×
25.08.2017
217.015.aaa3

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ НАНОГЕТЕРОСТРУКТУРЫ СО СВЕРХРЕШЕТКОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронной технике, в частности к способам создания наногетероструктур для фотопреобразующих и светоизлучающих устройств. Способ изготовления наногетероструктуры со сверхрешеткой включает выращивание на подложке GaSb газофазной эпитаксией из металлоорганических соединений в потоке водорода сверхрешетки, состоящей из чередующихся слоев GaSb и InAs. Сверхрешетка содержит по меньшей мере один слой GaSb, выращиваемый из триэтилгаллия и триметилсурьмы, и по меньшей мере один слой InAs, выращиваемый из триметилиндия и арсина. При выращивании слоя GaSb вначале подают триэтилгаллий, а затем триметилсурьму, при выращивании слоя InAs вначале подают арсин, а затем триметилиндий. После выращивания каждого слоя GaSb или InAs прерывают подачу упомянутых соединений в зону роста слоев и продолжают подавать водород в течение времени t, задаваемого определенным соотношением. В изготовленных настоящим способом наногетероструктурах со сверхрешеткой отсутствуют пленки переменного состава на гетерогранице между слоями сверхрешетки, в результате обеспечивается стабильность и воспроизводимость электрооптических свойств создаваемых на основе этих наногетероструктур фотопреобразующих и светоизлучающих устройств. 3 пр.

Настоящее изобретение относится к электронной технике, в частности к способам создания наногетероструктур для фотопреобразующих и светоизлучающих устройств.

В настоящее время сложилось новое направление изготовления фотопреобразующих и светоизлучающих устройств на основе гетероструктур, содержащих сверхрешетки с напряженными слоями (strained layer superlattice-SLS). Сверхрешетки с напряженными слоями, в отличие от сверхрешеток с квантовыми ямами, имеют большие внутренние напряжения, обусловленные разностью параметров кристаллических решеток материалов слоев, и, как следствие, имеют зонную структуру, отличную от зонной структуры материалов слоев, например ширину, запрещенной зоны и положения подзон. Применение в фотоэлектрических преобразователях таких материалов позволяет сравнительно просто, путем изменения толщин слоев, изменять ширину запрещенной зоны, а следовательно, длинноволновую границу чувствительности фотоэлектрического преобразователя, при этом они обладают высокой поглощающей способностью, равной межзонному поглощению. В случае использования сверхрешеток с напряженными слоями для излучающих приборов возможно увеличение их эффективности.

Наиболее часто при изготовлении фотоэлектрических преобразователей на основе таких структур используют пару GaSb/InAs (антимонид галлия/арсенид индия). Это позволило изготовить фотоэлектрические преобразователи для спектрального диапазона до 15 мкм и каскадные устройства для нескольких спектральных диапазонов. В таких наногетероструктурах толщины слоев не должны превышать критическую величину, при превышении этой толщины материал имеет большое количество дефектов, а с другой стороны, должны отсутствовать туннельные токи. Обычно толщина слоев составляет несколько нанометров. Основным методом изготовления наногетероструктур со сверхрешетками InAs/GaSb является метод молекулярно-пучковой эпитаксии (МПЭ). Этот метод позволяет с высокой точностью контролировать толщины слоев (до одного атомарного слоя), но требует использования дорогостоящего оборудования и имеет высокую стоимость массового производства. Кроме указанных препятствий существует сложность изготовления структур на основе соединений с сурьмой (Sb).

Известен способ изготовления наногетеротруктуры со сверхрешеткой на основе (Al,Ga)Sb и GaSb (см. M. Behet, P. Schneider, D. Moulin, К. Heime, J. Woitok, J. Tummler, J. Hermans, J. Geurts, "Low pressure metalorganic vapor phase epitaxy and characterization of (Al,Ga)Sb/GaSb heterostructure", Journ. Of Crystal Growth, v. 167, 415-420, 1996) газофазной эпитаксией из металлоорганических соединений (МОСГФЭ). Выращивание сверхрешетки осуществляют при температуре 530-660°С из триметилаллюминия, триэтилгаллия, триэтилсурьм в токе очищенного водорода при соотношении молярных потоков V/III - групп периодической системы Менделеева, равном 12,5 для AlSb и элементов групп V/III = 7 для GaSb.

Основным недостатком известного способа изготовления наногетероструктур со сверхрешетками является относительно высокая температура роста, при которой невозможно выращивание InAs, так как при этом может образовываться InSb при росте сверхрешеток GaSb/InAs (температура плавления InSb Т=525°С). К тому же известный способ предназначен для изготовления приборов спектрального диапазона 1,4-1.72 мкм.

Известен способ изготовления наногетеротруктуры со сверхрешеткой (см. заявка WO 2012046676, МПК С23С 16/30, С30В 25/10, С30В 29/40, H01L 21/205, H01L 31/10, опубликована 12.04.2012) газофазной эпитаксией из металлорганических соединений с использованием органических источников. В известном способе выращивают слой GaAs1-ySby (0,36<y<1) на подложке (GaSb, InP и GaAs) и затем слой InxGa1-xAs (0,38<x<0,68). Выращивание сверхрешетки осуществляют при температуре 425-525°С.

Недостатком известного способа является сложность поддержания и контроля состава твердых растворов, а также образование слоев переменного состава на границах эпитаксиальных слоев вследствие невоспроизводимого роста в момент замены газовой среды (реагенты подают постоянно в зону роста).

Известен способ изготовления наногетеротруктуры со сверхрешеткой (см. заявка ЕР 2804203, МПК H01L 21/20, опубликована 19.11.2014) из соединений А3В5 (InAs, InP, GaAs, GaP, GaSb и InSb) газофазной эпитаксией из металлорганических соединений. Выращивание слоев сверхрешетки осуществлялли с использований органических источников (триметилиндий (TMIn), триметилгаллий (TMGa), триэтилгаллий (TEGa), трибутиларсин (TBAs), трибутилфосфин СВР), тетробутилбидиметиламинофосфор (TBBDMAP), триметилсурьма (TMSb) и тридиметиламиносурьма (TDMASb) в потоке азота или аргона при температуре в 350-450°С. В качестве слоев сверхрешетки также использовали InxGa1-xAs (x>0,5), и InxGa1-xSb (x<0,4).

Недостатком известного способа является образование пленок переменного состава большей толшины на гетерогранице между слоями сверхрешетки, приводящего к невоспроизводимому и неконтролируемому изменению зонной структуры материала сверхрешетки, и, как следствие, электрооптических свойств создаваемых приборов.

Известен способ изготовления наногетеротруктуры со сверхрешеткой (см. заявка US 2014353586, МПК H01L 21/02, H01L 21/66, H01L 31/0304, H01L 31/0352, H01L 31/18, опубликована 04.12.2014), совпадающий с настоящим решением по наибольшему числу существенных признаков и принятый за прототип. Способ-прототип включает выращивание на подложке GaSb газофазной эпитаксией из металлоорганических соединений сверхрешетки из чередующихся слоев GaSb и InAs, содержащей по меньшей мере один слой GaSb и по меньшей мере один слой InAs. При выращивании чередующихся слоев GaSb и InAs после окончания выращивания каждого слоя выдерживается временная пауза, во время которой подают металлоорганическое соединение, содержащее только один элемент V-группы (As для InAs и Sb для GaSb).

Основным недостатком известного метода является образование пленки переменного состава из InGaSb и GalnAs на гетерогранице между слоями GaSb и InAs, что приводит к невоспроизводимому изменению зонной структуры материала сверхрешетки, влияющему на электрооптические свойства создаваемых фотопреобразующих и светоизлучающих приборов.

Задачей настоящего изобретения являлась разработка такого способа изготовления наногетероструктуры со сверхрешеткой, который бы предотвратил образование пленки переменного состава на гетерогранице между слоями сверхрешетки и, как следствие, обеспечил бы стабильность и воспроизводимость электрооптических свойств создаваемых на основе наногетероструктуры фотопреобразующих и светоизлучающих приборов.

Поставленная задача решается тем, что способ изготовления наногетероструктуры на основе сверхрешетки включает выращивание на подложке GaSb, газофазной эпитаксией из металлоорганических соединений в потоке водорода сверхрешетки, состоящей из по меньшей мере одной пары чередующихся слоев GaSb, выращиваемого из триэтилгаллия и триметилсурьмы, и InAs, выращиваемого из триметилиндия и арсина. Новым в настоящем способе является то, что при выращивании слоя GaSb вначале подают триэтилгаллий, а затем подают триметилсурьму, при выращивании каждого слоя InAs вначале подают арсин, а затем подают триметилиндий, после выращивания каждого слоя GaSb или InAs прерывают подачу упомянутых соединений в зону роста слоев и продолжают подавать водород в течение времени t, определяемого из соотношения:

t=Vp/G, с;

где Vp - объем реактора, см3; (1)

G - скорость протекания водорода см3/с.

Газофазную эпитаксию из металлоорганических соединений настоящим способом обычно проводят при температуре 450-500°С из реагентов - триметилиндия, триэтилгаллия, триметилсурьмы и арсина при соотношении молярных потоков элементов V/III групп периодической системы Менделеева, равном в интервале 11-150 для InAs и 2-25 для GaSb. После выращивания каждого из слоев InAs и GaSb прекращают подачу в зону роста реагентов и подают только водород в течение времени t, определяемого из соотношения (1), для полной смены газовой смеси в зоне роста. Затем подают реагенты для выращивания слоя другого состава, причем подачу реагентов начинают с подачи арсина в случае выращивания слоя InAs и триэтилгаллия в случае выращивания слоя GaSb. Использовать температуру роста ниже 450°С не представляется возможным, так как ниже этой температуры не происходит пиролитического разложения триметилсурьмы (температура начала разложения триметилсурьмы равна 450°С и температура 100% разложения триметилсурьмы ~550°С).

За счет продувки реактора чистым водородом для полной смены газовой среды между ростом слоев как InAs, так и GaSb не происходит образования пленки переменного состава, которая приводит к невоспроизводимому изменению зонной структуры материала сверхрешетки, влияющая на электрооптические свойства создаваемых фотопреобразующих и светоизлучающих приборов.

Пример 1. Методом МОСГФЭ на установке ADCTRON-200 в реакторе горизонтального типа изготавливали наногетероструктуру, содержащую последовательно выращенные десять пар чередующихся эпитаксиальных слоев GaSb и InAs на подложке n-GaSb (001). Давление в реакторе составляло 76 мм рт.ст. Подложку во время роста вращали со скоростью 100 об/мин. Газ-носитель - очищенный водород с точкой росы не хуже -100°С, суммарный поток через реактор составлял 5,5 литров/мин. Источники элементов для роста: триметилиндий (TMIn), триэтилгаллий (TEGa), триметилсурьма (TMSb) и арсин (AsH3). Структуры преднамеренно не легировались. Температура роста для слоев из GaSb и InAs составляла 500°С, а соотношение молярных потоков элементов V/III групп периодической системы Менделеева составляло: для InAs - V/III = 93 и для GaSb V/III = 22,5. Высокое значение соотношения элементов V/III для GaSb объясняется низкой эффективностью разложения TMSb при Т=500°С (типичное значение V/III для роста GaSb при Т=550-630°С лежит в диапазоне 1,2-2,5). После выращивания каждого из слоев GaSb и InAs прекращали подачу в зону роста реагентов и продолжали подавать только водород в течение времени t, определяемого из соотношения (1), для полной смены газовой смеси в зоне роста. Затем подавали реагенты для выращивания слоя другого состава, причем подачу реагентов начинали с подачи арсина при выращивании InAs и триэтилгаллия при выращивании GaSb. Исследования микроструктуры образцов наногетероструктуры методом просвечивающей электронной микроскопии на микроскопе JEM2100F показали, что настоящий способ изготовления наногетероструктуры обеспечивает высокую воспроизводимость толщин слоев InAs - 2 nm и GaSb - 3,3 nm и резкие границы сверхрешетки InAs/GaSb на подложке GaSb (резкие границы свидетельствуют об отсутствии слоев переменного состава). Исследования спектров фотолюминесценции выращенных образцов наногетероструктуры подтвердили высокую воспроизводилось зонной структуры материала сверхрешетки, что также указывает на отсутствие слоев переменного состава.

Пример 2. Методом МОСГФЭ на установке AIXTRON-200 изготавливали наногетероструктуру, содержащую последовательно выращенные сто пар чередующихся эпитаксиальных слоев GaSb и InAs на подложке p-GaSb (001). Давление в реакторе составляло 76 мм рт.ст. Газ-носитель - очищенный водород, суммарный поток через реактор составлял 4 литра/мин. Источники элементов для роста: TMIn, TEGa, TMSb и AsH3. Температура роста для слоев GaSb и InAs составляла 450°С, а соотношение молярных потоков элементов V/III имело значение: для InAs - V/III = 150 и для GaSb V/III = 25. После выращивания каждого из слоев прекращали подачу в зону роста реагентов и продолжали подавать только водород в течение времени t, определяемого из соотношения (1), для полной смены газовой смеси в зоне роста. Затем подавали реагенты для выращивания слоя другого состава, причем подачу реагентов начинали с подачи арсина при выращивании InAs и триэтилгаллия при выращивании GaSb. Исследования микроструктуры образцов наногетероструктуры методом просвечивающей электронной микроскопии на микроскопе JEM2100F показали, что обеспечивается высокая воспроизводимость толщин слоев InAs - 1,5 nm и GaSb - 3,0 nm и резкие границы сверхрешетки InAs - GaSb на подложке GaSb. Спектры фотолюминесценции выращенных образцов показали высокую воспроизводилось зонной структуры материала сверхрешетки.

Пример 3. Методом МОСГФЭ изготавливали наногетероструктуру, содержащую последовательно выращенные пять пар чередующихся эпитаксиальных слоев GaSb и InAs на подложке GaSb (001). Давление в реакторе составляло 76 мм рт.ст. Газ-носитель - очищенный водород, суммарный поток через реактор составлял 6 литров/мин. Источники элементов для роста: триметилиндий (TMIn), триэтилгаллий (TEGa), триметилсурьма (TMSb) и арсин (AsH3). Температура роста для слоев GaSb и InAs составляла 500°С, а соотношение молярных потоков элементов V/III имело значение: для InAs - V/III = 11 и для GaSb V/III = 15. После выращивания каждого из слоев прекращали подачу в зону роста реагентов и подавали только водород в течение времени t, определяемого из соотношения (1), для полной смены газовой смеси в зоне роста. Затем подаются реагенты для выращивания слоя другого состава, причем подачу реагентов начинают с подачи арсина в случае InAs и триэтилгаллия в случае GaSb. Исследования микроструктуры образцов методом просвечивающей электронной микроскопии на микроскопе JEM2100F показали высокую воспроизводимость толщин слоев InAs - 1 nm и GaSb - 2,5 nm и резкие границы сверхрешетки InAs - GaSb на подложке GaSb. Спектры фотолюминесценции выращенных образцов показали высокую воспроизводимость зонной структуры материала сверхрешетки.

Источник поступления информации: Роспатент

Показаны записи 81-90 из 120.
27.12.2018
№218.016.ac3c

Способ получения нанокомпозитного материала на основе алюминия

Изобретение относится к получению нанокомпозитного материала на основе алюминия. Способ включает приготовление шихты путем нанесения раствора нитрата металла-катализатора на поверхность частиц алюминия и его сушки, термического разложения нитрата металла-катализатора до оксида...
Тип: Изобретение
Номер охранного документа: 0002676117
Дата охранного документа: 26.12.2018
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.53af

Способ изготовления омических контактов фотоэлектрического преобразователя

Способ изготовления омических контактов фотоэлектрического преобразователя включает напыление на гетероструктуру AB основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку...
Тип: Изобретение
Номер охранного документа: 0002687851
Дата охранного документа: 16.05.2019
01.06.2019
№219.017.7275

Способ изготовления нитридного светоизлучающего диода

Способ изготовления нитридного светоизлучающего диода включает последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости. На полученной...
Тип: Изобретение
Номер охранного документа: 0002690036
Дата охранного документа: 30.05.2019
07.06.2019
№219.017.7543

Концентраторно-планарный солнечный фотоэлектрический модуль

Концентраторно-планарный фотоэлектрический модуль (1) содержит фронтальную светопрозрачную панель (2) с концентрирующими оптическими элементами (4), светопрозрачную тыльную панель (5), на которой сформированы планарные неконцентраторные фотоэлектрические преобразователи (6) с окнами (10),...
Тип: Изобретение
Номер охранного документа: 0002690728
Дата охранного документа: 05.06.2019
13.06.2019
№219.017.8186

Импульсный инжекционный лазер

Импульсный инжекционный лазер содержит гетероструктуру раздельного ограничения, включающую асимметричный многомодовый волновод, ограничительные слои (3), (8) которого одновременно являются эмиттерами n- и р-типа проводимости с одинаковыми показателями преломления, активную область (6),...
Тип: Изобретение
Номер охранного документа: 0002691164
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8cbe

Оптический магнитометр

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Оптический...
Тип: Изобретение
Номер охранного документа: 0002691774
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8cfa

Оптический магнитометр

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Оптический...
Тип: Изобретение
Номер охранного документа: 0002691775
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8d0a

Способ измерения температуры

Изобретение относится к области нанотехнологий и может быть использовано в области измерения локальных слабых температурных полей с микро- и наноразмерным разрешением в микроэлектронике, биотехнологиях и др. Предложен способ измерения температуры, включающий предварительное построение...
Тип: Изобретение
Номер охранного документа: 0002691766
Дата охранного документа: 18.06.2019
17.07.2019
№219.017.b5e8

Устройство определения характеристик для определения характеристик сцинтилляционного материала

Группа изобретений относится к устройству определения характеристик для определения характеристик сцинтилляционного материала, в частности, для датчика ПЭТ. Первый источник излучения облучает сцинтилляционный материал первым излучением с длиной волны менее 450 нм. Второй источник излучения...
Тип: Изобретение
Номер охранного документа: 0002694592
Дата охранного документа: 16.07.2019
Показаны записи 81-90 из 105.
29.12.2018
№218.016.acfa

Свч фотоприемник лазерного излучения

Изобретение относится к полупроводниковым приборам, применяемым в электронике. СВЧ фотоприемник лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: слоя тыльного потенциального барьера 2 n-AlGaAs, базового слоя, выполненного из n-GaAs 3, с толщиной...
Тип: Изобретение
Номер охранного документа: 0002676188
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acff

Свч фотодетектор лазерного излучения

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на...
Тип: Изобретение
Номер охранного документа: 0002676187
Дата охранного документа: 26.12.2018
01.03.2019
№219.016.cedd

Способ полирования полупроводниковых материалов

Изобретение относится к области обработки полупроводниковых материалов, а именно к химико-механическим способам полирования полупроводников. Изобретение обеспечивает высокое качество полированной поверхности. Сущность изобретения: в способе химико-механического полирования полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002457574
Дата охранного документа: 27.07.2012
01.03.2019
№219.016.d0be

Способ изготовления полупроводниковой структуры с p-n переходами

Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным структурам, используемым, в частности, в фотоэлектрических преобразователях. Способ изготовления полупроводниковой структуры включает последовательное формирование на полупроводниковой подложке методом...
Тип: Изобретение
Номер охранного документа: 0002461093
Дата охранного документа: 10.09.2012
01.03.2019
№219.016.d0c1

Способ определения неоднородностей в полупроводниковом материале

Изобретение относится к области электронной техники и может быть использовано для контроля качества проводящих слоев и поверхностей полупроводниковых пленок, применяемых при изготовлении изделий микроэлектроники. Сущность изобретения: в способе определения неоднородностей в полупроводниковом...
Тип: Изобретение
Номер охранного документа: 0002461091
Дата охранного документа: 10.09.2012
03.03.2019
№219.016.d231

Способ изготовления мощного фотодетектора

Изобретение может быть использовано для создания СВЧ-фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании фоточувствительной области и контактной площадки для бондинга вне фоточувствительной области на...
Тип: Изобретение
Номер охранного документа: 0002680983
Дата охранного документа: 01.03.2019
10.04.2019
№219.017.0277

Способ формирования многослойного омического контакта фотоэлектрического преобразователя (варианты)

Изобретение относится к микроэлектронике. Сущность изобретения: в способе формирования многослойного омического контакта фотоэлектрического преобразователя на основе арсенида галлия электронной проводимости формируют фотолитографией топологию фоточувствительных областей и проводят травление...
Тип: Изобретение
Номер охранного документа: 0002391741
Дата охранного документа: 10.06.2010
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.5967

Солнечный фотоэлектрический модуль на основе наногетероструктурных фотопреобразователей

Концентраторный фотоэлектрический модуль на основе наногетероструктурных солнечных элементов относится к области фотоэлектрического преобразования энергии, в частности к системам с расщеплением солнечного спектра. Модуль содержит корпус (1), имеющий фронтальную панель (2), содержащую...
Тип: Изобретение
Номер охранного документа: 0002426198
Дата охранного документа: 10.08.2011
29.05.2019
№219.017.689a

Концентраторный солнечный элемент

Концентраторный солнечный элемент (8) выполнен в форме в форме прямоугольника с соотношением длин сторон, находящимся в интервале от 1 до 1,5. Он содержит подложку (3), многослойную структуру (4), сформированную на подложке (3), с центральной фоточувствительной областью (12), контактный слой...
Тип: Изобретение
Номер охранного документа: 0002407108
Дата охранного документа: 20.12.2010
+ добавить свой РИД