата меди 5, 15 и 30 масс. % соответственно, методом просвечивающей электронной микроскопии (ПЭМ).

Изобретение осуществляется следующим образом.

При проведении синтеза выбирают определенные исходные компоненты: полиакрилонитрил (ПАН), соединения металлов (Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O, (CH3COO)2Cu⋅H2O, а также условия проведения процесса растворения компонентов и процесса удаления растворителя, ИК-нагрева полученного твердого остатка Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O, (CH3COO)2Cu⋅H2O, ПАН при давлении в реакционной камере Р=10-2÷10-3 мм.рт.ст. Режим температурной обработки разделяют на два этапа: 1) при температуре T=100÷200°С, в течение 5÷45 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева до 20°С/мин; 2) при финальной температуре 500÷700°С в течение 5÷15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева до 50°С/мин, в результате чего формируется металлоуглеродный нанокомпозит NiCoCu/C, содержащий наночастицы NiCoCu с размером от 10 до 70 нм.

Для анализа фазового состава нанокомпозита и определения размера наночастиц NiCoCu использован рентгеновский дифрактометр EMMA (Австралия), излучение Cu, графитовый монохроматор, а также Дифрей 401 с Cr-излучением. Для прямого измерения размеров наночастиц использован электронный микроскоп LEO912 АВ OMEGA, ускоряющее напряжение 60 -120 кВ, увеличение 80х - 500000х. Средний размер наночастиц интерметал-лида NiCoCu рассчитан по результатам РФА из дифрактограмм по уравнению Дебая-Шерера:

где k - константа, равная 0,89;

В - полуширина дифракционного угла, соответственного дифракционного максимума, град,

- длина волны рентгеновского Cu - излучения,

Θ - дифракционный угол, град.

Размер наночастиц оценивался по микрофотографиям проб нанокомпозита, полученным методом просвечивающей электронной микроскопии (ПЭМ).

Пример 1. Готовится 80 мл совместного раствора ПАН, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O в ДМФА с концентрациями (Со)=20 масс. %, (Ni)=20 масс. % и (Cu)=5 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mCo(CH3COO)2⋅4H2O=3,382 г, mNi(CH3COO)2⋅4H2O=3,392 г, m(CH3COO)2CuH2O=0,628 г, mПАН=4 г; а также в коническую колбу наливается 80 мл ДМФА. Затем в колбу добавляется ПАН и навески Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=45°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв. ост. ≈ const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм.рт.ст.) при температуре Т=150°С, затем при 200°С, в течение 15 минут при каждой соответствующей температуре, скорость нагрева v=20°С/мин; 2) при финальной температуре 500°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева v=50°С/мин.

В процессе ИК-нагрева твердого остатка Со(СН3СОО)2⋅4H2O/Ni(CH3COO)2⋅4H2O/(СН3СОО)2Cu⋅H2O/ПАН в результате деструкции ПАН происходит выделение водорода и др. газообразных продуктов, которые восстанавливают Со, Ni и Cu из соединения, а за счет дальнейшего взаимодействия формируются наночастицы интерметаллида NiCo-Cu. При этом в ПАН протекают процессы карбонизации, приводящие к формированию углеродной графитоподобной матрицы нанокомпозита, в которой распределяются сформировавшиеся наночастицы. В результате получается нанокомпозит NiCoCu/C в виде черного порошка.

По данным РФА определен фазовый состав нанокомпозита, полученного при финальной температуре, равной 500°С, рассчитан средний размер области когерентного рассеяния интерметаллида, а также определен параметр решетки, равный

Пример 2. Готовится 80 мл совместного раствора ПАН, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O в ДМФА с концентрациями (Со)=20 масс. %, (Ni)=20 масс. % и (Cu)=5 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mCo(CH3COO)2⋅4H2O=3,382 г, mNi(CH3COO)2⋅4H2O=3,392 г, m(CH3COO)2CuH2O=0,628 г, mПАН=4 г; а также в коническую колбу наливается 80 мл ДМФА. Затем в колбу добавляется ПАН и навески Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=45°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв. ост. ≈ const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм.рт.ст.) при температуре Т=150°С, затем при 200°С, в течение 15 минут при каждой соответствующей температуре, скорость нагрева v=20°С/мин; 2) при финальной температуре 700°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева v=50°С/мин.

В результате получается нанокомпозит NiCoCu/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, полученного при финальной температуре, равной 700°С, рассчитан средний размер области когерентного рассеяния интерметаллида, а также определен параметр решетки, равный

Пример 3. Готовится 20 мл совместного раствора ПАН, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O в ДМФА с концентрациями (Со)=20 масс. %, (Ni)=20 масс. % и (Cu)=5 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mCo(CH3COO)2⋅4H2O=0,845 г, mNi(CH3COO)2⋅4H2O=0,848 г, m(CH3COO)2CuH2O=0,157 г, mПАН=1 г; а также в коническую колбу (V=50 мл) наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=45°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв. ост. ≈ const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм.рт.ст.) при температуре Т=150°С, затем при 200°С, в течение 15 минут при каждой соответствующей температуре, скорость нагрева v=20°С/мин; 2) при финальной температуре 600°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева v=50°С/мин.

В результате получается нанокомпозит NiCoCu/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита с концентрацией ацетата меди 5 масс. %, рассчитан средний размер области когерентного рассеяния интерметаллида, а по данным ПЭМ построено распределение по размерам наночастиц NiCoCu. Средний размер наночастиц составил 10±1 нм.

Пример 4. Готовится 20 мл совместного раствора ПАН, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O в ДМФА с концентрациями (Со)=20 масс. %, (Ni)=20 масс. % и (Cu)=15 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mCo mCo(CH3COO)2⋅4H2O=0,845 г, mNi(CH3COO)2⋅4H2O=0,848 г, m(CH3COO)2CuH2O=0,471 г, mПАН=1 г; а также в коническую колбу (V=50 мл) наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=45°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв. ост. ≈ const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм.рт.ст.) при температуре Т=150°С, затем при 200°С, в течение 15 минут при каждой соответствующей температуре, скорость нагрева v=20°С/мин; 2) при финальной температуре 600°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева v=50°С/мин.

В результате получается нанокомпозит NiCoCu/C в виде черного порошка. По данным ПЭМ образца с концентрацией ацетата меди 15 масс. % рассчитан средний размер наночастиц интерметаллида, который составил 11 ±1 нм.

Пример 5. Готовится 20 мл совместного раствора ПАН, Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O в ДМФА с концентрациями (Со)=20 масс. %, (Ni)=20 масс. % и (Cu)=30 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: Для этого подготавливаются навески всех твердых компонентов: mCo(CH3COO)2⋅4H2O=0,845 г, mNi(CH3COO)2⋅4H2O=0,848 г, m(CH3COO)2CuH2O=0,942 г, mПАН=1 г; а также в коническую колбу (V=50 мл) наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески Со(СН3СОО)2⋅4H2O, Ni(CH3COO)2⋅4H2O и (СН3СОО)2Cu⋅H2O. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=45°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв. ост. ≈ const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм.рт.ст.) при температуре Т=150°С, затем при 200°С, в течение 15 минут при каждой соответствующей температуре, скорость нагрева v=20°С/мин; 2) при финальной температуре 600°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм.рт.ст., скорость нагрева v=50°С/мин.

В результате получается нанокомпозит NiCoCu/C в виде черного порошка. По данным ПЭМ образца с концентрацией ацетата меди 30 масс. % рассчитан средний размер наночастиц интерметаллида, который составил 16±1 нм.

Таким образом, установлено, что с увеличением температуры финального отжига происходит увеличение параметра решетки интерметаллида. По результатам РФА с использованием формулы Дебая-Шерера рассчитаны средние размеры областей когерентного рассеяния и параметры решеток NiCoCu в зависимости от температуры финального отжига (таблица 1).

Таким образом, установлено, что с увеличением концентрации меди происходит увеличение размера наночастиц NiCoCu. По результатам РФА с использованием формулы Дебая-Шерера рассчитаны средние размеры областей когерентного рассеяния и параметры решеток NiCoCu в зависимости от концентрации меди (таблица 2).

Источник поступления информации: Роспатент

Показаны записи 1-10 из 322.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Показаны записи 1-10 из 14.
27.01.2013
№216.012.2131

Радиопоглощающий феррит

Изобретение относится к технологии радиопоглощающих ферритов, которые находят все более широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры. Повышение радиопоглощающих свойств феррита в интервале частот от 30 МГц до 1000 МГц....
Тип: Изобретение
Номер охранного документа: 0002473998
Дата охранного документа: 27.01.2013
20.09.2013
№216.012.6a88

Катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии

Изобретение относится к катализаторам получения алифатических углеводородов из оксида углерода и водорода и их использованию. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные каталитически активные частицы металлического...
Тип: Изобретение
Номер охранного документа: 0002492923
Дата охранного документа: 20.09.2013
20.12.2014
№216.013.11f7

Способ получения ферритовых изделий путем радиационно-термического спекания

Изобретение относится к порошковой металлургии, в частности к получению магнитомягких ферритовых материалов. Может использоваться в электронной и радиопромышленности. Готовят шихту из синтезированного ферритового материала и 0,01-0,05 мас.% легкоплавкой добавки, предварительно...
Тип: Изобретение
Номер охранного документа: 0002536022
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1278

Способ спекания радиопоглащающих магний-цинковых ферритов

Изобретение относится к порошковой металлургии, в частности к получению радиопоглощающих ферритов. Может использоваться в электронной и радиопромышленности. Ферритообразующие оксиды магния, цинка и железа смешивают и синтезируют ферритовый порошок в печах в воздушной среде. Затем измельчают,...
Тип: Изобретение
Номер охранного документа: 0002536151
Дата охранного документа: 20.12.2014
10.06.2015
№216.013.51c5

Способ синтеза металлоуглеродного нанокомпозита feco/c

Изобретение относится к области химии и нанотехнологии. Сначала готовят раствор полиакрилонитрила (ПАН) и ацетилацетоната Fe(CHCOCH=C(CH)O)·6HO в диметилформамиде при температуре 40°C. Вводят раствор ацетата кобальта Со(СНСОО)·4HO в диметилформамиде. Концентрация ПАН составляет 5% от массы...
Тип: Изобретение
Номер охранного документа: 0002552454
Дата охранного документа: 10.06.2015
10.08.2015
№216.013.6ac1

Способ синтеза нанокомпозита coni/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологии. Сначала при температуре 25÷50°C готовят раствор, содержащий, мас.%: полиакрилонитрил - 4,58; CoCl·6HO - 1,86; NiCl·6HO - 1,86; диметилформамид - 91,7, и выдерживают до полного растворения всех компонентов. Затем удаляют диметилформамид...
Тип: Изобретение
Номер охранного документа: 0002558887
Дата охранного документа: 10.08.2015
13.01.2017
№217.015.6ad8

Способ получения нанокомпозита feni/c в промышленных масштабах

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита,...
Тип: Изобретение
Номер охранного документа: 0002593145
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7420

Способ определения состава твердого раствора

Использование: для оценки состава двухкомпонентных твердых растворов в нанодисперсных материалах, включающих, в частности, наноразмерные частицы: Pt-Ru, Pt-Rh, Fe-Co, Pd-Ru, Pd-Rh, Pd-H, Hf-O. Сущность изобретения заключается в том, что предложенный способ определения состава двухкомпонентного...
Тип: Изобретение
Номер охранного документа: 0002597935
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.a8ad

Способ получения наноразмерных частиц гексаферрита бария

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002611442
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.b4d9

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002614171
Дата охранного документа: 23.03.2017
+ добавить свой РИД