×
27.01.2016
216.014.bc7e

Результат интеллектуальной деятельности: СПОСОБ ВЫДЕЛЕНИЯ ГЛИОКСАЛЕВОЙ КИСЛОТЫ ИЗ ПРОДУКТОВ ОКИСЛЕНИЯ ГЛИОКСАЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической промышленности, в частности к способу выделения глиоксалевой кислоты (ГК), которая широко применяется в органическом синтезе, например является исходным продуктом для получения ванилина, аллантоина и биоразлагаемых полимеров. Способ выделения глиоксалевой кислоты из смеси продуктов окисления глиоксаля, содержащих щавелевую и глиоксалевую кислоты, включает обработку данной смеси оксидом, гидроксидом или карбонатом кальция из расчета 0,45-0,5 моль оксида, гидроксида или карбоната кальция на каждый моль протонов, содержащихся в этой смеси и определенных титрованием на общую кислотность или при контроле рН среды до значений 4-7 для образования смеси малорастворимых осадков кальциевых солей глиоксалевой и щавелевой кислот, с последующей фильтрацией, сушкой и определением содержания кальциевой соли глиоксалевой кислоты в этой смеси по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией. После чего осуществляют добавление смеси к раствору щавелевой кислоты при 20-80°С и перемешивают с последующей фильтрацией и концентрированием фильтрата, при этом щавелевую кислоту берут в количестве 0,9-1,0 моль на каждый моль глиоксалата кальция, содержащегося в смеси. Способ позволяет выделять глиоксалевую кислоту из продуктов окисления глиоксаля через смесь кальциевых солей глиоксалевой и щавелевой кислот без использования специфического оборудования и ионообменных смол. 4 пр.
Основные результаты: Способ выделения глиоксалевой кислоты из смеси продуктов окисления глиоксаля, содержащих щавелевую и глиоксалевую кислоты, включающий обработку данной смеси оксидом, гидроксидом или карбонатом кальция из расчета 0,45-0,5 моль оксида, гидроксида или карбоната кальция на каждый моль протонов, содержащихся в этой смеси и определенных титрованием на общую кислотность или при контроле рН среды до значений 4-7 для образования смеси малорастворимых осадков кальциевых солей глиоксалевой и щавелевой кислот, с последующей фильтрацией, сушкой и определением содержания кальциевой соли глиоксалевой кислоты в этой смеси по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией, после чего добавлением смеси к раствору щавелевой кислоты при 20-80°С и перемешиванием с последующей фильтрацией и концентрированием фильтрата, при этом щавелевую кислоту берут в количестве 0,9-1,0 моль на каждый моль глиоксалата кальция, содержащегося в смеси.

Изобретение относится к химической промышленности, в частности к способу выделения глиоксалевой кислоты (ГК), которая широко применяется в органическом синтезе, например является исходным продуктом для получения ванилина, аллантоина и биоразлагаемых полимеров.

Одним из способов получения ГК является окисление глиоксаля в растворе, однако процесс ее выделения из реакционной смеси является затратным и технически сложным, т.к. необходима дополнительная очистка от щавелевой кислоты (ЩК) и других возможных побочных продуктов.

Известен способ (патент US3281460 A, опубл. 25.10.1966, МПК C07C51/27, B01J41/04), в котором глиоксалевую кислоту выделяют из продуктов окисления глиоксаля путем пропускания реакционной смеси через слой ионообменной смолы.

Известен способ (патент US20100312011 A1, опубл. 09.12.2010, МПК C07C59/235), в котором ГК, полученную окислением глиоксаля, выделяют пропусканием реакционной смеси через нагретую стеклянную колонну, наполненную кольцами Рашига, и при пониженном давлении, причем ГК извлекается со дна колонны с помощью газожидкостного сепаратора.

Однако недостатком этих способов является то, что для выделения ГК используются дорогостоящие компоненты (ионообменные смолы) и сложное аппаратурное оформление.

Задача настоящего изобретения заключается в разработке способа выделения ГК из продуктов окисления глиоксаля с применением недорогих и общедоступных реагентов с целью получения продукта с высокими выходом и чистотой, что подтверждается ИК-спектроскопией, ВЭЖХ и потенциометрическим кислотно-основным титрованием. Преимуществом метода является то, что ГК можно выделить из смеси продуктов окисления глиоксаля без использования дорогостоящих реагентов и специфического оборудования.

Технический результат достигается за счет выделения ГК и ЩК (побочный продукт окисления глиоксаля) из реакционной смеси в виде их малорастворимых кальциевых солей, определением количества кальциевой соли ГК (глиоксалата кальция) в осажденной смеси с дальнейшим переводом ее в ГК.

Поставленная задача решается тем, что способ выделения глиоксалевой кислоты из смеси продуктов окисления глиоксаля, содержащих щавелевую и глиоксалевую кислоты, включающий обработку данной смеси оксидом, гидроксидом или карбонатом кальция из расчета 0,45-0,5 моль оксида, гидроксида или карбоната кальция на каждый моль протонов, содержащихся в этой смеси и определенных титрованием на общую кислотность или при контроле рН среды до значений 4-7 для образования смеси малорастворимых осадков кальциевых солей глиоксалевой и щавелевой кислот, далее фильтрацию, сушку с дальнейшим определением содержания кальциевой соли глиоксалевой кислоты в этой смеси по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией, после чего добавляют смесь к раствору щавелевой кислоты при 20-80°С и перемешивают с последующей фильтрацией и концентрированием фильтрата, при этом щавелевую кислоту берут в количестве 0,9-1,0 моль на каждый моль глиоксалата кальция, содержащегося в смеси.

Окисление водного раствора глиоксаля проводят любым из доступных способов, к примеру в промышленности широко применяется метод окисления азотной кислотой. При этом образуется смесь продуктов, содержащая ГК и ЩК и не вступивший в реакцию глиоксаль.

Процесс получения ГК осуществляют в четыре этапа:

Этап 1. Выделение из реакционной смеси ГК и ЩК в виде их малорастворимых кальциевых солей путем добавления к продуктам реакции оксида, гидроксида или карбоната кальция из расчета 0,45-0,5 моль неорганических солей кальция на каждый моль протонов, определенных титрованием смеси на общую кислотность или добавлением неорганических солей кальция при контроле pH системы до значений 4-7. Осаждение в виде кальциевых солей позволяет выделить только ГК и ЩК из реакционной смеси.

Этап 2. Определение содержания кальциевой соли глиоксалевой кислоты любым из доступных методов

Для определения содержания кальциевой соли ГК в осажденной смеси ее растворяют в объеме дистиллированной воды в количестве, достаточном для перехода содержащегося в смеси глиоксалата кальция в раствор, поскольку он лучше растворяется в воде (7 г/л), чем оксалат кальция (0,007 г/л), который отделяют от раствора. Количество глиоксалата кальция определяют по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией. При дальнейшей переработке смеси полагают, что количество обнаруженных ионов кальция в растворе соответствует количеству кальциевой соли ГК в смеси.

Этап 3. Добавление смеси осажденных кальциевых солей к раствору ЩК для проведения реакции обмена, в которой с раствором ЩК реагирует только соль ГК. По окончании реакции ГК находится в растворе, а ЩК образует практически нерастворимый оксалат кальция, что приводит к смещению равновесия реакции в сторону образования целевого продукта.

Этап 4. Фильтрация раствора и его концентрирование

Полученный раствор ГК отделяют от осадка фильтрованием и при необходимости концентрируют до требуемых значений.

Примеры конкретного выполнения изобретения приведены ниже.

Пример 1. К продуктам окисления глиоксаля добавляют при перемешивании оксид кальция до достижения рН среды 7. Смесь образовавшихся осадков кальциевых солей глиоксалевой и щавелевой кислот фильтруют под вакуумом, сушат и взвешивают. Масса осадка равна 65,27 г. Далее определяют состав смеси методом атомно-эмиссионной спектроскопии. Для этого навеску смеси солей массой 0,2 г неизвестного состава растворяют в 50 мл дистиллированной воды. Раствор фильтруют от нерастворившегося оксалата кальция, а 1 мл фильтрата анализируют на содержание катионов кальция. Определенное количество ионов кальция в фильтрате численно равно количеству кальциевой соли глиоксалевой кислоты. Навеску 65,07 г смеси солей, содержащую 75,6% кальциевой соли ГК, добавляют к 100 мл раствора ЩК, нагретого до 50°С и содержащего 21,42 г ЩК из расчета 0,9 моль ЩК на каждый моль глиоксалата кальция, содержащегося в смеси кальциевых солей. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую ГК, фильтруют. Полученный раствор ГК имеет концентрацию 4,7973 моль/л. Выход кислоты - 35,05 г (99,5% от теоретического). Чистота продукта по данным потенциометрического титрования и ВЭЖХ ~ 98%.

Пример 2. Определяют количество протонов, содержащихся в реакционной смеси по окончании реакции окисления, после чего к продуктам окисления глиоксаля добавляют при перемешивании карбонат кальция из расчета 0,45 моль карбоната кальция на каждый моль протонов, содержащихся в реакционной смеси. Смесь образовавшихся осадков кальциевых солей глиоксалевой и щавелевой кислот фильтруют под вакуумом, сушат и взвешивают. Масса осадка равна 52,15 г. Далее определяют состав смеси методом комплексонометрического титрования. Для этого навеску смеси солей массой 0,2 г неизвестного состава растворяют в 50 мл дистиллированной воды. Раствор фильтруют от нерастворившегося оксалата кальция, а 1 мл фильтрата анализируют на содержание катионов кальция. Определенное количество ионов кальция в фильтрате численно равно количеству кальциевой соли глиоксалевой кислоты. Навеску 51,95 г смеси солей, содержащую 72,3% кальциевой соли ГК, добавляют к 50 мл раствора ЩК, нагретого до 80°С и содержащего 18,17 г ЩК из расчета 1,0 моль ЩК на каждый моль глиоксалата кальция, содержащегося в смеси кальциевых солей. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую ГК, фильтруют. Полученный раствор ГК имеет концентрацию 8,0270 моль/л. Выход кислоты - 29,70 г (99,4% от теоретического). Чистота продукта по данным потенциометрического титрования и ВЭЖХ ~ 98%.

Пример 3. К продуктам окисления глиоксаля добавляют при перемешивании гидроксид кальция до достижения рН среды 4. Смесь образовавшихся осадков кальциевых солей глиоксалевой и щавелевой кислот фильтруют под вакуумом, сушат и взвешивают. Масса осадка равна 59,29 г. Далее определяют состав смеси методом комплексонометрического титрования. Для этого навеску смеси солей массой 0,2 г неизвестного состава растворяют в 50 мл дистиллированной воды. Раствор фильтруют от нерастворившегося оксалата кальция, а 1 мл фильтрата анализируют на содержание катионов кальция. Определенное количество ионов кальция в фильтрате численно равно количеству кальциевой соли глиоксалевой кислоты. Навеску 59,09 г смеси солей, содержащую 77,6% кальциевой соли ГК, добавляют к 250 мл раствора ЩК, нагретого до 20°С и содержащего 22,19 г ЩК из расчета 1,0 моль ЩК на каждый моль глиоксалата кальция, содержащегося в смеси кальциевых солей. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую ГК, фильтруют. Полученный раствор ГК имеет концентрацию 1,9643 моль/л. Выход кислоты - 36,34 г (99,6% от теоретического). Чистота продукта по данным потенциометрического титрования и ВЭЖХ ~ 98%.

Пример 4. Определяют количество протонов, содержащихся в реакционной смеси по окончании реакции окисления, после чего к продуктам окисления глиоксаля добавляют при перемешивании гидроксид кальция из расчета 0,5 моль гидроксида кальция на каждый моль протонов, содержащихся в реакционной смеси. Смесь образовавшихся осадков кальциевых солей глиоксалевой и щавелевой кислот фильтруют под вакуумом, сушат и взвешивают. Масса осадка равна 60,21 г. Далее определяют состав смеси методом атомно-эмиссионной спектроскопии. Для этого навеску смеси солей массой 0,2 г неизвестного состава растворяют в 50 мл дистиллированной воды. Раствор фильтруют от нерастворившегося оксалата кальция, а 1 мл фильтрата анализируют на содержание катионов кальция. Определенное количество ионов кальция в фильтрате численно равно количеству кальциевой соли глиоксалевой кислоты. Навеску 60,01 г смеси солей, содержащую 64,3% кальциевой соли ГК, добавляют к 100 мл раствора ЩК, нагретого до 40°С и содержащего 17,92 г ЩК из расчета 0,96 моль ЩК на каждый моль глиоксалата кальция, содержащегося в смеси кальциевых солей. Раствор перемешивают в течение 30 минут, после чего жидкость, содержащую ГК, фильтруют. Полученный раствор ГК имеет концентрацию 3,9635 моль/л. Выход кислоты - 29,33 г (99,5% от теоретического). Чистота продукта по данным потенциометрического титрования и ВЭЖХ ~ 98%.

Таким образом, предлагаемый способ позволяет выделять глиоксалевую кислоту (содержание основного продукта ~ 98%) из продуктов окисления глиоксаля через смесь кальциевых солей глиоксалевой и щавелевой кислот без использования специфического оборудования и ионообменных смол.

Способ выделения глиоксалевой кислоты из смеси продуктов окисления глиоксаля, содержащих щавелевую и глиоксалевую кислоты, включающий обработку данной смеси оксидом, гидроксидом или карбонатом кальция из расчета 0,45-0,5 моль оксида, гидроксида или карбоната кальция на каждый моль протонов, содержащихся в этой смеси и определенных титрованием на общую кислотность или при контроле рН среды до значений 4-7 для образования смеси малорастворимых осадков кальциевых солей глиоксалевой и щавелевой кислот, с последующей фильтрацией, сушкой и определением содержания кальциевой соли глиоксалевой кислоты в этой смеси по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией, после чего добавлением смеси к раствору щавелевой кислоты при 20-80°С и перемешиванием с последующей фильтрацией и концентрированием фильтрата, при этом щавелевую кислоту берут в количестве 0,9-1,0 моль на каждый моль глиоксалата кальция, содержащегося в смеси.
Источник поступления информации: Роспатент

Показаны записи 131-140 из 197.
11.06.2018
№218.016.60a4

Поглотитель электромагнитных волн гигагерцевого диапазона

Изобретение относится к области радиопоглощающих материалов и конструкциям поглотителей, а конкретней к системам защиты от сверхвысокочастотного электромагнитного излучения, и может быть использовано для решения задач электромагнитной совместимости радиоэлектронных систем и комплексов, при...
Тип: Изобретение
Номер охранного документа: 0002657018
Дата охранного документа: 08.06.2018
05.07.2018
№218.016.6bdc

Способ прогнозирования пятилетней безметастатической выживаемости у больных раком молочной железы на основе экспрессии генов белков ykl-39 и ccl18

Изобретение относится к области медицины, в частности к онкологии, и предназначено для прогнозирования пятилетней безметастатической выживаемости у больных раком молочной железы. Проводят молекулярно-генетическое исследование биопсийных образцов опухолевой ткани с последующим выделением РНК и...
Тип: Изобретение
Номер охранного документа: 0002659676
Дата охранного документа: 03.07.2018
10.07.2018
№218.016.6f0e

Способ получения гликолида из модифицированных олигомеров гликолевой кислоты

Изобретение относится к способу получения гликолида, который является одним из исходных мономеров в реакциях с раскрытием цикла при получении ценных биодеградируемых полимеров, которые находят широкое применение в медицине, фармацевтике, пищевой промышленности и в современных аддитивных...
Тип: Изобретение
Номер охранного документа: 0002660652
Дата охранного документа: 09.07.2018
12.07.2018
№218.016.6fbd

Способ органосохраняющего лечения инвазивного рака шейки матки

Изобретение относится к медицине, а именно к онкогинекологии. Выполняют радикальную трахелэктомию с формированием маточно-влагалищного анастомоза. Зону анастомоза обматывают сетчатым имплантатом, сплетенным в виде чулка из сверхэластичной никелид-титановой нити и фиксируют отдельными швами по...
Тип: Изобретение
Номер охранного документа: 0002661077
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.7080

Способ регулирования клубнеобразования и продуктивности растений картофеля в условиях гидропоники

Изобретение относится к области сельского хозяйства, а именно к картофелеводству и семеноводству, а также к гидропонике. Способ включает обработку растений раствором биологически активного вещества. При этом в процессе адаптации к жидкой питательной среде корневую систему растений-регенерантов...
Тип: Изобретение
Номер охранного документа: 0002660918
Дата охранного документа: 11.07.2018
14.07.2018
№218.016.7149

Устройство для определения и разметки участков территории с химическим и радиоактивным заражением

Изобретение относится к устройствам мониторинга территории. Техническим результатом является обеспечение управления многофункциональным роботом с улучшенными функциональными возможностями. Устройство содержит робот, имеющий возможность перемещаться по наземной поверхности и в воздушном...
Тип: Изобретение
Номер охранного документа: 0002661295
Дата охранного документа: 13.07.2018
25.08.2018
№218.016.7f52

Способ получения фенотиазина

Изобретение относится к способу получения фенотиазина, заключающемуся в сплавлении дифениламина с элементарной серой в присутствии каталитических количеств йода с последующим охлаждением и перекристаллизацией, отличающемуся тем, что кипячение полученного осадка проводят в толуоле в течение...
Тип: Изобретение
Номер охранного документа: 0002664801
Дата охранного документа: 22.08.2018
05.09.2018
№218.016.82f1

Способ выделения пространственных изомеров n,n´-диметилгликолурила

Изобретение относится к способу выделения пространственных изомеров N,N’-диметилгликолурила, а именно 2,6-диметилгликолурила и 2,8-диметилгликолурила, включающему препаративное разделение реакционной смеси, полученной путем взаимодействия двух частей N-метилмочевины и одной части глиоксаля,...
Тип: Изобретение
Номер охранного документа: 0002665714
Дата охранного документа: 04.09.2018
05.09.2018
№218.016.82fd

Способ очистки 2-метилимидазола

Изобретение относится к области органической химии, а именно к способу очистки 2-метилимидазола, заключающемуся в перекристаллизации в три стадии путем приготовления пересыщенного раствора, его охлаждения до 3°С, фильтрации первой порции выпавших кристаллов, частичного упаривания воды,...
Тип: Изобретение
Номер охранного документа: 0002665713
Дата охранного документа: 04.09.2018
07.09.2018
№218.016.8385

Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакрилата

Изобретение относится к лазерной технике. Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакриалата содержит оптический источник накачки, органическую лазерно-активную среду из полиметилметакрилата и органического люминофора, растворенного в нем и нанесенного на...
Тип: Изобретение
Номер охранного документа: 0002666181
Дата охранного документа: 06.09.2018
Показаны записи 131-140 из 142.
24.05.2019
№219.017.5dc1

Стабилизированный вентильный аксиально-конический ветрогенератор постоянного тока

Изобретение относится к электротехнике и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных...
Тип: Изобретение
Номер охранного документа: 0002688925
Дата охранного документа: 23.05.2019
29.05.2019
№219.017.6223

Стабилизированный вентильный аксиально-радиальный ветрогенератор постоянного тока

Изобретение относится к электротехнике, и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных...
Тип: Изобретение
Номер охранного документа: 0002689211
Дата охранного документа: 27.05.2019
29.05.2019
№219.017.6288

Двухвходовая ветро-солнечная аксиально-радиальная электрическая машина-генератор

Изобретение относится к области электротехники и может быть использовано в преобразователе механической энергии вращения, например энергии ветра, подаваемой на механический вход машины, и электрической энергии постоянного тока, например световой энергии Солнца, преобразованной...
Тип: Изобретение
Номер охранного документа: 0002688211
Дата охранного документа: 21.05.2019
06.12.2019
№219.017.ea23

Трехвходовая двухмерная ветро-солнечная аксиально-радиальная электрическая машина-генератор

Изобретение относится к электротехнике. Технический результат – повышение выходного напряжения. Трехвходовая двухмерная ветро-солнечная аксиально-радиальная электрическая машина-генератор содержит корпус, в верхней части которого установлен фотоэлектрический преобразователь, полый вал,...
Тип: Изобретение
Номер охранного документа: 0002707963
Дата охранного документа: 03.12.2019
21.01.2020
№220.017.f76a

Быстрый и масштабируемый способ получения микропористого 2-метилимидазолата кобальта(ii)

Предложен способ получения микропористого 2-метилимидазолата кобальта(II), включающий этапы, на которых смешивают 1,1-1,5% щелочи, 2,7-3,1% соли кобальта(II) и 4-6% 2-метилимидазола в воде (остальное), при температуре 15-30°C в течение 0,1–3 часа, выделяют осадок посредством фильтрования или...
Тип: Изобретение
Номер охранного документа: 0002711317
Дата охранного документа: 16.01.2020
15.04.2020
№220.018.146e

Способ получения микропористого тримезиата меди(ii)

Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной ёмкостью, в частности к способу получения микропористого тримезиата меди(II), включающему этапы, на которых в...
Тип: Изобретение
Номер охранного документа: 0002718678
Дата охранного документа: 13.04.2020
15.04.2020
№220.018.147a

Способ получения микропористого терефталата алюминия

Изобретение относится к способу получения микропористого терефталата алюминия, включающему этапы, на которых смешивают 9-11 мас.% терефталевой кислоты и 4-6 мас.% щелочи с использованием растворителя - остальное, нагревают до 80–150 °С и мешают раствор до полного растворения терефталевой...
Тип: Изобретение
Номер охранного документа: 0002718676
Дата охранного документа: 13.04.2020
15.04.2020
№220.018.14cf

Быстрый и масштабируемый способ получения мезопористого терефталата хрома(iii)

Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной емкостью, в частности к способу получения микропористого терефталата хрома(III), который может быть использован...
Тип: Изобретение
Номер охранного документа: 0002718677
Дата охранного документа: 13.04.2020
23.04.2020
№220.018.1819

Быстрый и масштабируемый способ получения микропористого терефталата циркония(iv)

Изобретение относится к области металлорганических координационных соединений с сорбционной активностью и может быть использовано для создания адсорберов на CO, паров органических соединений (бензол) или разделения газовых смесей CO/N, CO/CH. Способ получения микропористого терефталата...
Тип: Изобретение
Номер охранного документа: 0002719597
Дата охранного документа: 21.04.2020
23.04.2020
№220.018.1827

Быстрый и масштабируемый способ получения микропористого 2-метилимидазолата цинка

Изобретение относится к области металлоорганических координационных полимеров, обладающих сорбционной емкостью, в частности к получению микропористого 2-метилимидазолата цинка, и может быть использовано для создания адсорберов на CO, паров органических соединений (бензол) или разделения газовых...
Тип: Изобретение
Номер охранного документа: 0002719596
Дата охранного документа: 21.04.2020
+ добавить свой РИД