×
25.08.2017
217.015.aa77

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ОБЪЕМНОЙ ДОЛИ ТВЕРДОЙ ФАЗЫ МАГНИТНОЙ ЖИДКОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, может быть использовано для определения диаметра ферромагнитных частиц и объемной доли твердой фазы магнитной жидкости. Способ определения диаметра частиц и объемной доли твердой фазы магнитной жидкости, включающий в себя этапы, на которых осуществляют измерения при различных значениях внешнего магнитного поля, при этом измеряют вязкое трение, а диаметр частиц и объемную долю твердой фазы магнитной жидкости рассчитывают путем нахождения минимума функционала где Н– значения напряженности магнитного поля, – значения вязкого трения, определенные экспериментально, – зависимость вязкого трения от параметров магнитной жидкости и напряженности магнитного поля; d –диаметр частиц, φ – объемная доля твёрдой фазы; α и β – числовые коэффициенты. Технический результат – сокращение времени измерений. 2 ил.

Изобретение относится к измерительной технике, может быть использовано для определения диаметра ферромагнитных частиц и объемной доли твердой фазы магнитной жидкости и найти применение в различных отраслях промышленности при контроле свойств и параметров магнитной жидкости.

Для определения параметров магнитных жидкостей можно использовать результаты измерений зависимости силы вязкого трения от величины напряженности внешнего магнитного поля, при условии, что известно их теоретическое описание.

Известен гранулометрический способ определения размеров частиц магнитной жидкости [Бибин и др. Магнитоскопические свойства коллоидов магнетита. Магнитная гидродинамика, 1973, N 1, с.68-72], основанный на графической обработке экспериментальной кривой намагничивания исследуемого образца, измеренной при комнатной температуре и имеющей вид, характерный для супермагнетика.

Данный способ обладает следующими недостатками:

- не позволяет быстродействующего сканирования больших поверхностей;

- имеет большую погрешность метода;

- характеризуется высокой трудоемкостью;

Известен также способ определения размеров частиц магнитной жидкости по распространению через нее ультразвука при различных значениях внешнего магнитного поля [Виноградов А.Н. Определение параметров магнитной жидкости по распространению ультразвука. Магнитная гидродинамика, 1989, N 4, с.29-37]. Он заключается в определении размера частиц магнитной жидкости по поглощению и скорости распространения ультразвука в исследуемом объеме магнитной жидкости. Исследуемую жидкость помещают в герметическую акустическую камеру. Измеряют коэффициент поглощения и скорость распространения ультразвука при различных величинах индукции внешних магнитных полей. По экспериментальным данным определяют размер частиц.

Недостатками данного способа являются:

- малая разрешающая способность (определяются размеры не менее 100А);

- необходимость учитывать влияние параметров жидкости-носителя на результаты расчета параметров частиц.

За прототип принят СВЧ-способ [Журнал технической физики, 2001, том 71, вып. 12] определения размера ферромагнитных частиц магнитной жидкости, заключающийся в помещении исследуемого объекта в постоянное магнитное поле и воздействии на него электромагнитным излучением, изменении величины магнитного поля, измерении характеристик излучения после взаимодействия с магнитной жидкостью и определения по ним искомого параметра.

Данный способ обладает следующими недостатками:

- необходимостью применения сложного дорогостоящего оборудования и высококвалифицированного персонала;

- высокой длительностью измерений.

Задачей предлагаемого технического решения является обеспечение возможности одновременного определения параметров магнитной жидкости: эффективного диаметра частиц d, а также объемной доли твердой фазы φ.

Техническим результатом изобретения является расширение функциональных возможностей; сокращение времени измерений при использовании простого и дешевого в изготовлении оборудования и оснастки.

Поставленная задача решается тем, что в способе определения параметров магнитной жидкости, заключающемся в помещении кюветы с тонким слоем магнитной жидкости в постоянное магнитное поле, на тонкий слой жидкости помещается пластина, на которую воздействует горизонтальная, тянущая вдоль слоя жидкости сила. Изменяя величину магнитного поля, измеряют временную характеристику прохождения пластины по тонкому слою магнитной жидкости и определяют по ней зависимость силы вязкого трения от значения напряженности внешнего магнитного поля, через которую вычисляют искомые параметры. Плавно изменяют напряженность магнитного поля, фиксируют значения напряженности, соответствующие времени прохождения пластиной пути по слою магнитной жидкости. Вычисляют зависимость силы вязкого трения от величины напряженности внешнего магнитного поля. Рассчитывают искомый размер частиц и объемную долю твердой фазы магнитной жидкости путем нахождения минимума функционала

,(1)

где Нi - напряженности магнитного поля, соответствующие различным моментам времени прохождения пути l пластиной по слою магнитной жидкости; – зависимость, полученная экспериментально,


= QUOTE ;(2)

QUOTE , QUOTE – объемная доля твердой фазы магнитной жидкости, Ms - намагниченность насыщения частиц, V(d)- эффективный объем частиц, k – постоянная Больцмана, Т – температура, H – напряженность магнитного поля, QUOTE – магнитная постоянная, QUOTE – намагниченность насыщения, QUOTE –диаметр частиц, QUOTE – объемная доля твердой фазы магнитной жидкости, α и β – коэффициенты, значения которых определяются в ходе решения обратной задачи. Определяют QUOTE и QUOTE , соответствующие минимуму функционала.

Формула (2) получена путем введения коэффициентов α и β вместо числовых значений, полученных для магнитной жидкости определенного типа, в функционал [Шлиомис М.И. Магнитные жидкости.Успехи физических наук, 1974, Т.112, вып. 3, с.454, 5.29], угол между векторами скорости и вектором напряженности магнитного поля принят равным 90°.

Известных в науке и технике решений с данной совокупностью признаков не обнаружено. Результат, полученный для предложенного технического решения и обусловленный совокупностью этих признаков, не достигается в известных решениях.

Достоинством способа является возможность одновременного определения параметров магнитной жидкости с учетом особенностей взаимодействия магнитной жидкости с магнитным полем, без использования сложной и дорогостоящей аппаратуры.

На фиг.1 изображена принципиальная схема устройства, реализующего способ измерения размера и объемной доли твердой фазы ферромагнитных частиц магнитной жидкости;

на фиг.2 расчетная и экспериментальная зависимости величины силы вязкого трения в слое магнитной жидкости от значения напряженности внешнего магнитного поля.

Заявляемый способ осуществляется следующим образом.

Источником магнитного поля служит электромагнит (ЭМ-1) 1, управляемый универсальным источником питания (УИП-1) 2. В поле помещается испытательная кювета 3 с тонким слоем магнитной жидкости и ПВХ-пластиной. Время прохождения пластиной пути l при различных значениях напряженности магнитного поля, генерируемого электромагнитном 1 измеряется автоматическим таймером 4,

5 - расчетная зависимость ( QUOTE ),
6 – зависимость, полученная экспериментально.

П р и м е р. Кювету размерами 130x18x20 мм с тонким слоем (1 мм) исследуемой магнитной жидкости на основе трансформаторного масла помещают в постоянное магнитное поле напряженностью 2000 Э. Через систему шарниров закрепляют груз к пластине, которую помещают в начало кюветы. Убирают заслонку, удерживающую груз, и измеряют время прохождения пластины пути l под действием силы тяжести на груз. Определяется скорость движения пластины. Определяется сила вязкого трения для данного значения напряженности магнитного поля по формуле

QUOTE QUOTE QUOTE ,

где QUOTE - сила трения, QUOTE - эффективная вязкость, QUOTE – площадь пластины,
QUOTE – скорость движения пластины, QUOTE – толщина слоя жидкости.

Силу вязкого трения можно, например, определять с помощью ротационного визкозиметра, например LamyRheologyRM 200, или ультра-звукового способа [Патент РФ № 2416089].

После этого величина магнитного поля увеличивается с шагом 2000 Э. Измерения прекращают по достижению величины напряженности в 12000 Э. По полученной экспериментальной зависимости силы вязкого трения от величины напряженности внешнего магнитного поля находят минимум функционала

и соответствующие ему значения эффективного диаметра и объемной доли твердой фазы частиц магнитной жидкости, а также значений коэффициентов α и β, соответствующих данному типу магнитной жидкости из условий:

В дальнейшем, при измерениях магнитной жидкости данного типа, определение коэффициентов α и β можно опустить.

Параметры магнитной жидкости (d=15nm, φ=0.1), определёнными в результате решения обратной задачи, хорошо совпадают с параметрами (d=14,6 nm, φ=0.107), определённые способом по прототипу [Журнал технической физики, 2001, том 71, вып. 12].

Время измерений составило: 40 c, для способа по прототипа – 15 мин .

Таким образом, предлагаемый способ позволяет производить экспресс-анализ диаметра частиц магнитной жидкости и объемной доли твердой фазы без использования сложного и дорогостоящего оборудования, что расширяет сферы применения данного способа.


СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ОБЪЕМНОЙ ДОЛИ ТВЕРДОЙ ФАЗЫ МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ОБЪЕМНОЙ ДОЛИ ТВЕРДОЙ ФАЗЫ МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ОБЪЕМНОЙ ДОЛИ ТВЕРДОЙ ФАЗЫ МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ОБЪЕМНОЙ ДОЛИ ТВЕРДОЙ ФАЗЫ МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ОБЪЕМНОЙ ДОЛИ ТВЕРДОЙ ФАЗЫ МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ОБЪЕМНОЙ ДОЛИ ТВЕРДОЙ ФАЗЫ МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ОБЪЕМНОЙ ДОЛИ ТВЕРДОЙ ФАЗЫ МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ОБЪЕМНОЙ ДОЛИ ТВЕРДОЙ ФАЗЫ МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА ФЕРРОМАГНИТНЫХ ЧАСТИЦ И ОБЪЕМНОЙ ДОЛИ ТВЕРДОЙ ФАЗЫ МАГНИТНОЙ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 114.
13.02.2019
№219.016.b9c2

Газовый свч-сенсор

Использование: для детектирования малых концентраций различных газов и летучих соединений. Сущность изобретения заключается в том, что газовый СВЧ-сенсор содержит микрополосковую линию с заземляющим металлическим слоем и резонатор со слоем газоактивного материала на его поверхности, резонатор...
Тип: Изобретение
Номер охранного документа: 0002679458
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ca

Способ определения параметров магнитной жидкости

Изобретение относится к измерительной технике и может найти применение в различных отраслях промышленности. Cпособ определения параметров магнитной жидкости заключается в воздействии СВЧ-излучения и магнитного поля на магнитную жидкость, помещённую в волновод, измерении коэффициента отражения...
Тип: Изобретение
Номер охранного документа: 0002679457
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ce

Неразрушающий способ измерения подвижности носителей заряда в полупроводниковой структуре

Изобретение относится к измерительной технике, может быть использовано для определения локальной подвижности носителей заряда в локальной области полупроводниковых структур в процессе изготовления и испытания полупроводниковых приборов. Изобретение обеспечивает расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002679463
Дата охранного документа: 11.02.2019
13.03.2019
№219.016.deb3

Способ выращивания корнеплодов

Изобретение относится к сельскому хозяйству, а именно к возделыванию корнеплодов, в частности кормовой свёклы, турнепса, брюквы, и может быть использовано в агроэкологии для эффективной рекультивации сельскохозяйственных земель. Способ выращивания корнеплодов заключается в предпосевной...
Тип: Изобретение
Номер охранного документа: 0002681578
Дата охранного документа: 11.03.2019
29.03.2019
№219.016.edce

Способ формирования многослойного покрытия на частицах и устройство для его реализации (варианты)

Группа изобретений относится к области химии, в частности к оборудованию для химических или физических лабораторий и способу их применения, и может быть использована для формирования многослойных композитных покрытий на субмикро- или микрочастицах методом послойной адсорбции. Способ...
Тип: Изобретение
Номер охранного документа: 0002683115
Дата охранного документа: 26.03.2019
20.05.2019
№219.017.5d03

Неинвазивный способ повышения проницаемости гематоэнцефалического барьера

Изобретение относится к области экспериментальной медицины, а именно к нейрофизиологии, и может быть использовано для неинвазивного повышения проницаемости гематоэнцефалического барьера (ГЭБ) у мышей. Воздействуют лазерным излучением на мозг без вскрытия черепа длиной волны 1268 нм с мощностью...
Тип: Изобретение
Номер охранного документа: 0002688013
Дата охранного документа: 17.05.2019
24.05.2019
№219.017.5e33

Устройство для коаксиального электрогидродинамического формования полимерных микро- или субмикронных структур

Изобретение относится к устройствам коаксиального электроформования полимерных капсул или тонких волокон микро- и субмикронного размера. Техническим результатом является обеспечение возможности формирования микро- и субмикронных структур определенной геометрической формы из полимерных растворов...
Тип: Изобретение
Номер охранного документа: 0002688586
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.62d5

Способ синтеза белка в культуре бактериальных клеток

Изобретение относится к области биотехнологии, в частности к способу синтеза белка в культурах бактериальных клеток. Способ включает модификацию поверхности клеток методом послойной адсорбции противоположно заряжённых полимеров и последующее термостатирование культуры клеток. Культуру клеток...
Тип: Изобретение
Номер охранного документа: 0002688383
Дата охранного документа: 21.05.2019
23.07.2019
№219.017.b7fa

Гидрогелевый материал на основе соли хитозансодержащего вещества и способ его получения

Группа изобретений относится к области медицины, биотехнологии, косметологии и фармацевтической промышленности, а именно к получению лечебно-профилактического гидрогелевого материала на основе соли хитозансодержащего вещества с собственной биологической активностью, обладающего...
Тип: Изобретение
Номер охранного документа: 0002695223
Дата охранного документа: 22.07.2019
01.09.2019
№219.017.c529

Устройство для определения абсолютного квантового выхода люминесценции

Использование: для определения абсолютного квантового выхода люминесценции. Сущность изобретения заключается в том, что устройство для определения абсолютного квантового выхода люминесценции исследуемого вещества содержит расположенные на одной оптической оси источник света, фотометрический...
Тип: Изобретение
Номер охранного документа: 0002698548
Дата охранного документа: 28.08.2019
Показаны записи 71-80 из 99.
13.02.2019
№219.016.b9ce

Неразрушающий способ измерения подвижности носителей заряда в полупроводниковой структуре

Изобретение относится к измерительной технике, может быть использовано для определения локальной подвижности носителей заряда в локальной области полупроводниковых структур в процессе изготовления и испытания полупроводниковых приборов. Изобретение обеспечивает расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002679463
Дата охранного документа: 11.02.2019
01.03.2019
№219.016.d0bf

Сканирующий зондовый микроскоп

Изобретение относится к электронно-измерительной технике и нанотехнологиям и предназначено в том числе для использования со сканирующим зондовым микроскопом (СЗМ) при исследовании микро- и нанорельефа поверхности. СЗМ содержит виброизоляционное основание, средство привода точного...
Тип: Изобретение
Номер охранного документа: 0002461839
Дата охранного документа: 20.09.2012
03.03.2019
№219.016.d256

Способ изготовления проволоки из (α+β) - титанового сплава для аддитивной технологии с индукционным нагревом

Изобретение относится к способам обработки титановых сплавов давлением и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев заготовки и...
Тип: Изобретение
Номер охранного документа: 0002681040
Дата охранного документа: 01.03.2019
03.03.2019
№219.016.d25d

Способ получения заготовки из титановых сплавов для изделий, испытывающих переменные механические нагрузки

Изобретение относится к термомеханической обработке сплавов на основе титана с (α+β) структурой и может быть использовано для создания заготовок, имеющих высокую энергоемкость, мелкодисперсную микроструктуру с размером зерна (0,5-5,0) мкм, для изделий, испытывающих переменные механические...
Тип: Изобретение
Номер охранного документа: 0002681033
Дата охранного документа: 01.03.2019
03.03.2019
№219.016.d28c

Способ изготовления проволоки (α+β)-титанового сплава для аддитивной технологии

Изобретение относится к способам обработки титановых сплавов и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев и деформацию заготовки путем...
Тип: Изобретение
Номер охранного документа: 0002681038
Дата охранного документа: 01.03.2019
03.03.2019
№219.016.d29a

Сплав на основе титана

Изобретение относится к области ультразвуковых технологических систем различного назначения и может быть использовано для создания сплава для изготовления ультразвуковых электродов, обладающих высоким ресурсом работы. Сплав на основе титана содержит, мас. %: алюминий 5,8-8,0, молибден 2,8-3,8,...
Тип: Изобретение
Номер охранного документа: 0002681030
Дата охранного документа: 01.03.2019
06.03.2019
№219.016.d2c5

Заготовка из сплава на основе титана для упругих элементов с энергоемкой структурой

Изобретение относится к области металлургии, а именно к функциональным заготовкам из сплава на основе титана, обладающим повышенной прочностью, упругостью и пластичностью. Заготовка для изготовления упругих элементов выполнена из сплава на основе титана, содержащего, мас.%: алюминий 1,2-4,5,...
Тип: Изобретение
Номер охранного документа: 0002681089
Дата охранного документа: 04.03.2019
08.03.2019
№219.016.d40a

Способ изготовления заготовки из сплава на основе титана для упругих элементов с энергоемкой структурой

Изобретение относится к области металлургии, в частности к способам обработки титановых сплавов, и может быть использовано при получении заготовок с энергоемкой структурой, повышенной прочностью, упругостью и пластичностью. Способ получения заготовки для изготовления упругих элементов,...
Тип: Изобретение
Номер охранного документа: 0002681102
Дата охранного документа: 04.03.2019
20.03.2019
№219.016.e2ea

Способ изготовления проволоки из (α+β)-

Изобретение относится к способам обработки титановых сплавов и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев заготовки и деформацию...
Тип: Изобретение
Номер охранного документа: 0002682069
Дата охранного документа: 14.03.2019
20.03.2019
№219.016.e320

Способ изготовления проволоки из (α+β) -

Изобретение относится к способам обработки титановых сплавов давлением и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев заготовки и...
Тип: Изобретение
Номер охранного документа: 0002682071
Дата охранного документа: 14.03.2019
+ добавить свой РИД