×
20.09.2015
216.013.7d03

Результат интеллектуальной деятельности: СВЕРХЧУВСТВИТЕЛЬНЫЙ ИНТЕЛЛЕКТУАЛЬНЫЙ МАГНИТОИМПЕДАНСНЫЙ ДАТЧИК С РАСШИРЕННЫМ ДИАПАЗОНОМ РАБОЧИХ ТЕМПЕРАТУР

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и представляет собой сверхчувствительный интеллектуальный магнитометрический датчик (МИ датчик) с расширенным диапазоном рабочих температур области. Датчик включает магнитоимпедансный элемент (МИ элемент) с двумя катушками, выполненными одна над другой, аналоговый ключ, усилитель, температурный датчик, микроконтроллер, блок терморезистора. МИ элемент с двумя катушками позволяет расширять измерительную шкалу, проводить калибровку датчика. Микроконтроллер выполняет оцифровку данных, управляет всеми узлами датчика (МИ элементом, аналоговым ключом, усилителем), проводит математическую обработку данных. Температурный датчик и блок терморезистора обеспечивают работу датчика в широком температурном диапазоне. Техническим результатом является повышение функциональных возможностей МИ датчика (интеллектуализация), расширение пределов измерительной шкалы и диапазона рабочих температур, повышение точности измерений, получение дополнительной информации о температуре. 6 ил.
Основные результаты: Сверхчувствительный интеллектуальный магнитоимпедансный датчик с расширенным диапазоном рабочих температур, содержащий магнитоимпедансный элемент, аналоговый ключ, усилитель, отличающийся тем, что датчик содержит микроконтроллер для управления магнитоимпедансным элементом и его периферией и математической обработки данных, температурный датчик точной температурной компенсации, блок терморезистора грубой температурной компенсации в расширенном температурном диапазоне, при этом магнитоимпедансный элемент выполнен с двойной обмоткой, расположенной одна над другой.

Изобретение относится к области построения высокочувствительных магнитных сенсоров, основанных на магнитоимпедансном эффекте.

Явление зависимости высокочастотного импеданса от магнитного поля было известно довольно давно, однако эффект гигантского магнитоимпеданса (МИ) в том виде, как его понимают в настоящее время, был открыт сравнительно недавно - в 90-х годах XX столетия. МИ включает очень большое (около 100%) и чувствительное (характерные поля составляют единицы Эрстед) изменение высокочастотного напряжения на миниатюрных магнитных проводящих элементах при изменении их магнитной структуры. Такое изменение может быть вызвано не только влиянием внешнего магнитного поля, но и механическими напряжениями или изменением температуры.

В данной разработке интеллектуального магнитного датчика предлагается интегрировать микроконтроллер в конструкцию датчика для компенсации температурного воздействия, повышения точности измерения, оцифровки аналоговых данных, последующего кодирования в необходимый формат.

Конструкция магнитоимпедансного датчика, наиболее подходящая для предлагаемого в данном изобретении технического решения, описана в аналоге (Патент ЕР 2423697 А1, опубл. 29.02.2012 г., Сверхчувствительный магнитоимпедансный датчик). В указанном патенте излагается принцип возбуждения и схемная реализация предварительной обработки и усиления сигнала, снимаемого с МИ элемента.

Блок-схема включения МИ элемента, указанная в патенте, состоит из импульсного генератора, МИ элемента, аналогового ключа, схемы временной задержки и усилителя. Для работы МИ элемента необходимо возбуждение импульсным током, эту роль выполняет импульсный генератор, от которого сигнал поступает как на сам МИ элемент, так и на схему формирования временной задержки, которая осуществляет синхронизацию сигнала от МИ элемента и аналогового ключа. Сигнал от МИ элемента через аналоговый ключ, который замыкается в момент пиковой амплитуды сигнала, поступает на операционный усилитель, выход усилителя является выходом магнитоимпедансного датчика.

Недостатками описанной разработки являются ограниченная функциональность датчика, температурная нестабильность работы, ограниченная шкала и невысокая точность измерения.

Технический результат заключается в повышении функциональных возможностей датчика, увеличении точности измерений, расширении диапазона шкалы измеряемых магнитных полей, температурной стабилизации работы устройства.

Технический результат достигается путем добавления в выше описанную конструкцию магнитоимпедансного датчика следующих элементов: микроконтроллера для управления магнитоимпедансным элементом, его периферией и математической обработки данных, магнитоимпедансного элемента с двойной обмоткой (одна над другой) для калибровки и изменения предела измерения шкалы, температурного датчика для точной температурной компенсации, блока терморезистора для грубой температурной компенсации в расширенном температурном диапазоне.

За счет применения в конструкции датчика микроконтроллера, становится возможным без усложнения схемотехники значительно повысить функциональность устройства без увеличения себестоимости его изготовления. Микроконтроллер в рассматриваемой конструкции является интеллектуальным ядром датчика. Именно контроллер оценивает внешние факторы, воздействующие на датчик, и подстраивает под них его работу, а также позволяет проводить математическую обработку данных, самодиагностику и автокалибровку, передавать данные пользователю в удобном для него виде. Для микроконтроллера разрабатывается специальный пакет программного обеспечения, который программируется на этапе изготовления датчика.

Изобретение поясняется чертежом, где на Фиг. 1 изображены:

1 - первая обмотка (верхняя) - выполняет генерацию магнитного поля, входит в состав МИ элемента, позволяет проводить калибровку и изменение пределов измерительной шкалы;

2 - вторая обмотка (нижняя) - выполняет роль детектирующей катушки МИ элемента;

3 - магнитоимпедансный (МИ) элемент, состоящий из МИ проводников и двух обмоток, обмотки наматываются друг на друга (одна под другой);

4 - аналоговый ключ - выполняет функцию выпрямления аналогового переменного сигнала от МИ элемента (в данной конструкции невозможно применение диодного выпрямителя из-за нелинейности его вольт-амперной характеристики в начальной области);

5 - операционный усилитель - усиливает выпрямленный сигнал с МИ элемента до уровней приемлемых для работы с АЦП;

6 - микроконтроллер - является интеллектуальным ядром датчика;

7 - широтно-импульсный модулятор (ШИМ) - встроенный в микроконтроллер модуль, выдает сигнал возбуждения МИ элементу;

8 - аналогово-цифровой преобразователь (АЦП) - встроенный в микроконтроллер модуль, выполняет преобразование аналогового сигнала в цифровой;

9 - температурный датчик - необходим для измерения текущей тампературы датчика;

10 - блок терморезистора - необходим для температурной стабилизации в расширенном температерном диапазоне.

Описание работы датчика. Как видно из блок-схемы (Фиг. 1) применение отдельного генератора для возбуждения МИ элемента нецелесообразно, поскольку с подобной задачей справляется микроконтроллер (6). В присутствии магнитного поля на концах детектирующей катушки (2) возникает переменный сигнал. Этот сигнал от МИ элемента проходит через аналоговый ключ (4), который также управляется микроконтроллером (6), выпрямляется и попадает на операционный усилитель 5. При необходимости микроконтроллер (6) изменяет коэффициент усиления для получения более точных данных и изменения предела измерительной шкалы. Усиленный сигнал попадает во встроенный в микроконтроллер (6) модуль аналогово-цифрового преобразователя (8), где происходит его преобразование в цифровой формат. Параллельно с этим происходит обработка данных с температурного датчика (9). Перед выдачей результатов измерения на выход устройства происходит перерасчет данных по температуре (компенсируется температурная зависимость МИ элемента), обработанные данные могут быть дополнительно кодированы в необходимый формат и выданы пользователю. Также микроконтроллер имеет выход для управления первой катушкой МИ элемента. При помощи этой катушки датчик калибруется и изменяется предел измерительной шкалы.

Для дополнительного расширения температурного диапазона работы датчика до уровня военного или космического применения (Military/Space -55°C…+125°C) необходимо применение блока терморезистора (10) с обратным коэффициентом ТКС. На рисунке (Фиг. 2) приведен график температурной зависимости амплитуды выходного сигнала МИ элемента при постоянном внешнем магнитном поле, равном 1,5Э. График состоит из двух температурных кривых, соответствующих однопроводному и двупроводному МИ элементам, для более наглядной оценки различия температурных кривых МИ элементы подобраны с одинаковой амплитудой выходного сигнала в нормальных условиях. Из графика (Фиг. 2) видно, что при возрастании температуры выше +50°С происходит изменение амплитуды сигнала, которое можно компенсировать математическим пересчетом с помощью микроконтроллера и температурного датчика. При температуре +130°С амплитуда сигнала двупроводного МИ элемента уменьшается почти в 1,5 раза, в этом случае математический пересчет начинает негативно сказываться на точности измерений. Следовательно, необходимо изменить температурную кривую МИ элемента при помощи блока терморезистора (10). Блок терморезистора (Фиг. 3) состоит из одного полупроводникового терморезистора (11) и двух тонкопленочных или чип-резисторов (12). При возрастании температуры сопротивление блока терморезистора (10) будет уменьшаться, а ток через МИ проводник - возрастать, что в свою очередь вызовет увеличение амплитуды сигнала, в результате, температурная зависимость МИ элемента (Фиг. 3) будет скомпенсирована.

Для работы датчика необходима разработка программного обеспечения. Программное обеспечение определяет все функции и алгоритмы обработки данных внутри датчика.

Общая структура блок-схемы показана на Фиг. 4. Сразу после включения питания начинается загрузка микроконтроллера. После завершения загрузки микроконтроллер переходит к работе с основным циклом, который бесконечно выполняет, «отвлекаясь» только на прерывание (прием и обработка данных от пользователя для изменения настроек).

Блок-схема загрузки показана на Фиг. 5. Загрузка начинается с инициализации портов и внутренних модулей микроконтроллера (17), далее происходит калибровка встроенного аналогово-цифрового преобразователя (АЦП) (18), после чего микроконтроллер включает всю периферию (19): выдает сигнал возбуждения МИ элементу, замыкает аналоговый ключ, включает усилитель и температурный датчик. Следующим шагом микроконтроллер выполняет калибровку МИ элемента (20) при помощи встроенной в него второй катушки. На последнем этапе загрузки происходит чтение из внутренней памяти микроконтроллера и установка настроек (последних или исходных) (21).

Упрощенная блок-схема основного цикла программы логико-математической работы микроконтроллера изображена на Фиг. 6. Основной цикл начинается с оцифровки аналоговых данных (22) от МИ элемента, температурного датчика и других вспомогательных параметров. Затем следует их логический анализ (23), проверяется правильность установленных настроек усилителя, предела измерения шкалы МИ элемента и контрольных параметров, далее происходит ветвление алгоритма (24). В случае если данные не корректны, происходит изменение параметров настроек (26) и основной цикл повторяется сначала. В случае если данные не корректны 10 раз подряд, происходит перезагрузка (28) микроконтроллера, микроконтроллер переходит к началу алгоритма. В случае если данные корректны следующим шагом, микроконтроллер, зная текущую температуру, пересчитывает данные (25), компенсируя температурную зависимость МИ элемента, после чего микроконтроллер подвергает данные кодированию и передает данные пользователю (27).

Таким образом, можно отметить следующие отличительные признаки предложенного магнитоимпедансного датчика:

- датчик содержит микроконтроллер, который управляет МИ элементом, принимает и обрабатывает данные;

- датчик содержит МИ элемент с двойной обмоткой (одна поверх другой);

- датчик снабжен встроенным датчиком температуры;

- датчик с расширенным диапазоном температурной стабильности содержит блок терморезистора.

Использование указанных отличительных признаков для выполнения поставленной цели ранее авторам не известно.

Сверхчувствительный интеллектуальный магнитоимпедансный датчик с расширенным диапазоном рабочих температур, содержащий магнитоимпедансный элемент, аналоговый ключ, усилитель, отличающийся тем, что датчик содержит микроконтроллер для управления магнитоимпедансным элементом и его периферией и математической обработки данных, температурный датчик точной температурной компенсации, блок терморезистора грубой температурной компенсации в расширенном температурном диапазоне, при этом магнитоимпедансный элемент выполнен с двойной обмоткой, расположенной одна над другой.
СВЕРХЧУВСТВИТЕЛЬНЫЙ ИНТЕЛЛЕКТУАЛЬНЫЙ МАГНИТОИМПЕДАНСНЫЙ ДАТЧИК С РАСШИРЕННЫМ ДИАПАЗОНОМ РАБОЧИХ ТЕМПЕРАТУР
СВЕРХЧУВСТВИТЕЛЬНЫЙ ИНТЕЛЛЕКТУАЛЬНЫЙ МАГНИТОИМПЕДАНСНЫЙ ДАТЧИК С РАСШИРЕННЫМ ДИАПАЗОНОМ РАБОЧИХ ТЕМПЕРАТУР
СВЕРХЧУВСТВИТЕЛЬНЫЙ ИНТЕЛЛЕКТУАЛЬНЫЙ МАГНИТОИМПЕДАНСНЫЙ ДАТЧИК С РАСШИРЕННЫМ ДИАПАЗОНОМ РАБОЧИХ ТЕМПЕРАТУР
СВЕРХЧУВСТВИТЕЛЬНЫЙ ИНТЕЛЛЕКТУАЛЬНЫЙ МАГНИТОИМПЕДАНСНЫЙ ДАТЧИК С РАСШИРЕННЫМ ДИАПАЗОНОМ РАБОЧИХ ТЕМПЕРАТУР
СВЕРХЧУВСТВИТЕЛЬНЫЙ ИНТЕЛЛЕКТУАЛЬНЫЙ МАГНИТОИМПЕДАНСНЫЙ ДАТЧИК С РАСШИРЕННЫМ ДИАПАЗОНОМ РАБОЧИХ ТЕМПЕРАТУР
СВЕРХЧУВСТВИТЕЛЬНЫЙ ИНТЕЛЛЕКТУАЛЬНЫЙ МАГНИТОИМПЕДАНСНЫЙ ДАТЧИК С РАСШИРЕННЫМ ДИАПАЗОНОМ РАБОЧИХ ТЕМПЕРАТУР
Источник поступления информации: Роспатент

Показаны записи 241-245 из 245.
29.12.2017
№217.015.fda7

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов, обеспечивающее снижение температуры синтеза и повышение...
Тип: Изобретение
Номер охранного документа: 0002638069
Дата охранного документа: 11.12.2017
20.01.2018
№218.016.1747

Способ доставки криогенных топливных мишеней для лазерного термоядерного синтеза

Изобретение относится к способу доставки криогенных топливных мишеней (КТМ) для энергетических систем, работающих по схеме управляемого инерциального термоядерного синтеза (ИТС). В заявленном способе размещают каждую из криогенных топливных мишеней в носитель и продвигают носитель вдоль...
Тип: Изобретение
Номер охранного документа: 0002635660
Дата охранного документа: 15.11.2017
04.04.2018
№218.016.318e

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002645192
Дата охранного документа: 16.02.2018
19.06.2019
№219.017.8ac8

Алмазный инструмент на гальванической связке

Изобретение относится к алмазным инструментам, изготавливаемым с использованием процессов закрепления алмазных зерен на корпусе инструмента электроосаждением металлической связки, - инструментам на гальванической связке. Такими инструментами могут быть отрезные круги, трубчатые сверла,...
Тип: Изобретение
Номер охранного документа: 0002437752
Дата охранного документа: 27.12.2011
14.07.2019
№219.017.b4e6

Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент

Изобретение относится к области упрочнения режущего твердосплавного инструмента и может быть использовано в машиностроении, в частности в технологии металлообработки. Первоначально поверхность упомянутого инструмента подвергают модифицированию ионами хрома и методом ионно-плазменного...
Тип: Изобретение
Номер охранного документа: 0002468124
Дата охранного документа: 27.11.2012
Показаны записи 251-258 из 258.
25.08.2018
№218.016.7f92

Способ получения ферритовых изделий

Изобретение относится к получению ферритовых изделий. Способ включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку в виде наноразмерного порошка карбонильного железа в количестве 0,01-0,03 мас.% от общей массы пресс-порошка, прессование заготовок и...
Тип: Изобретение
Номер охранного документа: 0002664745
Дата охранного документа: 22.08.2018
28.08.2018
№218.016.7fec

Способ изготовления фильтров для ик-диапазона

Изобретение относится к области оптического приборостроения и касается способа изготовления фильтров для ИК-диапазона. Способ заключается в выращивании из смеси бинарных компонент ZnSe и ZnS кристаллического слитка твердого раствора с перепадом температуры между зонами испарения и...
Тип: Изобретение
Номер охранного документа: 0002664912
Дата охранного документа: 23.08.2018
29.03.2019
№219.016.f785

Безэховая камера

Изобретение относится к области радиотехники и звукотехники и может использоваться при строительстве и оборудовании безэховых камер (помещений с радио- и звукоизоляцией), которым предъявляются повышенные требования, и которые могут найти применение при проверке и сертификации...
Тип: Изобретение
Номер охранного документа: 0002447551
Дата охранного документа: 10.04.2012
29.04.2019
№219.017.445a

Способ получения радиопоглощающего магний-цинкового феррита

Изобретение относится к технологии получения радиопоглощающего магний-цинкового феррита, который может найти широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры. Техническим результатом изобретения является получение дешевого...
Тип: Изобретение
Номер охранного документа: 0002454747
Дата охранного документа: 27.06.2012
19.06.2019
№219.017.89a3

Сверхширокодиапазонный поглотитель электромагнитных волн для безэховых камер и экранированных помещений

Изобретение относится к радиофизике, антенной технике и может найти применение при создании поглотителей электромагнитных волн, используемых для оснащения сверхширокодиапазонных многофункциональных безэховых камер (БЭК) и экранированных помещений, обеспечивающих проведение радиотехнических...
Тип: Изобретение
Номер охранного документа: 0002453953
Дата охранного документа: 20.06.2012
08.11.2019
№219.017.df51

Способ изготовления анизотропных гексагональных ферритов типа м

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры. Изготовление анизотропных гексаферритов типа М включает...
Тип: Изобретение
Номер охранного документа: 0002705201
Дата охранного документа: 06.11.2019
03.06.2023
№223.018.765b

Способ изготовления филамента для 3d-5d-печати с заданными магнитными свойствами

Изобретение относится к технологиям изготовления филамента для 3D-5D принтеров. Предложен способ изготовления филамента, заключающийся в растворении полимера в растворителе до достижения гомогенизации с последующим добавлением порошка магнитного материала от 5 до 15 % масс. к общей массе и...
Тип: Изобретение
Номер охранного документа: 0002796571
Дата охранного документа: 25.05.2023
17.06.2023
№223.018.8039

Многоцелевая модульная платформа для создания космических аппаратов нанокласса

Изобретение относится к области космической техники, а более конкретно к космическим аппаратам с общей массой до 10 кг. Многоцелевая модульная платформа космического аппарата нанокласса выполнена в форме шестиугольной призмы и состоит из набора унифицированных масштабируемых модулей. Модули...
Тип: Изобретение
Номер охранного документа: 0002762452
Дата охранного документа: 21.12.2021
+ добавить свой РИД