×
25.08.2018
218.016.7f92

Результат интеллектуальной деятельности: Способ получения ферритовых изделий

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению ферритовых изделий. Способ включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку в виде наноразмерного порошка карбонильного железа в количестве 0,01-0,03 мас.% от общей массы пресс-порошка, прессование заготовок и радиационно-термическое спекание заготовок посредством непрерывного электронного пучка электронного ускорителя. Проводят механоактивацию порошка карбонильного железа в течение 8-15 мин с получением наноразмерного порошка, а в качестве ферритового материала используют гексаферрит бария. В пресс-порошок дополнительно вводят легкоплавкую добавку PbO в количестве 0,03-0,05 мас.% от общей массы пресс-порошка. Радиационно-термическое спекание заготовок ведут путем их нагрева электронным пучком до температуры плавления PbO 886°С, выдержки при температуре 886-920°С в течение 30-40 мин, затем нагрева в электронном пучке до температуры 1300-1400°С и выдержки при этой температуре в течение 30-120 мин. Обеспечивается получение качественных изделий на основе гексаферрита бария, уменьшено время спекания. 2 табл., 2 пр.

Изобретение относится к порошковой металлургии, а также к радиоэлектронике, а именно - к области технологии материалов радиоэлектроники и может быть использовано в электронной и радиопромышленности при производстве гексаферрита бария и изделий на его основе.

Известен способ радиационно-термической обработки (РТО) материалов, в частности, изделий из ферритов и керамики, обеспечивающий спекание заготовок ферритов облучением проникающим импульсным электронным лучом (см. а.с. СССР №1391808, B22F 3/24, С04В 35/26. Авторы: Суржиков А.П., Анненков Ю.М., Новиков B.C. и др.). Недостаток - способ характеризуется большой длительностью спекания и не может быть использован для спекания гексаферрита бария и изделий на его основе.

Известна легирующая добавка в пресс-порошке ферита, представляющая собой карбонильное железо (см. патент РФ №2037384 «Шихта никель-цинкового феррита», авторы Авакян П.Б., Мержанов А.Г., Нерсесян М.Д. и др.). Недостаток настоящего технического решения в том, что оно не может использоваться при методе радиационно-термического синтеза (РТС) ферритов.

Известен также способ получения ферритовых изделий (Патент РФ №2548345, H01F 1/10, H01F 1/34, B22F 3/12. Авторы: Костишин В.Г., Панина Л.В., Андреев В.Г., Савченко А.Г., Канева И.И., Комлев А.С. и Николаев А.Н.). Недостатком изобретения является невозможность его использования для РТС гексаферритов.

Цель настоящего технического изобретения - разработка способа спекания гексагональных ферритов бария и изделий на их основе методом РТС.

Техническим результатом заявленного изобретения является возможность спекания методом РТС гексагональных ферритов бария, а также получение высокого качества спекания.

Технический результат достигается следующим образом. Изначально делают навеску ферритового порошка.

После навески ферритового порошка взвешивают необходимое количество карбонильного железа (0,01-0,03 мас.% от общей массы пресс-порошка) и проводят его механоактивацию в течение 8-15 мин. Этого времени достаточно для получения наночастиц карбонильного железа размером 100-250 нм. Взвешивают необходимое количество оксида свинца PbO (в количестве 0,03-0,05 мас.% от общей массы пресс-порошка). Далее осуществляется приготовление пресс-порошка путем смешивания навесок ферритового порошка и легирующих добавок в необходимых пропорциях и перемешивания в вибрационной мельнице.

В качестве связки добавляют поливиниловый спирт. Придают необходимую форму заготовкам в прессовальном устройстве под давлением 200 МПа.

Помещают полученные заготовки в ячейку для радиационно-термического спекания, нагревают пучком быстрых электронов до температуры плавления PbO (886°С) и выдерживают в течение 30-40 мин при температуре (886-920)°С. Далее путем увеличения частоты электронного пучка заготовки нагревают до температуры (1300-1400)°С и проводят спекание при этой температуре в течение 30-120 мин.

Сущность изобретения состоит в следующем. Механизм активации процесса РТ-спекания ферритовой керамики карбонильным железом состоит в следующем. Известно, что карбонильное железо характеризуется способностью интенсивно поглощать электромагнитную энергию. При воздействии быстрых электронов разогрев образцов ферритовой керамики в местах нахождения наночастиц карбонильного железа происходит интенсивнее за счет усиленного поглощения энергии. Это приводит к активации процесса спекания, обеспечивает увеличение уровня электромагнитных свойств. Использование процесса механоактивации карбонильного железа еще больше активирует спекание ферритовых заготовок, что можно объяснить следствием двух факторов:

а) активацией процесса спекания вследствие выделения частичками карбонильного железа запасенной в процессе механоактивации энергии;

б) большей реакционной способностью частиц карбонильного железа вследствие приобретения меньших размеров после механоактивации.

Согласно предложенному способу проводят изотермическую выдержку в процессе радиационного разогрева ферритовых заготовок электронным пучком. Температурный интервал изотермической выдержки соответствует интервалу плавления легкоплавкой добавки PbO: от температуры плавления до температуры, превышающей точку плавления на 34°С. Проведение такой выдержки способствует равномерному распределению жидкой фазы по всему объему заготовок, предотвращает быстрое испарение легкоплавкой добавки и увеличивает время реакции жидкой и твердой фаз. Как результат этого снижается пористость изделий, повышается компактность феррита, уменьшается разброс по величине зерна, предотвращается чрезмерный рост зерен. В результате имеет место рост плотности изделий и улучшение электромагнитных характеристик.

Пределы по времени механоактивации карбонильного железа выбраны из следующих соображений. При времени механоактивации карбонильного железа меньше 8 минут эффект незначительный, при времени механоактивации свыше 15 мин роста интенсивности эффекта не наблюдается.

Пределы по количеству легкоплавкой добавки PbO выбраны из следующих соображений. При количестве PbO менее 0,03 мас.% от общей массы пресс-порошка эффект от добавки слабо выраженный, при количестве PbO больше 0,05 мас.% от общей массы пресс-порошка имеет место ухудшение свойств спекамых гексаферритов.

Температурные пределы (886-920)°С выдержки заготовки при температуре плавления легкоплавкой добавки PbO выбраны из следующих соображений. Нижний предел - температура плавления PbO, верхний предел выбран как минимальная температура, позволяющая жидкому PbO максимально быстро заполнить межзеренное пространство гексаферрита.

Температурные пределы завершающей стадии получения гексаферритов (стадии спекания) выбраны из следующих соображений: при температуре ниже 1300°С качество полученных гексаферритов низкое, при температуре выше 1400°С качество спекания гексаферрита существенно ухудшается.

Временные пределы завершающей стадии получения гексаферритов (стадии спекания) выбраны из следующих соображений: при времени спекания меньше 30 мин гексаферриты получаются плохо спеченными, при времени спекания больше 120 мин свойства гексаферрита существенно ухудшаются.

Отличительными признаками предлагаемого технического решения являются:

1. Проводят механоактивацию порошка карбонильного железа в течение 8-15 мин.

2. Вводят легкоплавкую добавку оксида свинца PbO в количестве 0,03-0,05 мас.% от общей массы пресс-порошка.

3. Сырые заготовки нагревают в электронном пучке до температуры плавления легкоплавкой добавки PbO (886°С) и выдерживают в течение 30-40 мин при температуре (886-920)°С.

4. Осуществляют дальнейшее нагревание заготовок в электронном пучке до температуры (1300-1400)°С и проводят выдержку при этой температуре в течение 30-120 мин.

Применение указанных признаков для достижения поставленной цели авторам не известно.

Примеры реализации способа.

Пример 1. В синтезированный по оксидной технологии порошок гексаферрита бария вводили 0,02 мас.% (от общей массы пресс-порошка) механоактивированного в течение 10 мин порошка карбонильного железа и 0,04 мас.% (от общей массы пресс-порошка) легкоплавкой добавки оксида свинца PbO. Заготовки в виде дисков 0 25 мм и высотой 6 мм, полученные прессованием под давлением 200 МПа, после сушки до влажности менее 0,5 мас.% нагревали электронным пучком электронного ускорителя до температуры плавления PbO (886°С) и выдерживали при температуре 900°С в течение 30 мин, далее заготовки нагревали в электронном пучке до температуры 1350°С и проводили выдержку при этой температуре в течение 70 мин.

В табл. 1 представлены результаты настоящего эксперимента (РТС-1) в сравнении с результатами при получении гексаферрита бария по классической керамической технологии (ККТ) и одностадийной технологии РТС без добавок и механоактивации (РТС-2).

Таблица 1 - Характеристики гексаферрита бария, полученного предлагаемым способом в сравнении со свойствами гексаферритов бария, полученных другими способами

*Классическая керамическая технология (ККТ). Сырые заготовки BaFe12O19 после прессования и сушки нагревали в печи с резистивным нагревом до температуры 1350°С и выдерживали при этой температуре в течение 8 часов. По истечении этого времени образцы с печью подвергались естественному охлаждению до комнатной температуры.

** Одностадийная технология РТС без добавок и механоактивации ( РТС-2 ). Сырые заготовки BaFe12O19 после прессования и сушки нагревали электронным пучком в ускорителе до температуры 1350°С и выдерживали при этой температуре в течение 70 минут. По истечении этого времени образцы подвергались естественному охлаждению до комнатной температуры.

Как видно из табл. 1, предложенный способ позволяет получить образцы с максимальным значением магнитных характеристик.

Пример 2. В синтезированный по оксидной технологии порошок гексаферрита бария вводили 0,03 мас.% (от общей массы пресс-порошка) механоактивированного в течение 12 мин порошка карбонильного железа и 0,05 мас.% (от общей массы пресс-порошка) легкоплавкой добавки оксида свинца PbO. Заготовки в виде дисков ∅ 25 мм и высотой 6 мм, полученные прессованием под давлением 200 МПа, после сушки до влажности менее 0,5 мас.% нагревали электронным пучком электронного ускорителя до температуры плавления PbO (886°С) и выдерживали при температуре 910°С в течение 40 мин, далее заготовки нагревали в электронном пучке до температуры 1375°С и проводили выдержку при этой температуре в течение 60 мин.

В табл. 2 представлены результаты настоящего эксперимента (РТС-1) в сравнении с результатами при получении гексаферрита бария по классической керамической технологии (ККТ) и одностадийной технологии РТС без добавок и механоактивации (РТС-2).

*Классическая керамическая технология (ККТ). Сырые заготовки BaFe12O19 после прессования и сушки нагревали в печи с резистивным нагревом до температуры 1300°С и выдерживали при этой температуре в течение 10 часов. По истечении этого времени образцы с печью подвергались естественному охлаждению до комнатной температуры.

** Одностадийная технология РТС без добавок и механоактивации (РТС-2). Сырые заготовки BaFe12O19 после прессования и сушки нагревали электронным пучком в ускорителе до температуры 1320°С и выдерживали при этой температуре в течение 80 минут. По истечении этого времени образцы подвергались естественному охлаждению до комнатной температуры.

Как видно из табл. 2, предложенный способ позволяет получить образцы с максимальным значением магнитных характеристик.

Способ получения ферритовых изделий, включающий приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку в виде наноразмерного порошка карбонильного железа в количестве 0,01-0,03 мас.% от общей массы пресс-порошка, прессование заготовок и радиационно-термическое спекание заготовок посредством непрерывного электронного пучка электронного ускорителя, отличающийся тем, что проводят механоактивацию порошка карбонильного железа в течение 8-15 мин с получением наноразмерного порошка, а в качестве ферритового материала используют гексаферрит бария, причем в пресс-порошок дополнительно вводят легкоплавкую добавку PbO в количестве 0,03-0,05 мас.% от общей массы пресс-порошка, радиационно-термическое спекание заготовок ведут путем их нагрева электронным пучком до температуры плавления PbO 886°С, выдержки при температуре 886-920°С в течение 30-40 мин, затем нагрева в электронном пучке до температуры 1300-1400°С и выдержки при этой температуре в течение 30-120 мин.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 322.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Показаны записи 1-10 из 50.
27.01.2013
№216.012.2131

Радиопоглощающий феррит

Изобретение относится к технологии радиопоглощающих ферритов, которые находят все более широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры. Повышение радиопоглощающих свойств феррита в интервале частот от 30 МГц до 1000 МГц....
Тип: Изобретение
Номер охранного документа: 0002473998
Дата охранного документа: 27.01.2013
27.02.2013
№216.012.2b48

Способ обработки железорудных окатышей

Изобретение относится к черной металлургии и может быть использовано для упрочнения железорудных окатышей. Сформированные путем окомкования влажной шихты в окомкователях окатыши упрочняют обжигом. После обжига окатыши обрабатывают в импульсном магнитном поле прямоугольной формы, число импульсов...
Тип: Изобретение
Номер охранного документа: 0002476607
Дата охранного документа: 27.02.2013
20.02.2014
№216.012.a1e0

Способ получения наночастиц магнетита, стабилизированных поливиниловым спиртом

Изобретение может быть использовано в магнитной наноэлектронике для магнитных регистрирующих сред с высокой плотностью записи, для магнитных сенсоров, радиопоглощающих экранов, а также в медицине. Способ получения наночастиц магнетита, стабилизированных поливиниловым спиртом, включает получение...
Тип: Изобретение
Номер охранного документа: 0002507155
Дата охранного документа: 20.02.2014
20.06.2014
№216.012.d4c4

Способ получения тонкопленочных полимерных нанокомпозиций для сверхплотной магнитной записи информации

Изобретение относится к области магнитной записи информации, конкретно к способу получения пленок для магнитной записи информации. Способ получения полимерных нанокомпозиций в виде тонких пленок для сверхплотной записи информации включает получение прекурсора, состоящего из поливинилового...
Тип: Изобретение
Номер охранного документа: 0002520239
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.dde8

Магнитооптический материал

Изобретение относится к области магнитной микроэлектроники, в частности к прикладной магнитооптике, и может быть использовано для записи информации как в цифровом, так и в аналоговом режимах. Магнитооптический материал представляет собой эпитаксиальную монокристаллическую пленку феррита-граната...
Тип: Изобретение
Номер охранного документа: 0002522594
Дата охранного документа: 20.07.2014
27.10.2014
№216.013.0313

Способ получения наноразмерных пленок bi-содержащих ферритов-гранатов

Изобретение относится к технологии получения пленок ферритов-гранатов и может быть использовано в прикладной магнитооптике для получения магнитооптических дисков, модуляторов, дефлекторов. Способ включает изготовление мишени заданного состава, обработку монокристаллической подложки галлиевого...
Тип: Изобретение
Номер охранного документа: 0002532185
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0315

Способ получения наноразмерных пленок феррита

Изобретение относится к технологии получения наноразмерных пленок мультиферроиков и может найти применение в производстве высокодобротных магнитооптических устройств обработки и хранения информации, магнитных сенсоров, емкостных электромагнитов, магнитоэлектрических элементов памяти, невзаимных...
Тип: Изобретение
Номер охранного документа: 0002532187
Дата охранного документа: 27.10.2014
20.12.2014
№216.013.11f7

Способ получения ферритовых изделий путем радиационно-термического спекания

Изобретение относится к порошковой металлургии, в частности к получению магнитомягких ферритовых материалов. Может использоваться в электронной и радиопромышленности. Готовят шихту из синтезированного ферритового материала и 0,01-0,05 мас.% легкоплавкой добавки, предварительно...
Тип: Изобретение
Номер охранного документа: 0002536022
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1278

Способ спекания радиопоглащающих магний-цинковых ферритов

Изобретение относится к порошковой металлургии, в частности к получению радиопоглощающих ферритов. Может использоваться в электронной и радиопромышленности. Ферритообразующие оксиды магния, цинка и железа смешивают и синтезируют ферритовый порошок в печах в воздушной среде. Затем измельчают,...
Тип: Изобретение
Номер охранного документа: 0002536151
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.171c

Способ спекания радиопоглощающих магний-цинковых ферритов

Изобретение относится к порошковой металлургии, в частности к получению радиопоглощающих ферритов. Может использоваться в электронной и радиопромышленности. Ферритообразующие оксиды магния, цинка и железа смешивают и синтезируют ферритовый порошок в печах в воздушной среде. Затем измельчают,...
Тип: Изобретение
Номер охранного документа: 0002537344
Дата охранного документа: 10.01.2015
+ добавить свой РИД