×
01.03.2019
219.016.d0bf

СКАНИРУЮЩИЙ ЗОНДОВЫЙ МИКРОСКОП

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к электронно-измерительной технике и нанотехнологиям и предназначено в том числе для использования со сканирующим зондовым микроскопом (СЗМ) при исследовании микро- и нанорельефа поверхности. СЗМ содержит виброизоляционное основание, средство привода точного позиционирования, обеспечивающее детектируемое взаимодействие между зондом и образцом, механизм детектирования зонда и механизм обратной связи, обеспечивающий регулирование расстояния, отделяющего зонд и образец, а также шестиосевую механическую систему сближения и позиционирования, программируемый блок управления измерением и перемещением, измерительный датчик с механизмом обратной связи. Технический результат - расширение функциональных возможностей СЗМ за счет обеспечения возможности работы микроскопа с образцами большого размера и сложной формы путем требуемого для исследования позиционирования образца и измерения расстояния между зондом и образцом. 1 з.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к электронно-измерительной технике и нанотехнологиям, предназначено в том числе для использования со сканирующим зондовым микроскопом (СЗМ) при исследовании микро- и нанорельефа поверхности. Известно исследование нанорельефа на поверхности методом сканирующей микроскопии (зондовые и сканирующие микроскопы). В качестве сканирующего устройства могут использоваться сканирующий туннельный микроскоп (СТМ), атомно-силовой микроскоп (АСМ), сканирующий-емкостный микроскоп, сканирующий электронный микроскоп, сканирующий оптический микроскоп ближнего поля и т.д.

Одной из проблем в этой области является необходимость систем позиционирования зонда микроскопа или обрабатывающего инструмента, особенно при исследовании поверхностей больших размеров.

Известен сканирующий зондовый микроскоп, настройка которого включает позиционирование зонда в необходимую область поверхности образца, осуществляемое визуально при помощи наблюдения зонда и поверхности образца в оптический микроскоп (см. Неволин В.К. Зондовые нанотехнологии в электронике, М., 2006, стр.18 и Version 4.22-15JULY96 MultiMode SPM Instruction Manual, Chapter 6.2.3).

Однако данный способ настройки микроскопа не позволяет точно позиционировать зонд микроскопа в необходимую область поверхности образца, например вершину, впадину или участок поверхности образца с наклоном. Другие недостатки СЗМ связаны с необходимостью использования специального калибровочного эталона при калибровке сканера, а также с невозможностью точного позиционирования зонда микроскопа в необходимую область поверхности образца, например вершину, впадину или участок поверхности образца с наклоном.

Известен сканирующий зондовый микроскоп и способ его настройки, который включает калибровку сканера и/или позиционирование зонда на основе интерференционной картины, полученной путем дополнительного использования источника светового потока и разделения потока света на два когерентных потока света, которые проходят различные оптические пути, а затем сводятся вместе и направляются в систему видеонаблюдения микроскопа или дополнительную систему видеонаблюдения. При калибровке сканера один из световых потоков претерпевает отражение от поверхности образца и/или зонда, а при позиционировании зонда световой поток претерпевает отражение от поверхности образца.

Один из вариантов СЗМ включает систему видеонаблюдения, держатель образца, сканер, зонд, держатель зонда и систему для перемещений держателя образца. Кроме того, он дополнительно содержит закрепленные с возможностью ориентации в пространстве источник светового потока, отражательный элемент и оптический делительный элемент, как пропускающий, так и отражающий часть светового потока, идущего от источника, причем держатель образца расположен на пути одного из потоков света, отраженного или пропущенного делительным элементом, а отражательный элемент - на пути второго потока света таким образом, чтобы ход световых потоков, отраженных от поверхности отражательного элемента и от поверхности держателя образца или поверхности помещенного на него исследуемого образца, совпадал с ходом падающих на них световых потоков, и после дальнейшего отражения одного отраженного светового потока от делительного элемента и прохождения второго отраженного светового потока через делительный элемент каждый из них был направлен в систему видеонаблюдения. По расстояниям между полосами и их толщине определяют угол наклона участка поверхности кристалла.

В техническом решении можно использовать различные держатели образца, например магнитный, механический, держатель на липкой основе и т.д. Держатели образца могут быть закреплены как жестко, так и с возможностью ориентации в пространстве, достигаемой за счет использования, например, шарового шарнира, системы цилиндрических шарниров, пластичного крепления, винтов, их комбинации и т.д. При реализации предлагаемого технического решения предпочтительно использовать держатели образца, закрепленные с возможностью ориентации в пространстве. Система для перемещений держателя образца может быть выполнена на основе механических редукторов перемещений, винтов, шаговых электродвигателей, шаговых пьезодвигателей и т.д. Позиционирование зонда в необходимую область поверхности образца можно проводить как вручную, так и в автоматическом режиме с наблюдением относительного положения зонда и поверхности образца в системе видеонаблюдения или визуально. В СЗМ сканирование можно осуществлять двумя различными способами. В первом случае с помощью сканера зонд перемещают относительно неподвижного образа, закрепленного в держателе. Во втором случае сканирование производят при перемещении держателя с закрепленным образцом относительно неподвижного зонда (см. патент на изобретение. №2382389, МПК G02B 21/00).

Известно, что при измерении рельефа поверхности сканирующим зондовым микроскопом используют особенности поверхности в качестве опорных точек при выполнении перемещений. Перемещения осуществляют от одной особенности к другой, расположенной по соседству. В результате образуется связанная цепочка, в которой особенности размещены относительно друг друга. Поиск, обнаружение и вычисление координат положения особенности выполняет программа распознавания. Сканируя небольшую область вокруг каждой особенности, а затем раскладывая полученные фрагменты поверхности по соответствующим позициям, определенным при распознавании, можно реконструировать реальный рельеф поверхности. Наличие информации о координатах положения особенностей вместе с механизмом привязки позволяет осуществлять прецизионное позиционирование зонда (см. патент на изобретение №2175761, МПК G01N 13/12).

Однако данные микроскопы предназначены для работы с небольшими образцами и не могут исследовать образцы больших размеров, содержащие наклонные поверхности, вершины и впадины.

Близким к заявленному является сканирующий зондовый микроскоп для получения изображения образца в соответствии с взаимодействием между образом и зондом, выполненный с возможностью осуществления в ходе работы сканирования поверхности образца и содержащий: средство привода, выполненное с возможностью обеспечения относительного движения между зондом и поверхностью образца и способное приводить образец и зонд в непосредственную близость друг с другом, достаточную для установления между ними детектируемого взаимодействия; средство придания колебаний либо зонду, либо образцу; механизм детектирования зонда, выполненный с возможностью измерения, по меньшей мере, одного параметра, характеризующего интенсивность взаимодействия между зондом и образцом; и механизм обратной связи, выполненный с возможностью обеспечения регулирования отделяющего зонд и образец расстояния за счет приведения в действие средства привода в качестве отклика на изменение среднего значения одного из упомянутых параметров относительно предварительно заданного значения, отличающийся тем, что средство придания колебаний обеспечивает относительное колебательное движение зонда по занятой образцом поверхности так, что зонд выполняет по существу линейную развертку поверхности образца, причем во время сканирования поверхности образца участок сканирования охватывается за счет упорядоченного расположения строк сканирования, каждая из которых снимается при колебании либо зонда, либо образца на его резонансной частоте или около его резонансной частоты, так что двойная амплитуда колебания равна максимальной длине строки сканирования, а их упорядоченное расположение обеспечивается действием средства привода (см. заявку на изобретение РФ №: 2005102703/28, 04.07.2003).

Недостатком известного СЗМ является невозможность наклона образца под нужным углом к зонду.

Технической задачей является создание СЗМ, который может исследовать поверхность или как-то взаимодействовать с участками поверхности образца, имеющего большие размеры, при этом образец имеет сложную поверхность с вершинами, впадинами, наклонными участками.

Технический результат заключается в расширении функциональных возможностей СЗМ за счет обеспечения возможности работы микроскопа с образцами большого размера и сложной формы путем требуемого для исследования позиционирования образца и измерения расстояния между зондом и образцом.

Заявленный технический результат достигается тем, что заявленный СЗМ, содержащий виброизоляционное основание, средство привода точного позиционирования, обеспечивающее детектируемое взаимодействие между зондом и образцом, механизм детектирования зонда и механизм обратной связи, обеспечивающий регулирование расстояния, отделяющего зонд и образец, дополнительно содержит шестиосевую механическую систему сближения и позиционирования, программируемый блок управления измерением и перемещением, а также измерительный датчик с механизмом обратной связи.

Сканирующий зондовый микроскоп выполнен с возможностью в ходе работы сканирования поверхности образца 1 и исследования его электрофизических параметров (диэлектрической проницаемости, электропроводности) с нанометровым пространственным разрешением. Микроскоп содержит зонд 2, средство привода, которое состоит из прецизионного механизма перемещения 3, например пьезоэлектрического привода, подключенного к зонду 2, и системы точного позиционирования 4 образца, например, в виде X, Y, Z пьезоэлектрического преобразователя. Средство привода обеспечивает возможность относительного движения между зондом 2 и поверхностью образца 1 и способно приводить образец и зонд в непосредственную близость друг с другом, достаточную для установления между ними детектируемого взаимодействия. К зонду 2 подключен механизм детектирования 5 зонда, выполненный с возможностью измерения, по меньшей мере, одного параметра, характеризующего интенсивность взаимодействия между зондом 2 и образцом 1. Механизм детектирования 5 зонда подключен через механизм обратной связи 6 к системе индикации, например компьютеру 7. Механизм обратной связи 6 выполнен с возможностью обеспечения регулирования отделяющего зонд и образец расстояния за счет приведения в действие средства привода в качестве отклика на изменение среднего значения одного из параметров относительно предварительно заданного значения.

Микроскоп дополнительно содержит шестиосевую систему сближения и позиционирования 8, выполненную с возможностью перемещения по шести координатам для обеспечения работы СЗМ с образцами больших размеров сложной формы, так чтобы исследуемая поверхность находилась нужным участком поверхности 1 под нужным углом относительно зонда 2. Система сближения и позиционирования 8 размещена на виброизоляционном основании 9, являющемся также основанием для механизма 3. Она может быть выполнена в виде платформы Стюарта. Система 8 подключена к блоку управления шестиосевым перемещением и измерением 10, соединенным с измерительным датчиком 11.

Шестиосевая система сближения и позиционирования 8 содержит тяги с 6 независимыми приводами, измерительную раму с 6 линейными измерителями, и соединена с системой точного позиционирования 4, на которой закреплен образец 1.

Блок управления 10 шестиосевым перемещением и измерением представляет собой программируемый электронно-вычислительный комплекс, который обеспечивает управление системой сближения и позиционирования 8. Блок управления 10 управляет перемещением образца, обеспечивая расположение объекта нужным участком под нужным углом. Блок управления 10 содержит блок расчета и построения математической модели и выполняет привязку системы координат к конкретному образцу. Следит за наличием или отсутствием касания поверхности образца измерительный датчик 11, также зафиксированнный на основании 9.

Измерительный датчик 11 содержит корпус и размещенный в нем щуп и сигнализатор касания поверхности. Измерительный датчик нужен для сбора точек с поверхности образца и построения его реальной математической модели.

Для того чтобы обеспечить работу СЗМ с образцами большого размера и/или сложной формы, необходимо знать математическую модель реального образца. Для этого при помощи системы сближения и позиционирования 8 жестко закрепленный образец 1 сначала подводится к измерительному датчику 11 и осуществляется сбор координат точек с поверхности. В результате строится математическая модель поверхности и описывается ее положение в системе координат сканирующего зондового микроскопа.

Теперь образец 1 приводится в непосредственную близость к зонду 2 с использованием шестиосевой системы сближения и позиционирования 8 под заданным углом заданным участком поверхности. Нормаль к исследуемому участку поверхности должна располагаться под заданным углом относительно оси зонда. Устройство 8 будет перемещать образец так, что зонд будет всегда располагаться в нужном участке над поверхностью под заданным углом к исследуемой поверхности. Точные регулировки высоты и исходного стартового положения образца производят с помощью пьезоэлектрического преобразователя 4, в то время как механизм детектирования 5 измеряет изгиб кантилевера зонда, возникающий в результате взаимодействия зонд-образец. Как только измеряемый изгиб достиг заданной величины, поверхность образца сканируется под зондом. Механизм обратной связи 6 настроен на поддержание среднего изгиба кантилевера постоянным по величине за счет соответствующего перемещения образца с помощью системы точного позиционирования 4. Выходной сигнал, формируемый механизмом обратной связи 6, направляется непосредственно на компьютер 7 и отображается на его дисплее.

Микроскоп может содержать дополнительный зонд 12, соединенный с зондом 2 и расположенный в непосредственной близости от него, источник 13 и приемник 14 СВЧ-сигнала, соединенные с помощью волноведущей системы 15 с дополнительным зондом 12.

Дополнительный зонд при этом представляет собой отрезок коаксиальной линии передачи с центральным проводником, выдвинутым за пределы внешнего проводника на величину, много меньшую длины волны СВЧ-сигнала, при этом приемник 14 сигнала соединен с системой точного позиционирования 4.

Дополнительный зонд является источником ближнего СВЧ-поля, с помощью которого обеспечивается возможность проведения нанометровых измерений. СВЧ-сигнал от источника электромагнитного излучения 13 через волноведущую систему 15 поступает на дополнительный зонд 12, после взаимодействия СВЧ-поля с поверхностью исследуемого образца отраженный от поверхности образца СВЧ-сигнал поступает на приемник СВЧ-сигнала 14. По величине, по меньшей мере, одной из характеристик сигнала приемника при известном расстоянии от дополнительного зонда до поверхности образца, проведя предварительную калибровку сигнала приемника с использованием эталонных образцов, судят о параметрах исследуемого образца (диэлектрическая проницаемость, электропроводность, толщина).

Источник поступления информации: Роспатент

Показаны записи 1-10 из 22.
10.01.2013
№216.012.1719

Способ оценки прогрессирования стадии первичной открытоугольной глаукомы

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для оценки стадии прогрессирования первичной открытоугольной глаукомы. Для конкретного пациента с уже установленным клиническими методами диагнозом первичная открытоугольная глаукома стадии S проводят...
Тип: Изобретение
Номер охранного документа: 0002471405
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.171a

Способ бесконтактного измерения внутриглазного давления

Изобретение относится к области медицины и может быть использовано для измерения внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером, используя калибровочную кривую для модели глаза. Преобразуют...
Тип: Изобретение
Номер охранного документа: 0002471406
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a22

Устройство обнаружения электропроводящих объектов на базе датчиков магнитного поля с частотным выходом

Изобретение относится к металлоискателям для целей диагностики и дефектоскопии, археологии, входного контроля в системах безопасности и т.п. и может использоваться для обнаружения локальных неоднородностей в виде металлических и металлосодержащих предметов ограниченных размеров, проводных линий...
Тип: Изобретение
Номер охранного документа: 0002472182
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a53

Способ экспериментального моделирования стресс-индуцированного развития острого язвенного кровотечения

Изобретение относится к области экспериментальной медицины, в частности к гастроэнтерологии, и касается моделирования развития острого язвенного кровотечения. Для этого обеспечивают индуцированное последовательное воздействие на крыс путем хронического социального и иммобилизационного стрессов....
Тип: Изобретение
Номер охранного документа: 0002472231
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2801

Способ изготовления зонда для ближнеполевой сверхвысокочастотной микроскопии

Изобретение относится к измерительной технике и может быть использовано в ближнеполевой сканирующей СВЧ и оптической микроскопии. Способ изготовления стеклянного зонда с проводящей сердцевиной включает помещение в стеклянную трубку легкоплавкого металла или металлического сплава, температура...
Тип: Изобретение
Номер охранного документа: 0002475761
Дата охранного документа: 20.02.2013
10.04.2013
№216.012.344d

Способ визуализации аминокислот на целлюлозной матрице, средство для его реализации и способ получения средства

Группа изобретений относится к аналитической химии, а именно к идентификации и экспрессного полуколичественного определения биологически активных соединений в сложных смесях. Способ получения средства для визуализации аминокислот на целлюлозной матрице включает приготовление водного раствора,...
Тип: Изобретение
Номер охранного документа: 0002478932
Дата охранного документа: 10.04.2013
10.06.2013
№216.012.4868

Способ повышения стабильности водного раствора квантовых точек - наночастиц селенида кадмия, покрытых меркаптокислотами

Изобретение относится к аналитической химии. Водный раствор квантовых точек на основе селенида кадмия, покрытых меркаптокислотой, стабилизируют, вводя сульфит натрия до его концентрации в растворе 0,02-0,2 моль/л. Технический результат - повышение стабильности водного раствора квантовых точек...
Тип: Изобретение
Номер охранного документа: 0002484116
Дата охранного документа: 10.06.2013
27.09.2013
№216.012.70cb

Способ получения электромагнитных колебаний в свч и квч диапазоне со сверхширокополосной перестройкой частоты

Изобретение относится к области твердотельной сверхвысокочастотной микроэлектроники, в частности к методам получения электромагнитных колебаний в СВЧ и КВЧ диапазоне, и может использоваться в устройствах для передачи информации. Достигаемый технический результат - расширение диапазона...
Тип: Изобретение
Номер охранного документа: 0002494526
Дата охранного документа: 27.09.2013
20.02.2019
№219.016.becb

Генератор случайных перестановок

Устройство относится к вычислительной, информационно-измерительной радиотехнике и может быть использовано в системах защиты информации от несанкционированного доступа. Технический результат - обеспечение высокой скорости работы устройства, формирующего уникальные случайные числа путем генерации...
Тип: Изобретение
Номер охранного документа: 0002395834
Дата охранного документа: 27.07.2010
20.02.2019
№219.016.c2c3

Генератор импульсов случайной длительности

Изобретение относится к вычислительной технике, информационно-измерительной радиотехнике и может быть использовано в качестве источника подкачки энтропии в систему генерирования случайных чисел для различных устройств информационной безопасности. Техническим результатом является обеспечение...
Тип: Изобретение
Номер охранного документа: 0002408059
Дата охранного документа: 27.12.2010
Показаны записи 1-10 из 50.
10.01.2013
№216.012.1719

Способ оценки прогрессирования стадии первичной открытоугольной глаукомы

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для оценки стадии прогрессирования первичной открытоугольной глаукомы. Для конкретного пациента с уже установленным клиническими методами диагнозом первичная открытоугольная глаукома стадии S проводят...
Тип: Изобретение
Номер охранного документа: 0002471405
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.171a

Способ бесконтактного измерения внутриглазного давления

Изобретение относится к области медицины и может быть использовано для измерения внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером, используя калибровочную кривую для модели глаза. Преобразуют...
Тип: Изобретение
Номер охранного документа: 0002471406
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a8a

Цифровой генератор хаотического сигнала

Изобретение относится к области радиотехники и может быть использовано в современных, помехозащищенных и конфиденциальных системах связи, в системах защиты информации для создания шумового сигнала, в контрольно-измерительных системах для измерения частотных характеристик, а также в системах...
Тип: Изобретение
Номер охранного документа: 0002472286
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2801

Способ изготовления зонда для ближнеполевой сверхвысокочастотной микроскопии

Изобретение относится к измерительной технике и может быть использовано в ближнеполевой сканирующей СВЧ и оптической микроскопии. Способ изготовления стеклянного зонда с проводящей сердцевиной включает помещение в стеклянную трубку легкоплавкого металла или металлического сплава, температура...
Тип: Изобретение
Номер охранного документа: 0002475761
Дата охранного документа: 20.02.2013
20.04.2013
№216.012.357d

Способ оценки стадии первичной открытоугольной глаукомы

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для оценки стадии прогрессирования первичной открытоугольной глаукомы. Осуществляют видеорегистрацию зрачковых реакций в темноте без фонового освещения глаза на световую вспышку у пациента с диагнозом:...
Тип: Изобретение
Номер охранного документа: 0002479246
Дата охранного документа: 20.04.2013
27.06.2013
№216.012.4f3e

Способ измерения внутриглазного давления

Изобретение относится к области медицины, в частности к области офтальмологии для измерений внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером. Далее преобразуют отраженный сигнал в автодинный сигнал,...
Тип: Изобретение
Номер охранного документа: 0002485879
Дата охранного документа: 27.06.2013
20.02.2014
№216.012.a32c

Способ определения амплитуды нановибраций по сигналу лазерного автодина

Изобретение относится к измерительной технике и предназначено для измерений вибраций. Способ измерения амплитуды нановибраций ξ заключается в том, что освещают объект лазерным излучением, преобразуют отраженное от него излучение в электрический (автодинный) сигнал, раскладывают сигнал в...
Тип: Изобретение
Номер охранного документа: 0002507487
Дата охранного документа: 20.02.2014
20.05.2014
№216.012.c52f

Способ определения электропроводности и энергии активации примесных центров полупроводниковых слоев

Изобретение относится к измерительной технике, а именно к способу определения электропроводности и толщины слоя полупроводника на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Предложенный способ включает...
Тип: Изобретение
Номер охранного документа: 0002516238
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c8ea

Способ определения электропроводности и толщины полупроводниковых пластин или нанометровых полупроводниковых слоев в структурах "полупроводниковый слой - полупроводниковая подложка"

Изобретение относится к контрольно-измерительной технике. Технический результат - расширение функциональных возможностей одновременного определения электропроводности и толщины полупроводниковых пластин и электропроводности и толщины тонких полупроводниковых эпитаксиальных слоев в структурах...
Тип: Изобретение
Номер охранного документа: 0002517200
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d77f

Способ определения амплитуды нановибраций по спектру частотномодулированного полупроводникового лазерного автодина

Использование: для определения амплитуды нановибраций. Сущность изобретения заключается в том, что освещают вибрирующий на частоте Ω объект лазерным излучением, преобразуют отраженное от объекта излучение в электрический автодинный сигнал, раскладывают сигнал в спектральный ряд, при этом...
Тип: Изобретение
Номер охранного документа: 0002520945
Дата охранного документа: 27.06.2014
+ добавить свой РИД