×
25.08.2017
217.015.9b62

Результат интеллектуальной деятельности: Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической промышленности, в частности к способу выделения гликолевой кислоты, которая широко применяется в косметологии, нефтегазовой, кожевенной отраслях промышленности, а также используется в синтезе биоразлагаемых полимеров и сополимеров, например, является исходным веществом для получения полигликолида и сополимера лактида и гликолида. Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля включает обработку такой смеси соединениями Ca(An), где An = Cl, Br, I, NO, CHCOO, используя их в виде растворов или твердых веществ из расчета 0,45-0,5 моль Ca(An) на каждый моль использованного глиоксаля для образования осадка малорастворимого гликолята кальция, который фильтруют, сушат и определяют содержание кальциевой соли гликолевой кислоты в этом осадке по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией, после чего этот осадок в твердом виде добавляют к раствору щавелевой кислоты, либо к водной суспензии этого осадка добавляют раствор щавелевой кислоты при перемешивании с последующей фильтрацией и концентрированием фильтрата, при этом щавелевую кислоту в обоих случаях берут в количестве 0,9–1,0 моль на каждый моль гликолята кальция, содержащегося в смеси, а её раствор имеет температуру 20-80°С. Предлагаемый способ позволяет получать целевой продукт с высокими выходом и чистотой. 2 ил., 5 пр.

Изобретение относится к химической промышленности, в частности к способу выделения гликолевой кислоты, которая широко применяется в косметологии, нефтегазовой, кожевенной отраслях промышленности, а также используется в синтезе биоразлагаемых полимеров и сополимеров, например, является исходным веществом для получения полигликолида и сополимера лактида и гликолида.

Одним из способов получения гликолевой кислоты является диспропорционирование (внутримолекулярное окисление-восстановление, реакция Канниццаро) глиоксаля в растворе, однако процесс выделения из реакционной смеси гликолевой кислоты высокой чистоты является затратным и технически сложным, отделение гликолевой кислоты от продуктов осмоления производится с использованием дорогостоящего оборудования и реагентов.

Известен способ (Патент РФ 2541790, МПК С07С 59/06, опубл. 20.02.2015), в котором вначале реакционную смесь очищают с помощью активированного угля для удаления продуктов осмоления, а затем используют метод электродиализа для перевода очищенного раствора в гликолевую кислоту с последующим концентрированием.

Известен способ (Патент JP 2008156300, МПК С07С 51/02, опубл. 10.07.2008), в котором реакционную смесь обрабатывают солями кальция для выделения кислоты в виде ее кальциевой соли с последующей обработкой соли серной кислотой.

Однако недостатком этих способов является то, что для выделения кислоты в первом патенте используется сложный метод электродиализа с применением специального оборудования и дорогих расходных материалов, что отрицательно сказывается на себестоимости конечного продукта. Во втором патенте авторы используют серную кислоту для перевода кальциевой соли гликолевой кислоты в саму кислоту, однако серная кислота может выступать в роли окислителя. Образующийся осадок CaSO4×2H2O мелкодисперсный и практически не задерживается фильтром. Растворимость CaSO4×2H2O составляет 2,4 г/л воды при 20°С, что отрицательно сказывается на чистоте конечного продукта.

Задача настоящего изобретения заключается в разработке способа выделения гликолевой кислоты из продуктов диспропорционирования глиоксаля по реакции Канниццаро с применением недорогих и общедоступных реагентов с целью получения продукта с высокими выходом и чистотой, что подтверждается ВЭЖХ-хроматограммами образцов товарной кислоты и синтезированных образцов. Преимуществом метода является то, что гликолевую кислоту можно выделить из смеси продуктов реакции без использования дорогостоящих реагентов и специфического оборудования.

Технический результат достигается за счет выделения гликолевой кислоты из реакционной смеси в виде ее малорастворимой кальциевой соли, которую в дальнейшем переводят в гликолевую кислоту обменной реакцией с щавелевой кислотой (ЩК).

На рис. 1 представлена схема получения гликолевой кислоты по реакции Канниццаро из глиоксаля.

Внутримолекулярное диспропорционирование глиоксаля проводят в щелочной среде, например в присутствии гидроксида натрия (рис. 1). При этом образуются гликолевая кислота в виде ее натриевой соли и побочные продукты осмоления.

Процесс выделения гликолевой кислоты осуществляют в три этапа:

Этап 1. Выделение гликолевой кислоты из реакционной смеси в виде малорастворимого гликолята кальция

Выделение проводят путем обработки этой смеси соединениями Са(An)2, где An=Cl, Br, I, NO3, СН3СОО, используя их в виде растворов или твердых веществ из расчета 0,45-0,5 моль Са(An)2 на каждый моль использованного глиоксаля. Полученный гликолят кальция промывают водой, избавляясь, таким образом, от продуктов осмоления.

Этап 2. Определение содержания гликолята кальция в осадке любым из доступных методов

Для определения содержания гликолята кальция в осадке последний в количестве ~ 0,2 г растворяют в 50 мл дистиллированной воды.

Количество гликолята кальция определяют по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией. При дальнейшей переработке смеси полагают, что количество обнаруженных ионов кальция в растворе соответствует количеству кальциевой соли гликолевой кислоты в смеси.

Этап 3. Проведение реакции обмена между гликолятом кальция и щавелевой кислотой

Гликолят кальция в твердом виде или в виде водной суспензии смешивают с водным раствором ЩК с температурой 20-80°С из расчета 0,9-1,0 моль ЩК на каждый моль гликолята кальция. По окончании реакции гликолевая кислота находится в растворе, а ЩК образует практически нерастворимый оксалат кальция, что приводит к смещению равновесия реакции в сторону образования целевого продукта.

Полученный раствор гликолевой кислоты отделяют от осадка оксалата кальция фильтрованием и концентрируют до требуемых значений на роторном испарителе при пониженном давлении.

Примеры конкретного выполнения

Пример 1. К реакционной смеси, полученной при диспропорционировании 30 г глиоксаля в щелочной среде, добавляют при перемешивании 28,7 г твердого обезвоженного хлорида кальция из расчета 0,5 моль хлорида кальция на каждый моль исходного глиоксаля. Образовавшийся осадок гидрата гликолята кальция фильтруют под вакуумом, промывают водой на фильтре, сушат и взвешивают. Масса осадка равна 40,9 г. Далее определяют количество кальция в осадке методом атомно-эмиссионной спектроскопии. Для этого навеску осадка массой 0,2 г растворяют в 50 мл дистиллированной воды и раствор анализируют на содержание катионов кальция. Найденное количество ионов кальция в фильтрате численно равно количеству гликолята кальция. Навеску 40,7 г осадка, содержащую 84,1% (в пересчете на безводную соль) гликолята кальция, добавляют к 100 мл раствора ЩК, нагретого до 50°С и содержащего 16,29 г ЩК из расчета 1 моль ЩК на каждый моль гликолята кальция. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую гликолевую кислоту, отделяют от образовавшегося оксалата кальция. Полученный раствор гликолевой кислоты имеет концентрацию 3,6026 моль/л. Раствор упаривается под вакуумом при Т=40°С до необходимого значения концентрации. Выход кислоты - 27,38 г (69,65% от теоретического). Чистота продукта по данным ВЭЖХ ~ 97,5%.

Пример 2. К реакционной смеси, полученной при диспропорционировании 30 г глиоксаля в щелочной среде, добавляют при перемешивании 47,8 мл 1,5 М водного раствора бромида кальция из расчета 0,4 5 моль бромида кальция на каждый моль исходного глиоксаля. Образовавшийся осадок гидрата гликолята кальция фильтруют под вакуумом, промывают водой на фильтре, сушат и взвешивают. Масса осадка равна 39,7 г. Далее определяют количество кальция в осадке методом комплексонометрического титрования. Для этого навеску осадка массой 0,2 г растворяют в 50 мл дистиллированной воды и раствор анализируют на содержание катионов кальция. Найденное количество ионов кальция в фильтрате численно равно количеству гликолята кальция. Навеску 39,5 г осадка, содержащую 84,1% (в пересчете на безводную соль) гликолята кальция, взмучивают в 100 мл дистиллированной воды и добавляют к этой суспензии 157,3 мл 1 М раствора ЩК с температурой 20°С из расчета 0,9 моль ЩК на каждый моль гликолята кальция. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую гликолевую кислоту, отделяют от образовавшегося оксалата кальция. Полученный раствор гликолевой кислоты имеет концентрацию 1,2058 моль/л. Раствор упаривается под вакуумом при Т=40°С до необходимого значения концентрации. Выход кислоты - 23,58 г (59,98% от теоретического). Чистота продукта по данным ВЭЖХ ~ 98%.

Пример 3. К реакционной смеси, полученной при диспропорционировании 30 г глиоксаля в щелочной среде, добавляют при перемешивании 162,1 мл 1,5 М водного раствора иодида кальция из расчета 0,4 7 моль иодида кальция на каждый моль исходного глиоксаля. Образовавшийся осадок гидрата гликолята кальция фильтруют под вакуумом, промывают водой на фильтре, сушат и взвешивают. Масса осадка равна 40,2 г. Далее определяют количество кальция в осадке методом комплексонометрического титрования. Для этого навеску осадка массой 0,2 г растворяют в 50 мл дистиллированной воды и раствор анализируют на содержание катионов кальция. Найденное количество ионов кальция в фильтрате численно равно количеству гликолята кальция. Навеску 40 г осадка, содержащую 84,1% (в пересчете на безводную соль) гликолята кальция взмучивают в 150 мл дистиллированной воды и добавляют к этой суспензии 164,7 мл 1 М раствора ЩК при температуре 20°С из расчета 0,93 моль ЩК на каждый моль гликолята кальция. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую гликолевую кислоту, отделяют от образовавшегося оксалата кальция. Полученный раствор гликолевой кислоты имеет концентрацию 1,0377 моль/л. Раствор упаривают под вакуумом при Т=40°С до необходимого значения концентрации. Выход кислоты - 24,82 г (63,14% от теоретического). Чистота продукта по данным ВЭЖХ ~ 98%.

Пример 4. К реакционной смеси, полученной при диспропорционировании 30 г глиоксаля в щелочной среде, добавляют при перемешивании 124,1 мл 2 М водного раствора нитрата кальция из расчета 0,48 моль нитрата кальция на каждый моль исходного глиоксаля. Образовавшийся осадок гидрата гликолята кальция фильтруют под вакуумом, промывают водой на фильтре, сушат и взвешивают. Масса осадка равна 40,3 г. Далее определяют количество кальция в осадке методом комплексонометрического титрования. Для этого навеску осадка массой 0,2 г растворяют в 50 мл дистиллированной воды и раствор анализируют на содержание катионов кальция. Найденное количество ионов кальция в фильтрате численно равно количеству гликолята кальция. Навеску 40,1 г осадка, содержащую 84,1% (в пересчете на безводную соль) гликолята кальция взмучивают в 120 мл дистиллированной воды и добавляют к этой суспензии 18,7 мл 9 М раствора ЩК с температурой 80°С из расчета 0,95 моль ЩК на каждый моль гликолята кальция. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую гликолевую кислоту, отделяют от образовавшегося оксалата кальция. Полученный раствор гликолевой кислоты имеет концентрацию 2,4124 моль/л. Раствор упаривают под вакуумом при Т=40°С до необходимого значения концентрации. Выход кислоты - 25,43 г (64,69% от теоретического). Чистота продукта по данным ВЭЖХ ~ 98%.

Пример 5. К реакционной смеси, полученной при диспропорционировании 30 г глиоксаля в щелочной среде, добавляют при перемешивании 253,4 мл 1 М водного раствора ацетата кальция из расчета 0,49 моль ацетата кальция на каждый моль исходного глиоксаля. Образовавшийся осадок гидрата гликолята кальция фильтруют под вакуумом, промывают водой на фильтре, сушат и взвешивают. Масса осадка равна 39,9 г. Далее определяют количество кальция в осадке методом комплексонометрического титрования. Для этого навеску осадка массой 0,2 г растворяют в 50 мл дистиллированной воды и раствор анализируют на содержание катионов кальция. Найденное количество ионов кальция в фильтрате численно равно количеству гликолята кальция. Навеску 39,7 г осадка, содержащую 84,1% (в пересчете на безводную соль) гликолята кальция, взмучивают в 200 мл дистиллированной воды и добавляют к этой суспензии 172,2 мл 1 М раствора ЩК при температуре 25°С из расчета 0,98 моль ЩК на каждый моль гликолята кальция. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую гликолевую кислоту, отделяют от образовавшегося оксалата кальция. Полученный раствор гликолевой кислоты имеет концентрацию 0,9142 моль/л. Раствор упаривают под вакуумом при Т=40°С до необходимого значения концентрации. Выход кислоты - 25,86 г (65,78% от теоретического). Чистота продукта по данным ВЭЖХ ~ 98%.

На рис. 2 представлены ВЭЖХ хроматограммы образцов гликолевой кислоты, где а – кислота, полученная в примере 1, б - импортная кислота от компании Acros Organics.

В качестве сравнения, ВЭЖХ хроматограмму (а) кислоты из примера 1 сравнили с хроматограммой (б) гликолевой кислоты от компании Acros Organics, США. На хроматограмме импортной кислоты присутствует ряд дополнительных сигналов, характерных для муравьиной и уксусной кислот, в то время как кислота из примера 1 содержит лишь один небольшой пик щавелевой кислоты (рис. 2).

Таким образом, предлагаемый способ позволяет выделять гликолевую кислоту (содержание основного продукта ~ 98%) из продуктов диспропорционирования глиоксаля через осаждение кальциевой соли гликолевой кислоты с последующей обменной реакцией с щавелевой кислотой без использования специфического оборудования и ионообменных смол.

2332
Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля
Источник поступления информации: Роспатент

Показаны записи 131-140 из 197.
11.06.2018
№218.016.60a4

Поглотитель электромагнитных волн гигагерцевого диапазона

Изобретение относится к области радиопоглощающих материалов и конструкциям поглотителей, а конкретней к системам защиты от сверхвысокочастотного электромагнитного излучения, и может быть использовано для решения задач электромагнитной совместимости радиоэлектронных систем и комплексов, при...
Тип: Изобретение
Номер охранного документа: 0002657018
Дата охранного документа: 08.06.2018
05.07.2018
№218.016.6bdc

Способ прогнозирования пятилетней безметастатической выживаемости у больных раком молочной железы на основе экспрессии генов белков ykl-39 и ccl18

Изобретение относится к области медицины, в частности к онкологии, и предназначено для прогнозирования пятилетней безметастатической выживаемости у больных раком молочной железы. Проводят молекулярно-генетическое исследование биопсийных образцов опухолевой ткани с последующим выделением РНК и...
Тип: Изобретение
Номер охранного документа: 0002659676
Дата охранного документа: 03.07.2018
10.07.2018
№218.016.6f0e

Способ получения гликолида из модифицированных олигомеров гликолевой кислоты

Изобретение относится к способу получения гликолида, который является одним из исходных мономеров в реакциях с раскрытием цикла при получении ценных биодеградируемых полимеров, которые находят широкое применение в медицине, фармацевтике, пищевой промышленности и в современных аддитивных...
Тип: Изобретение
Номер охранного документа: 0002660652
Дата охранного документа: 09.07.2018
12.07.2018
№218.016.6fbd

Способ органосохраняющего лечения инвазивного рака шейки матки

Изобретение относится к медицине, а именно к онкогинекологии. Выполняют радикальную трахелэктомию с формированием маточно-влагалищного анастомоза. Зону анастомоза обматывают сетчатым имплантатом, сплетенным в виде чулка из сверхэластичной никелид-титановой нити и фиксируют отдельными швами по...
Тип: Изобретение
Номер охранного документа: 0002661077
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.7080

Способ регулирования клубнеобразования и продуктивности растений картофеля в условиях гидропоники

Изобретение относится к области сельского хозяйства, а именно к картофелеводству и семеноводству, а также к гидропонике. Способ включает обработку растений раствором биологически активного вещества. При этом в процессе адаптации к жидкой питательной среде корневую систему растений-регенерантов...
Тип: Изобретение
Номер охранного документа: 0002660918
Дата охранного документа: 11.07.2018
14.07.2018
№218.016.7149

Устройство для определения и разметки участков территории с химическим и радиоактивным заражением

Изобретение относится к устройствам мониторинга территории. Техническим результатом является обеспечение управления многофункциональным роботом с улучшенными функциональными возможностями. Устройство содержит робот, имеющий возможность перемещаться по наземной поверхности и в воздушном...
Тип: Изобретение
Номер охранного документа: 0002661295
Дата охранного документа: 13.07.2018
25.08.2018
№218.016.7f52

Способ получения фенотиазина

Изобретение относится к способу получения фенотиазина, заключающемуся в сплавлении дифениламина с элементарной серой в присутствии каталитических количеств йода с последующим охлаждением и перекристаллизацией, отличающемуся тем, что кипячение полученного осадка проводят в толуоле в течение...
Тип: Изобретение
Номер охранного документа: 0002664801
Дата охранного документа: 22.08.2018
05.09.2018
№218.016.82f1

Способ выделения пространственных изомеров n,n´-диметилгликолурила

Изобретение относится к способу выделения пространственных изомеров N,N’-диметилгликолурила, а именно 2,6-диметилгликолурила и 2,8-диметилгликолурила, включающему препаративное разделение реакционной смеси, полученной путем взаимодействия двух частей N-метилмочевины и одной части глиоксаля,...
Тип: Изобретение
Номер охранного документа: 0002665714
Дата охранного документа: 04.09.2018
05.09.2018
№218.016.82fd

Способ очистки 2-метилимидазола

Изобретение относится к области органической химии, а именно к способу очистки 2-метилимидазола, заключающемуся в перекристаллизации в три стадии путем приготовления пересыщенного раствора, его охлаждения до 3°С, фильтрации первой порции выпавших кристаллов, частичного упаривания воды,...
Тип: Изобретение
Номер охранного документа: 0002665713
Дата охранного документа: 04.09.2018
07.09.2018
№218.016.8385

Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакрилата

Изобретение относится к лазерной технике. Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакриалата содержит оптический источник накачки, органическую лазерно-активную среду из полиметилметакрилата и органического люминофора, растворенного в нем и нанесенного на...
Тип: Изобретение
Номер охранного документа: 0002666181
Дата охранного документа: 06.09.2018
Показаны записи 131-140 из 142.
24.05.2019
№219.017.5dc1

Стабилизированный вентильный аксиально-конический ветрогенератор постоянного тока

Изобретение относится к электротехнике и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных...
Тип: Изобретение
Номер охранного документа: 0002688925
Дата охранного документа: 23.05.2019
29.05.2019
№219.017.6223

Стабилизированный вентильный аксиально-радиальный ветрогенератор постоянного тока

Изобретение относится к электротехнике, и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных...
Тип: Изобретение
Номер охранного документа: 0002689211
Дата охранного документа: 27.05.2019
29.05.2019
№219.017.6288

Двухвходовая ветро-солнечная аксиально-радиальная электрическая машина-генератор

Изобретение относится к области электротехники и может быть использовано в преобразователе механической энергии вращения, например энергии ветра, подаваемой на механический вход машины, и электрической энергии постоянного тока, например световой энергии Солнца, преобразованной...
Тип: Изобретение
Номер охранного документа: 0002688211
Дата охранного документа: 21.05.2019
06.12.2019
№219.017.ea23

Трехвходовая двухмерная ветро-солнечная аксиально-радиальная электрическая машина-генератор

Изобретение относится к электротехнике. Технический результат – повышение выходного напряжения. Трехвходовая двухмерная ветро-солнечная аксиально-радиальная электрическая машина-генератор содержит корпус, в верхней части которого установлен фотоэлектрический преобразователь, полый вал,...
Тип: Изобретение
Номер охранного документа: 0002707963
Дата охранного документа: 03.12.2019
21.01.2020
№220.017.f76a

Быстрый и масштабируемый способ получения микропористого 2-метилимидазолата кобальта(ii)

Предложен способ получения микропористого 2-метилимидазолата кобальта(II), включающий этапы, на которых смешивают 1,1-1,5% щелочи, 2,7-3,1% соли кобальта(II) и 4-6% 2-метилимидазола в воде (остальное), при температуре 15-30°C в течение 0,1–3 часа, выделяют осадок посредством фильтрования или...
Тип: Изобретение
Номер охранного документа: 0002711317
Дата охранного документа: 16.01.2020
15.04.2020
№220.018.146e

Способ получения микропористого тримезиата меди(ii)

Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной ёмкостью, в частности к способу получения микропористого тримезиата меди(II), включающему этапы, на которых в...
Тип: Изобретение
Номер охранного документа: 0002718678
Дата охранного документа: 13.04.2020
15.04.2020
№220.018.147a

Способ получения микропористого терефталата алюминия

Изобретение относится к способу получения микропористого терефталата алюминия, включающему этапы, на которых смешивают 9-11 мас.% терефталевой кислоты и 4-6 мас.% щелочи с использованием растворителя - остальное, нагревают до 80–150 °С и мешают раствор до полного растворения терефталевой...
Тип: Изобретение
Номер охранного документа: 0002718676
Дата охранного документа: 13.04.2020
15.04.2020
№220.018.14cf

Быстрый и масштабируемый способ получения мезопористого терефталата хрома(iii)

Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной емкостью, в частности к способу получения микропористого терефталата хрома(III), который может быть использован...
Тип: Изобретение
Номер охранного документа: 0002718677
Дата охранного документа: 13.04.2020
23.04.2020
№220.018.1819

Быстрый и масштабируемый способ получения микропористого терефталата циркония(iv)

Изобретение относится к области металлорганических координационных соединений с сорбционной активностью и может быть использовано для создания адсорберов на CO, паров органических соединений (бензол) или разделения газовых смесей CO/N, CO/CH. Способ получения микропористого терефталата...
Тип: Изобретение
Номер охранного документа: 0002719597
Дата охранного документа: 21.04.2020
23.04.2020
№220.018.1827

Быстрый и масштабируемый способ получения микропористого 2-метилимидазолата цинка

Изобретение относится к области металлоорганических координационных полимеров, обладающих сорбционной емкостью, в частности к получению микропористого 2-метилимидазолата цинка, и может быть использовано для создания адсорберов на CO, паров органических соединений (бензол) или разделения газовых...
Тип: Изобретение
Номер охранного документа: 0002719596
Дата охранного документа: 21.04.2020
+ добавить свой РИД