×
10.04.2016
216.015.2e9d

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА НЕЗАМЕРЗШЕЙ ВОДЫ В МЕРЗЛЫХ ГРУНТАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное содержание влаги по непрерывному изменению информативного показателя в ходе оттаивания. В качестве информативного показателя используют отношение активности акустической эмиссии из контролируемой области массива к активности акустической эмиссии наиболее водонасыщенного участка полностью оттаявшего керна; для обоих показателей учитывают удельный по массе грунт и усредненные, последовательные и соизмеримые по продолжительности интервалы времени для определения распределения суммарного содержания влаги по глубине. Регистрацию акустической эмиссии осуществляют с помощью преобразователей, размещаемых по глубине скважин массива. Количество незамерзшей воды на различных участках массива рассчитывают из произведения указанного информативного показателя и суммарного содержания влаги в кернах, полученных на той же глубине и в той же скважине, что и соответствующее значение данного показателя. Изобретение обеспечивает способ контроля геологической среды. 4 ил.
Основные результаты: Способ определения количества незамерзшей воды в мерзлых грунтах, включающий получение образца замороженного грунта, его последующее оттаивание, определение суммарного содержания влаги и непрерывное в ходе оттаивания измерение информативного показателя, по изменению которого во времени относительно величины суммарного содержания влаги рассчитывают количество незамерзшей воды в массиве, отличающийся тем, что в качестве информативного показателя используют отношение удельной по массе грунта активности акустической эмиссии из контролируемой области массива, усредненной в течение каждого из последовательных, соизмеримых по продолжительности интервалов времени к аналогичным образом усредненной удельной активности акустической эмиссии наиболее водонасыщенного участка полностью оттаявшего керна, на котором также определяют распределение суммарного содержания влаги по глубине, для контроля массива регистрацию акустической эмиссии осуществляют с помощью преобразователей, размещаемых по глубине скважин, выбуренных с отбором керна и равномерно охватывающих контролируемый массив, количество незамерзшей воды на различных участках которого рассчитывают из произведения указанного информативного показателя и суммарного содержания влаги в кернах, полученных на той же глубине и в той же скважине, что и соответствующее значение данного показателя.

Изобретение относится к строительству и может быть использовано при инженерных изысканиях с целью контроля качества геологической среды и находящихся в ней объектов, проектировании зданий и сооружений.

Известен способ определения количества незамерзшей воды в мерзлых грунтах, заключающийся в том, что образец помещают в контейнер и в оттаявшем состоянии смачивают определенным количеством воды до влажности выше предельной полевой влагоемкости и измеряют количество воды, просочившейся через испытываемый образец, при этом с целью повышения точности определения водонасыщенный талый образец нагружают прессом, с помощью которого вытесняют содержащуюся в нем воду до стабилизации количества отжатой воды, после чего определяют стабилизированное значение давления и по известной начальной влажности образца и количеству отжатой воды определяют весовую влажность образца, а отрицательную температуру, при которой это значение влажности равно количеству незамерзшей воды в мерзлом грунте, определяют по формуле

где t - отрицательная температура; P - стабилизированное давление нагружения; ρл - плотность льда; L - удельная теплота фазового перехода воды в лед; T0 - температура фазового перехода воды в лед (Авторское свидетельство СССР №998929, кл. G01N 25/56. Опубликовано 23.02.1983, бюл. №7).

Недостатком данного способа является использование сложной и громоздкой приборно-измерительной базы, не позволяющей применить этот способ для мониторинга количества незамерзшей воды непосредственно в массиве. Кроме того, результаты определения по этому способу зависят не только от влагосодержания, но и от температуры, вещественного состава, а также плотностных свойств грунтов, которые могут сильно отличаться даже на соседних участках ледопородного массива.

Наиболее близким по технической сущности к предлагаемому изобретению является способ определения количества незамерзшей воды в мерзлых грунтах, включающий получение образца замороженного грунта, его последующее оттаивание, определение суммарного содержания влаги и непрерывное в ходе оттаивания измерение информативного показателя, по изменению которого во времени, относительно величины суммарного содержания влаги рассчитывают количество незамерзшей воды в массиве (Авторское свидетельство СССР №968163, кл. E02D 1/00. Опубликовано 23.10.1982, бюл. №39).

Недостатком известного способа, основанного на термометрических измерениях, является низкая точность и надежность его измерительной информации при определении динамики количества незамерзшей воды на различных участках в глуби массива мерзлых пород. Кроме того, сложность проведения указанных измерений и необходимость отбора представительного числа проб для их реализации не позволяет своевременно выявлять возникновение и достоверно оценить развитие талых зон внутри замораживаемой геосреды, угрожающих по просадкам фундаментов зданий и сооружений или опасных по прорыву плывунных пород в горные выработки.

Отмеченный недостаток обусловлен тем, что известный способ по результатам испытаний отдельных образцов и измерений температур некоторых точек контролируемого массива позволяет судить о количестве незамерзшей воды только в достаточно однородной и стабильной во времени по суммарному содержанию влаги и теплофизическим параметрам среде, что не соответствует условиям массива мерзлых грунтов, находящегося под действием сезонных замораживающих устройств и при этом растепляемого в ходе строительства, а также эксплуатации зданий и сооружений.

Таким образом, из-за неравномерности условий замораживания/растепления, большого содержания и неоднородности распределения воды в мерзлых породах термометрические измерения, проведенные в некоторых точках их поверхности, непосредственно контактирующей со скважиной, не позволяют определить тепловой баланс и, соответственно, количество незамерзшей воды именно внутри геосреды. Это обосновывает низкую точность и надежность получаемой с помощью известного способа информации для непрерывного определения динамики количества незамерзшей воды в ледопородном массиве.

В настоящей заявке решается задача разработки способа определения количества незамерзшей воды в мерзлых грунтах, повышающего надежность и точность результатов при определении абсолютных показателей и динамики количества незамерзшей воды на различных участках в глуби ледопородного массива путем обеспечения непрерывного получения и интерпретации соответствующей измерительной информации о всем объеме указанного массива.

Для решения поставленной задачи в способе определения количества незамерзшей воды в мерзлых грунтах, включающем получение образца замороженного грунта, его последующее оттаивание, определение суммарного содержания влаги и непрерывное в ходе оттаивания измерение информативного показателя, по изменению которого во времени, относительно величины суммарного содержания влаги рассчитывают количество незамерзшей воды в массиве, в качестве информативного показателя используют отношение удельной по массе грунта активности акустической эмиссии из контролируемой области массива, усредненной в течение каждого из последовательных, соизмеримых по продолжительности интервалов времени к аналогичным образом усредненной удельной активности акустической эмиссии наиболее водонасыщенного участка полностью оттаявшего керна , на котором также определяют распределение CΣ(h) суммарного содержания влаги CΣ по глубине h, для контроля массива регистрацию акустической эмиссии осуществляют с помощью преобразователей, размещаемых по глубине скважин, выбуренных с отбором керна и равномерно охватывающих контролируемый массив, количество незамерзшей воды на различных участках которого рассчитывают из произведения указанного информативного показателя и суммарного содержания влаги в кернах, полученных на той же глубине и в той же скважине, что и соответствующее значение данного показателя.

Техническим результатом изобретения является повышение надежности и точности результатов определения абсолютных показателей и динамики количества незамерзшей воды в глуби различных участков массива мерзлых грунтов.

Технический результат достигается за счет того, что предложенный способ определения количества незамерзшей воды в мерзлых грунтах основан на регистрации акустико-эмиссионных сигналов, испускаемых самим массивом пород, соответственно разместив вдоль него, по глубине каждой замораживающей скважины, с определенным шагом гирлянду приемных акустических преобразователей, можно непрерывно получать информацию обо всем его объеме в натурных условиях. Проведя лабораторные испытания кернов, полученных с различных участков и глубин контролируемой геологической формации можно определить уровень активности акустической эмиссии слагающего ее геоматериала, соответствующий той или иной стадии его оттаивания. Зная зависимость количества жидкофазной воды в геоматериале от уровня ее акустической эмиссии, а также располагая координатами преобразователей, на которых этот уровень зарегистрирован, можно определить количество незамерзшей воды и примерно оценить ее местоположение в пространстве, а затем отслеживать развитие талых зон в ледопородном массиве в режиме реального времени, тем самым позволяя обнаруживать опасные переходные процессы на начальных стадиях. При этом точность определения принципиально ограничивается только чувствительностью, помехозащищенностью и шагом размещения приемных преобразователей.

Предложенный способ базируется на установленных авторами экспериментально закономерностях акустической эмиссии при замораживании и последующем оттаивании образцов обводненных грунтов, соответствующих по своему составу и свойствам (в т.ч. влажности) грунтам, характерным для объектов строительства в условиях криолитозоны.

Суть этих закономерностей заключается в зависимости величины средней за определенный период времени удельной по массе активности акустической эмиссии грунта от наличия в нем незамерзшей жидкости. Чем ее больше, тем интенсивнее идут гидродинамические процессы, например, перетоки, и, соответственно, тем пропорционально выше уровень акустической эмиссии.

Способ определения количества незамерзшей воды в ледопородных ограждениях иллюстрируется фиг. 1-4.

На фиг. 1 и фиг. 2 приведены в качестве примера характерные экспериментально полученные временные распределения 1 активности АЭ в функции от динамики температур 2 образцов грунта, состоящих из песчано-суглинистой смеси, влажностью ≈52,0% (фиг. 1) и ≈80,0% (фиг. 2). Масса твердой фазы каждого образца составляла 2,0 кг.

Из фиг. 1 и фиг. 2 следует, что при наличии ледопородного ограждения (область A, и ) уровень значительно ниже, чем при его формировании (область Б, и ) или разрушении оттаиванием (область В, и ). Также видно, что уровень меняется пропорционально убыванию или возрастанию температуры в функции от содержания воды в грунте и по окончании разрушения ледопородной матрицы возвращается примерно к исходному уровню. Чуть более высокий уровень во время оттаивания связан с тем, что в ходе этого процесса плотность ледопородной матрицы увеличивается, а сигналы АЭ испытывают меньшие диссипативные потери, чем при замораживании, когда каналы передачи акустических импульсов не так развиты.

Фиг. 3 иллюстрирует процедуру контроля и показывает качественный вид зависимостей 8 и 9 от глубины h, получаемых на гирляндах акустических преобразователей 6 и 7, при контроле с их помощью замораживаемого участка геосреды 3, содержащего зону 10 незамороженной воды в ледопородном ограждении.

Репрезентативность характера приведенных на фиг. 1 и фиг. 2 зависимостей подтверждена на представительной выборке образцов грунтов различной влажности и состава, каждый из которых помещался в показанную на фиг. 4 цилиндрическую полую металлическую колбу 11, содержащую в своей центральной части жестко закрепленную стойку 12 с гирляндой вмонтированных в нее приемных преобразователей 13 акустической эмиссии (АЭ). Для исключения влияния на результаты эксперимента окружающих шумов и снижения веса конструкции внутренняя часть колбы выполнена в виде вставки из битумной мастики 14 во фторопластовой опалубке 15. В ходе эксперимента колба 11 с образцом помещалась в лабораторный морозильник и охлаждалась до минус 34°C, выдерживалась на этой температуре в течение не менее 90 минут и затем локально оттаивалась с помощью кольцевого электронагревательного элемента 16, обеспечивающего нагрев по периметру центральной части образца до температуры ≈90°C. Оттаивание велось вплоть до разрушения ледопородной матрицы, о котором судили по изменению температуры в различных областях центрального стержня, измеряемой с помощью набора термосопротивлений (на фиг. 4 условно не показаны), расположенных в специальном кожухе вблизи каждого из приемных преобразователей. Этот способ контроля непригоден для определения динамики количества незамерзшей воды на различных участках в глубине ледопородной матрицы, но позволяет судить о ее полном разрушении. Сигналы акустической эмиссии с выхода каждого из пьезопреобразователей, а также параметрическая информация с термосопротивлений регистрировалась акустико-эмиссионной измерительной системой 17 A-Line 32D.

Для каждой из рассмотренных последовательных температурных областей (охлаждение - область Б, полная заморозка - область А и оттаивание - область В, см. фиг. 1 и фиг. 2), производился расчет средней удельной по массе активности акустической эмиссии , показавший, что момент времени разрушения ледопородной матрицы, определенный по предлагаемому способу, отличается от результатов вышеупомянутого термометрического контроля не более чем на 12%. Соответственно результаты определения промежуточных стадий замораживания, полученные согласно предлагаемому способу как , также можно считать надежными и достоверными.

Способ определения количества незамерзшей воды в мерзлых грунтах реализуют следующим образом (см. фиг. 3).

На участке геосреды 3 в ходе бурения замораживающих (или под свайный фундамент) скважин 4 и 5 проводят отбор керна (на фиг. 3 условно не показан). Далее последний разделяют на образцы, которые используют для определения по стандартной, основанной на весовых измерениях, методике изменения содержания жидкофазной воды Ci в ходе оттаивания. Параллельно регистрируют сигналы акустической эмиссии и рассчитывают такой параметр как средняя удельная активность акустической эмиссии - усредненное за дискретный интервал времени число сигналов акустической эмиссии, принятых с каждого кубического сантиметра геоматериала. Кроме того, экспериментально определяется индивидуальная для каждого типа грунтов предельная дальность эффективной регистрации акустических сигналов, исходя из которой выбирают максимальный шаг размещения приемных акустических преобразователей в ледопородном массиве.

Далее строят распределения и суммарного содержания влаги в керне CΣ=ΣCi по глубине h для каждой скважины в отдельности. После этого в указанных скважинах по их глубине размещают гирлянды акустических преобразователей 6 и 7, с шагом между последними примерно 0,8-1,0 м. В случае скважин под свайный фундамент акустические преобразователи могут быть вмонтированы в сваи по аналогии с конструкцией центрального стержня, показанной на фиг. 4 лабораторной установки. Каждым из преобразователей регистрируют акустическую эмиссию, генерируемую идущими в геосреде гидродинамическими процессами. Через последовательные и сопоставимые по продолжительности (~30 мин) периоды времени рассчитывают среднюю за соответствующий период активность акустической эмиссии , где n - порядковый номер периода.

При этом период регистрации ТАЭ должен подбираться так, чтобы не совпадать с вызывающими значительные колебания грунта строительными и эксплуатационными операциями, т.е. вестись, например, в ночное время.

На основе полученной таким образом измерительной информации рассчитывают зависимости параметра от глубины h. Качественный вид этих зависимостей на фиг. 3 иллюстрируется кривыми 8 и 9. Под понимается уровень активности акустической эмиссии в оттаявшем не менее чем на 80% керне, полученном на наиболее водонасыщенном участке ледопородного массива, или, при невозможности выделения такого участка, полученном на участке массива, где зарегистрировано соответствующее значение .

Наличие и местоположение талой зоны 10 в массиве мерзлых грунтов определяют по достижении значениями на некотором его участке величины, превышающей одну треть от значения . В свою очередь, по стабильному во времени уровняю ниже указанного порогового значения судят о качественном промерзании грунтов. Зная координаты датчиков, показания которых (не)удовлетворяют указанному условию, строят карту наличия и расположения талых зон в массиве мерзлых грунтов.

По величине произведения зависимостей средней удельной активности акустической эмиссии и суммарного содержания влаги, полученных на одинаковой глубине в одной и той же скважине, определяют количество незамерзшей воды в изучаемой области массива мерзлых грунтов.

Таким образом, в предложенном способе определения количества незамерзшей воды в мерзлых грунтах за счет обеспечения как непрерывных измерений в натурных условиях, так и возможности интерпретации их результатов в режиме реального времени обеспечивается повышение точности и надежности указанного определения.

Способ определения количества незамерзшей воды в мерзлых грунтах, включающий получение образца замороженного грунта, его последующее оттаивание, определение суммарного содержания влаги и непрерывное в ходе оттаивания измерение информативного показателя, по изменению которого во времени относительно величины суммарного содержания влаги рассчитывают количество незамерзшей воды в массиве, отличающийся тем, что в качестве информативного показателя используют отношение удельной по массе грунта активности акустической эмиссии из контролируемой области массива, усредненной в течение каждого из последовательных, соизмеримых по продолжительности интервалов времени к аналогичным образом усредненной удельной активности акустической эмиссии наиболее водонасыщенного участка полностью оттаявшего керна, на котором также определяют распределение суммарного содержания влаги по глубине, для контроля массива регистрацию акустической эмиссии осуществляют с помощью преобразователей, размещаемых по глубине скважин, выбуренных с отбором керна и равномерно охватывающих контролируемый массив, количество незамерзшей воды на различных участках которого рассчитывают из произведения указанного информативного показателя и суммарного содержания влаги в кернах, полученных на той же глубине и в той же скважине, что и соответствующее значение данного показателя.
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА НЕЗАМЕРЗШЕЙ ВОДЫ В МЕРЗЛЫХ ГРУНТАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА НЕЗАМЕРЗШЕЙ ВОДЫ В МЕРЗЛЫХ ГРУНТАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА НЕЗАМЕРЗШЕЙ ВОДЫ В МЕРЗЛЫХ ГРУНТАХ
Источник поступления информации: Роспатент

Показаны записи 321-330 из 335.
09.07.2020
№220.018.30b0

Способ вакуумной карбидизации поверхности металлов

Изобретение относится к области электрофизических методов нанесения покрытий на переходные металлы IV-VI групп и сплавов на их основе с формированием покрытия толщиной до 200 мкм, содержащего карбиды, углерод в виде включений в объеме покрытия и углеродный слой на поверхности. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002725941
Дата охранного документа: 07.07.2020
11.07.2020
№220.018.3168

Способ измерения концентрации активных форм кислорода (афк) в подкожной опухоли живых экспериментальных животных

Изобретение относится к области медицины, а именно экспериментальной медицины, и может быть использовано для прижизненных наблюдений за уровнем активных форм кислорода (АФК) в органах и тканях. Способ включает предварительную подготовку экспериментальных животных с подкожно привитой опухолью,...
Тип: Изобретение
Номер охранного документа: 0002726074
Дата охранного документа: 08.07.2020
23.04.2023
№223.018.51ab

Способ получения модифицированных наночастиц магнетита, легированных гадолинием

Изобретение относится к области неорганической химии, а именно к способу получения модифицированных наночастиц магнетита, легированных гадолинием. Данные наночастиц могут быть использованы, например, в качестве двойных контрастных агентов для МРТ-диагностики. Способ получения модифицированных...
Тип: Изобретение
Номер охранного документа: 0002738118
Дата охранного документа: 08.12.2020
23.04.2023
№223.018.51e8

Способ получения композиционного электроконтактного материала cu-sic

Изобретение относится к порошковой металлургии, в частности к получению электротехнического композиционного материала на основе меди, содержащего частицы карбида кремния. Может использоваться в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и...
Тип: Изобретение
Номер охранного документа: 0002739493
Дата охранного документа: 24.12.2020
23.04.2023
№223.018.5219

Способ комбинаторного получения новых композиций материалов в многокомпонентной системе

Изобретение относится к области металлургии, в частности к способу комбинаторного получения композиций материалов в многокомпонентной системе. Может использоваться для построения фазовых диаграмм и поиска новых интерметаллических соединений в многокомпонентных системах. Из тугоплавкого...
Тип: Изобретение
Номер охранного документа: 0002745223
Дата охранного документа: 22.03.2021
24.04.2023
№223.018.5294

Способ получения монооксида углерода из лигнина гидролизного под действием co

Изобретение относится к способу получения монооксида углерода из гидролизного лигнина, включающему контактирование при температуре 500-800°С лигнина с диоксидом углерода, при объемной скорости подачи СО в реактор 900 ч, в присутствии железного или кобальтового катализатора, представляющего...
Тип: Изобретение
Номер охранного документа: 0002741006
Дата охранного документа: 22.01.2021
14.05.2023
№223.018.5654

Способ переработки минерального сырья, содержащего сульфиды металлов

Изобретение относится к гидрометаллургическому извлечению цветных, редких и благородных металлов из минерального сырья, содержащего сульфиды металлов, преимущественно из концентратов и промпродуктов обогащения, богатых руд, а именно к выщелачиванию металлов из сульфидного минерального сырья....
Тип: Изобретение
Номер охранного документа: 0002739492
Дата охранного документа: 24.12.2020
15.05.2023
№223.018.5739

Способ синтеза нанокомпозитов nicocu/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава), а именно к способу синтеза нанокомпозита NiCoCu/C. Способ включает приготовление совместного раствора полиакрилонитрила, Со(СНСОО)⋅4HO, Ni(CHCOO)⋅4HO, (CHCOO)Cu⋅HO в диметилформамиде при температуре...
Тип: Изобретение
Номер охранного документа: 0002770599
Дата охранного документа: 18.04.2022
15.05.2023
№223.018.5806

Способ получения термостойкой проволоки из алюминиево-кальциевого сплава

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает...
Тип: Изобретение
Номер охранного документа: 0002767091
Дата охранного документа: 16.03.2022
15.05.2023
№223.018.5822

Способ растворения сульфидов металлов с использованием озона и пероксида водорода

Изобретение относится к гидрометаллургическому извлечению цветных, редких и благородных металлов из минерального сырья, содержащего сульфиды металлов, преимущественно из концентратов и продуктов обогащения, богатых руд. Способ растворения сульфидов металлов с использованием озона и пероксида...
Тип: Изобретение
Номер охранного документа: 0002768928
Дата охранного документа: 25.03.2022
Показаны записи 191-196 из 196.
10.05.2018
№218.016.4113

Способ и устройство герметизации устья наклонно-направленной скважины

Изобретение относится к нефтедобывающей промышленности. В частности, предложен способ герметизации устья наклонно-направленной скважины, включающий: спуск и цементирование заколонного пространства кондуктора, установку на муфту кондуктора патрубка нулевого, установку на подготовленную площадку...
Тип: Изобретение
Номер охранного документа: 0002649205
Дата охранного документа: 30.03.2018
01.03.2019
№219.016.d01f

Торцовое газодинамическое уплотнение вала центробежного компрессора

Изобретение относится к области компрессоростроения и может быть использовано в газовых центробежных компрессорных машинах, где возможны кратковременные прекращения подачи буферного газа на уплотнения. Торцовое газодинамическое уплотнение вала центробежного компрессора содержит две ступени...
Тип: Изобретение
Номер охранного документа: 0002443921
Дата охранного документа: 27.02.2012
07.09.2019
№219.017.c847

Способ определения изменения устойчивости мерзлых грунтовых оснований

Изобретение относится к инженерно-геологическим изысканиям, в частности к способам определения изменения устойчивости мерзлых грунтовых оснований. Согласно заявленному способу в грунтовом основании размещают зонды, каждый из которых содержит нагревательный элемент, приемный акустический...
Тип: Изобретение
Номер охранного документа: 0002699385
Дата охранного документа: 05.09.2019
09.10.2019
№219.017.d3ab

Система интеллектуального управления киберугрозами

Изобретение относится к области информационной защиты. Технический результат заключается в повышении информационной безопасности за счет осуществления автоматизированной обработки данных о поступающих киберугрозах, обеспечивающей постоянную актуализацию данных о типах киберугроз и индикаторов...
Тип: Изобретение
Номер охранного документа: 0002702269
Дата охранного документа: 07.10.2019
12.06.2020
№220.018.25df

Устройство демпфера забойного

Изобретение относится к нефтедобывающей промышленности. Устройство демпфера забойного включает цилиндрический корпус, размещённую внутри него стойку, упругие элементы в виде тарельчатых пружин. Дополнительно включает направляющую, муфту, причём корпус выполнен с внутренней ступенчатой...
Тип: Изобретение
Номер охранного документа: 0002723330
Дата охранного документа: 09.06.2020
18.07.2020
№220.018.3426

Оборудование низа обсадной колонны

Изобретение относится к нефтегазовой отрасли, в частности к оборудованию низа обсадной колонны. Оборудование низа обсадной колонны включает клапан и пробку. Клапан содержит разбуриваемый корпус, проходной канал, выполненный в разбуриваемом корпусе, кольцо, поворотный прижим, пружину,...
Тип: Изобретение
Номер охранного документа: 0002726783
Дата охранного документа: 15.07.2020
+ добавить свой РИД