×
20.09.2015
216.013.7b07

Результат интеллектуальной деятельности: СПОСОБ ОРГАНИЗАЦИИ ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННОГО ГОРЕНИЯ И ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННЫЙ ПУЛЬСИРУЮЩИЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Способ организации детонационно-дефлаграционного горения в воздушно-реактивном двигателе для высоких скоростей полета заключается в том, что набегающий высокоскоростной сверхзвуковой поток воздуха тормозят в криволинейном пространстве воздухозаборника, по мере продвижения, в зоне образования скорости, меньшей, чем скорость детонационной волны, возникающей при горении, но большей, чем скорость ударной волны, возникающей при гашении детонационной волны. Через топливные сопла непрерывно подают топливо, смешивают его с воздухом и создают непрерывный поток горючей смеси, имеющей зону недостаточного смешения в зоне топливных сопел и зону хорошо перемешанной горючей смеси, расположенную ниже по течению потока. Воспламеняют хорошо перемешанную горючую смесь. Образующуюся при этом детонационную волну, движущуюся против потока, гасят в зоне недостаточного смешения с образованием ударной волны и очагов дефлаграционного горения, сносимых потоком вниз по течению. Воспламеняют хорошо перемешанную горючую смесь указанными очагами дефлаграционного горения, и инициируют новую детонационную волну, распространяющуюся против потока, реализуя тем самым переход от дефлаграционного горения к детонационному. В результате обеспечивается процесс детонационно-дефлаграционного горения с частотой пульсаций, определяемой скоростями детонационной волны и сверхзвукового потока. Изобретение направлено на упрощение конструкции и функционирование пульсаций детонационной волны без механических или газодинамических клапанов при непрерывной подаче топлива. 2 н.п. ф-лы, 2 ил.

Изобретение относится к пульсирующим детонационным воздушно-реактивным двигателям. Более точно изобретение касается способа организации детонационно-дефлаграционного горения и детонационно-дефлаграционного пульсирующего прямоточного воздушно-реактивного двигателя, который не использует при создании пульсации механических клапанов или газодинамическое перекрытие топливных каналов.

Известен способ организации детонационного режима горения в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя (патент РФ №2285143, опубл. 10.10.2006), который включает подачу топливо-воздушной газовой смеси в камеру сгорания двигателя, генерирование внутренних ударных волн в проточной части камеры сгорания, формируемых регулируемыми элементами камеры сгорания. В проточной части камеры сгорания создают систему симметричных наклонных падающих ударных волн. В центральной части поперечного сечения камеры сгорания в результате взаимодействия этих волн друг с другом формируется пересжатая детонационная волна - ножка Маха с возможностью регулирования ее размера и местоположения в проточной части камеры сгорания. Размер ножки Маха, а тем самым и ее положение в продольном направлении камеры сгорания, а также и ее стационарность, задают посредством изменения геометрических параметров регулирующих элементов камеры сгорания в зависимости от числа Маха потока на входе в камеру сгорания и химического состава поступающей топливо-воздушной газовой смеси.

Известен сверхзвуковой пульсирующий детонационный прямоточный (СПДПД) воздушно-реактивный двигатель (СПДВРД) (патент РФ №2157909, опубл. 20.10.2000), который содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, сверхзвуковое сопло, устройство запуска двигателя и систему подачи топлива. Система подачи топлива содержит пилоны с соплами и клапаны изменения режима подачи топлива. Известен способ функционирования этого сверхзвукового пульсирующего детонационного прямоточного воздушно-реактивного двигателя при котором в момент запуска двигателя подают топливо и инициируют детонационную волну, дальнейшую работу двигателя обеспечивают последовательно-периодически, изменяя подачу топлива, реализуя в камере сгорания богатую и бедную топливо-воздушную смесь и вызывая изменения направления и скорости перемещения детонационной волны относительно камеры сгорания от ее выхода ко входу по богатой смеси и в обратном направлении по бедной смеси, в предельном случае - по чистому воздуху, при сохранении направления движения волны против потока топлива.

Известен пульсирующий детонационный прямоточный воздушно-реактивный двигатель (патент РФ №2476705, опубл. 27.02.2013), который содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выхлопное сверхзвуковое сопло, воспламенитель топливо-воздушной смеси и систему подачи топлива. Система подачи топлива включает коллекторы и пилоны с топливными каналами и соплами, установленные в сверхзвуковой камере смешения. Двигатель также содержит расположенный между сверхзвуковым воздухозаборником и сверхзвуковой камерой смешения канал газовоздушного тракта. Пилоны системы подачи топлива размещены на выходе из последнего. Воспламенитель топливо-воздушной смеси размещен в сверхзвуковой камере сгорания в поперечной нише и выполнен постоянно работающим. Сопла системы подачи топлива выполнены открытыми с возможностью газодинамического перекрытия.

В известных технических решениях детонационное горение организуют изменением подачи топлива в прямоточный воздушно-реактивный двигатель. Пульсацию детонационной волны организуют изменением подачи топлива, для чего используют механические клапаны или газодинамическое перекрытие топливных каналов. «Газодинамический клапан» - ударная волна, которая на каждом цикле, полностью прервав подачу топлива, что уменьшает тягу, движется к воздухозаборнику и может нарушить его работу.

В основу изобретения положена задача упрощения конструкции детонационного пульсирующего прямоточного воздушно-реактивного двигателя путем создания детонационно-дефлаграционного горения и детонационно-дефлаграционного пульсирующего прямоточного воздушно-реактивного двигателя.

Техническим результатом является функционирование пульсации детонационной волны без механических или газодинамических клапанов при непрерывной подаче топлива и недопущение (благодаря подбору степени торможения высокоскоростного потока в воздухозаборнике) возникающей при этом ударной волны до топливных сопел и воздухозаборника. Другими техническими результатами являются повышение тяги за счет непрерывного поступления топлива и высокая частота процесса, определяемая большими скоростями детонационной волны и сверхзвукового потока, сносящего очаги медленного горения.

Поставленная задача решается тем, что организуют детонационно-дефлаграционное горение в воздушно-реактивном двигателе для высоких скоростей полета, для чего набегающий высокоскоростной сверхзвуковой поток воздуха тормозят в криволинейном пространстве воздухозаборника по мере его продвижения, в зоне образования скорости, меньшей, чем скорость детонационной волны, возникающей при горении, непрерывно подают топливо, которое смешивают с воздухом, и создают непрерывный поток горючей смеси, имеющий зону недостаточного смешения с образованием «бедной» смеси в области ввода топлива и хорошо перемешанную горючую смесь в зоне, расположенной ниже по течению потока, воспламеняют хорошо перемешанную горючую смесь, образующуюся при этом детонационную волну, движущуюся со скоростью выше скорости потока горючей смеси и распространяющуюся вместе с ударной волной против потока, гасят при поступлении в зону недостаточного смешения за счет самогашения в «бедной» смеси, а очаги медленного дефлаграционного горения, возникающие при гашении и сносимые набегающим потоком вниз по течению, попадают в хорошо перемешанную горючую смесь, воспламеняют ее и инициируют новую детонационную волну, распространяющуюся против потока, реализуя переход от дефлаграции к детонации, в результате чего организуется пульсирующий процесс детонационно-дефлаграционного горения с высокой частотой, определяемой большими скоростями детонационной волны и сверхзвукового потока, до топливных сопел и воздухозаборника.

Целесообразно, если топливо подают в зоне образования скорости, сравнительно больших чисел Маха (М=3-4).

Поставленная задача решается также тем, что детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель для высоких скоростей полета, включает последовательно размещенные сверхзвуковой воздухозаборник, систему подачи топлива с пилонами и звуковыми или сверхзвуковыми соплами, сверхзвуковые камеры смешения и сгорания и выхлопное сопло, которые конструктивно приспособлены для реализации вышеуказанного способа организации детонационно-дефлаграционного горения.

Целесообразно чтобы топливные сопла были расположены на входе камеры смешения и выполнены открытыми для постоянной подачи топлива в поток с требуемым расходом, а сверхзвуковая скорость потока в камере смешения выполнена с расчетом на сверхзвуковую скорость потока, при которой ударная волна, возникающая при погасании детонационной волны после ее попадания в зону недостаточно смешанной горючей смеси, не доходит до топливных пилонов и до воздухозаборника, а воздухозаборник выполнен так, что его контур тормозит набегающий высокоскоростной поток воздуха до чисел Маха (М=3-4) и скорости, которая меньше скорости детонационной волны, но больше скорости ударной волны, возникающей при погасании детонационной волны.

В дальнейшем изобретение поясняется описанием и фигурами, где на фиг.1 и фиг.2 соответственно приведены принципиальные общая и внутренняя схемы детонационно-дефлаграционного пульсирующего прямоточного воздушно-реактивного двигателя предназначенного для осуществления способа, согласно изобретению.

Далее приведен пример выполнения способа и детонационно-дефлаграционного пульсирующего прямоточного воздушно-реактивного двигателя для осуществления способа.

Способ организации детонационно-дефлаграционного горения, согласно изобретению, может быть реализован в пульсирующем детонационно-дефлаграционном прямоточном воздушно-реактивном двигателе для высоких скоростей полета, который содержит последовательно размещенные сверхзвуковой воздухозаборник 1, систему 2 подачи топлива с пилонами и соплами, сверхзвуковые камеры смешения 3 и сгорания 4, и выхлопное сверхзвуковое сопло 7.

Топливные сопла размещены в начале камеры смешения 3. Воспламенитель горючей смеси 6 размещен в конце камеры сгорания 4 в поперечной нише 5 и предназначен для запуска.

Согласно изобретению, в сверхзвуковой поток воздуха после воздухозаборника 1, тормозящего высокоскоростной набегающий поток, из звуковых или сверхзвуковых топливных сопел системы 2 непрерывно подают в топливо и смешивают его с воздухом в камере смешения 3. Это создает непрерывный поток горючей смеси, имеющий зону недостаточного смешения с образованием «бедной» смеси в области ввода топлива (у топливных сопел системы 2) и хорошо перемешанную горючую смесь в зоне, расположенной ниже по течению потока. Хорошо перемешанную горючую смесь первично воспламеняют воспламенителем 6. При воспламенении организуется процесс горения с образованием ударных (УВ) и детонационных волн (ДВ). Образующаяся детонационная волна движется со скоростью выше скорости потока горючей смеси и распространяется вместе с ударной против потока. При поступлении в зону недостаточного смешения (у топливных сопел системы 2) детонационную волну гасят за счет ее самогашения в «бедной» смеси. Образуется волна разряжения (BP), контактный разрыв (КР) и фронт медленного горения (ФГ). Очаги медленного дефлаграционного горения, возникающие при гашении, набегающий поток горючей смеси сносит их вниз по течению, где они попадают в хорошо перемешанную горючую смесь, воспламеняют ее и инициируют новую детонационную волну, распространяющуюся против потока, реализуя переход от дефлаграции к детонации, в результате чего организуется пульсирующий процесс детонационно-дефлаграционного горения с высокой частотой, определяемой большими скоростями детонационной волны и сверхзвукового потока, до топливных сопел и воздухозаборника.

Целесообразно, если топливо подают в зоне образования скорости, сравнительно больших чисел Маха (М=3-4).

Детонационная волна (ДВ) гаснет при попадании в зону недостаточного смешения, возникающая при этом ударная волна (УВ) не может преодолеть сверхзвуковой поток и дойти до топливных сопел и воздухозаборника. Детонационная волна (ДВ) движется по камере сгорания 4 и части камеры смешения 3. При поступлении в зону недостаточного смешения происходит самогашение детонационной волны за счет попадания в «бедную» смесь.

Прохождению ударной волны в воздухозаборник 1 препятствует сверхзвуковой поток в камере смешения 3 со специально подобранным числом Маха. Благодаря подбору степени торможения высокоскоростного потока в воздухозаборнике 1 возникающая при гашении ударная волна не доходит до топливных сопел и воздухозаборника.

Двигатель приспособлен для осуществления способа известными расчетными средствами с помощью изменения геометрических параметров регулирующих элементов камеры сгорания в зависимости от числа Маха потока на входе в камеру сгорания и химического состава поступающей топливо-воздушной газовой смеси и экспериментами (см.: 1. Нетлетон М. Детонация в газах / Под ред. Л.Г. Гвоздевой. М.: Мир, 1989. С.15, 33-39; 2. Митрофанов В.В. Детонация гомогенных и гетерогенных систем. Новосибирск: ИГЛ СО РАН, 2003. 199 с.; 3. Васильев А.А. Особенности применения детонации в двигательных установках. С.129, 141-145; 4. Левин В.А. и др. Инициирование газовой детонации электрическими разрядами. С.235-254; 5. Быковский Ф.А. и др. Инициирование детонации в потоках водородно-воздушных смесей. С.521-539 / Импульсные Детонационные Двигатели. Под ред. С.М. Фролова. М.: Торус-Пресс, 2006. 592 с.).

В случае наилучшего выполнения, топливные сопла системы 2 были расположены на входе камеры смешения 3 и выполнены открытыми для постоянной подачи топлива в поток с требуемым расходом. Сверхзвуковая скорость потока в камере смешения 3 выполнена с расчетом на сверхзвуковую скорость потока, при которой ударная волна, возникающая при погасании детонационной волны после ее попадания в зону недостаточно смешанной горючей смеси, не доходит до топливных пилонов и до воздухозаборника 1. Воздухозаборник 1 выполнен так, что его контур тормозит набегающий высокоскоростной поток воздуха до чисел Маха (М=3-4) и скорости, которая меньше скорости детонационной волны, но больше скорости ударной волны, возникающей при погасании детонационной волны.

Такая конструкция расширяет диапазон скоростей полета летательного аппарата до чисел Маха 5-8.

Способ функционирования детонационно-дефлаграционного пульсирующего прямоточного воздушно-реактивного двигателя для высоких скоростей полета состоит в том, что на вход сверхзвуковой камеры смешения 3 через сверхзвуковой воздухозаборник 1 подают воздух, а через топливные сопла системы 2 - топливо. За соплами в сверхзвуковой камере смешения 3 формируют горючую смесь, направляют ее в камеру сгорания 4 и заполняют нишу 5. В нише воспламенителем 6 инициируют первичное воспламенение и горение смеси, переходящее в детонацию. Дальнейшую работу двигателя обеспечивают, направив возникшую детонационную волну против потока за счет выбора его сверхзвуковой скорости меньшей, чем скорость детонационной волны. После прихода в зону недостаточного смешения вблизи топливных сопел детонационная волна гаснет, порождая ударную волну, которая движется против потока со скоростью, меньшей скорости сверхзвукового потока. Потоком сносит контактный разрыв с близкими к нему очагами медленного горения и волну разрежения. Возникшие при погасании детонационной волны очаги медленного горения поток сносит в зону хорошего смешения, где образуется «богатая» горючая смесь. При работе двигателя на «богатой» горючей смеси очаги образуют сплошной фронт, реализуют переход от дефлаграции к детонации, обеспечивая периодичность процесса. Таким образом, детонационная волна всегда движется против потока между сечением перехода от дефлаграции к детонации (сечение УВ) и сечением недостаточно перемешанной смеси вблизи топливных сопел системы 2, где существование детонационной волны невозможно.

В обеспечение исследований по детонационным двигателям создана экспериментальная установка, моделирующая работу камер смешения и сгорания в режиме «присоединенного трубопровода» (требуемый сверхзвуковой поток воздуха на входе в камеры смешения или сгорания создает сверхзвуковое сопло). При моделировании на ней работы предлагаемого способа обнаружено, что при постоянной подаче водородного топлива для коэффициентов избытка воздуха от 1 до 1.4 пульсирующий процесс с гаснущими и вновь возникающими идущими против потока детонационными волнами реализуется. Реализуется устойчивый пульсирующий режим работы, заведомо более высокочастотный, чем в СПДВРД.

Для рабочего процесса можно ожидать высоких топливной экономичности, полноты сгорания и температуры продуктов сгорания.

При числах Маха полета М=5-8 реализуемый процесс горения требует меньшего, чем в ПВРД (прямоточном воздушно-реактивном двигателе) и СПВРД (ПВРД со сверхзвуковым горением) торможения потока (до М=3-4 на выходе из воздухозаборника), снижая теплонапряженность тракта двигателя.

Таким образом, предлагаемое изобретение при отсутствии обеспечивающих пульсирующий режим работы двигателя механических клапанов:

расширяет диапазон скоростей полета летательных аппаратов до чисел Маха М=5-8;

при числах Маха полета М=5-8 уменьшает теплонапряженность тракта двигателя;

обеспечивает постоянство расхода топлива и недопущение до воздухозаборника ударных волн, движущихся против потока.


СПОСОБ ОРГАНИЗАЦИИ ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННОГО ГОРЕНИЯ И ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННЫЙ ПУЛЬСИРУЮЩИЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ
СПОСОБ ОРГАНИЗАЦИИ ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННОГО ГОРЕНИЯ И ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННЫЙ ПУЛЬСИРУЮЩИЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 221.
07.12.2018
№218.016.a4a0

Устройство для фиксации резьбового соединения

Изобретение относится к области резьбовых соединений, а именно к устройству для фиксации резьбового соединения. Технический результат, достигаемый при осуществлении предлагаемого изобретения, заключается в обеспечении реализации эффекта самоподтягивания резьбового соединения за счет...
Тип: Изобретение
Номер охранного документа: 0002674240
Дата охранного документа: 05.12.2018
12.12.2018
№218.016.a58e

Способ определения напряжений в колеблющейся лопатке

Использование: для определения напряжений в колеблющейся лопатке. Сущность изобретения заключается в том, что задают частоту колебаний лопатки, поддерживают ее постоянной и на заданной частоте измеряют значения амплитуды колебаний в заданной точке лопатки, измеряют межплоскостное расстояние...
Тип: Изобретение
Номер охранного документа: 0002674408
Дата охранного документа: 07.12.2018
20.12.2018
№218.016.a961

Устройство для фиксации болтового соединения фланцев вращающегося трубопровода

Изобретение относится к области резьбовых соединений, а именно к устройствам для фиксации болтовых соединений фланцев вращающегося трубопровода. Сущность изобретения состоит в том, что устройство для фиксации болтового соединения фланцев вращающегося трубопровода включает фиксатор положения...
Тип: Изобретение
Номер охранного документа: 0002675457
Дата охранного документа: 19.12.2018
23.12.2018
№218.016.aa4a

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой заключается в том, что сжатый воздух из регулируемого вентилятора разделяют на поток первого контура и поток второго контура. Для формирования потока третьего контура канал третьего контура подключают через...
Тип: Изобретение
Номер охранного документа: 0002675637
Дата охранного документа: 21.12.2018
26.12.2018
№218.016.aa91

Способ изготовления диска осевой турбомашины

Изобретение относится к области двигателестроения, а именно к способам изготовления дисков для осевых турбомашин, в частности дисков высокотемпературных турбин газотурбинных двигателей. Диск турбомашины выполняют в виде единой детали методом трехмерной печати, для чего формируют ступицу и...
Тип: Изобретение
Номер охранного документа: 0002675735
Дата охранного документа: 24.12.2018
29.12.2018
№218.016.aca4

Устройство для определения температуры газовой среды в газотурбинных двигателях

Изобретение относится к области контактных измерений параметров высокотемпературных газов, в частности к средствам измерения температуры газа и распределения ее значений в полостях высокотемпературных элементов газотурбинных двигателей, и может быть применено для экспериментальных исследований...
Тип: Изобретение
Номер охранного документа: 0002676237
Дата охранного документа: 26.12.2018
11.01.2019
№219.016.ae5e

Способ изготовления составного керамического стержня для литья полых изделий

Изобретение относится к области литейного производства и может быть использовано при отливке полых лопаток газотурбинных двигателей. При изготовлении составного стержня из керамической массы изготавливают основной стержень (1) с выступами (2) на наружной поверхности и обжигают его. Из...
Тип: Изобретение
Номер охранного документа: 0002676721
Дата охранного документа: 10.01.2019
13.01.2019
№219.016.af81

Устройство формирования образцов тонких покрытий

Изобретение относится к области технической физики и может быть использовано для формирования образцов тонких покрытий, применяемых при испытании на когезионную прочность растяжением при повышенных температурах. Сущность: устройство включает по меньшей мере два кольцевых элемента, каждый из...
Тип: Изобретение
Номер охранного документа: 0002676953
Дата охранного документа: 11.01.2019
20.02.2019
№219.016.bca1

Способ определения температурных временных характеристик термоиндикаторных красок

Изобретение относится к области измерения температуры с помощью термоиндикаторных красок и может найти применение, в частности, при термометрировании узлов двигателя. Сущность: наносят термоиндикаторную краску на препарированный термопарами металлический образец симметричного сечения....
Тип: Изобретение
Номер охранного документа: 0002265196
Дата охранного документа: 27.11.2005
20.02.2019
№219.016.bcd6

Устройство для определения параметров пульсирующего потока

Изобретение относится к области газовой динамики. Устройство содержит насадок, оснащенный определителем направления потока, соединенным с блоком коррекции положения насадка относительно направления потока, блок цифрового преобразования и регистрации аналоговых сигналов, блок определения...
Тип: Изобретение
Номер охранного документа: 0002285244
Дата охранного документа: 10.10.2006
Показаны записи 111-120 из 120.
17.04.2019
№219.017.1626

Реактивное сопло с регулируемой высотностью

Изобретение относится к области ракетостроения, а более конкретно к реактивным соплам с регулируемой высотностью. В реактивном сопле с регулируемой высотностью, содержащем в сверхзвуковой части одну или несколько кольцевых щелей, перекрываемых секторными заслонками, шарнирно закрепленными по...
Тип: Изобретение
Номер охранного документа: 0002322607
Дата охранного документа: 20.04.2008
19.04.2019
№219.017.2e2d

Способ изготовления пластин для теплообменников

Изобретение предназначено для производства плоских заготовок для теплообменников с рельефом заданной формы на одной из сторон пластины. Способ включает продольную горячую прокатку в горизонтальных валках. Возможность получения заготовок для теплообменников заданной формы высокой точности по...
Тип: Изобретение
Номер охранного документа: 0002393932
Дата охранного документа: 10.07.2010
09.05.2019
№219.017.4c93

Осевой компрессор для транспортировки природного газа

Изобретение относится к компрессоростроению и используется для транспортировки природного газа. Осевой компрессор для транспортировки природного газа содержит корпус с лопатками направляющих аппаратов и ротор с рабочими лопатками. Задачей предлагаемого изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002312254
Дата охранного документа: 10.12.2007
20.05.2019
№219.017.5cca

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя содержит твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса,...
Тип: Изобретение
Номер охранного документа: 0002688054
Дата охранного документа: 17.05.2019
09.06.2019
№219.017.7ac9

Способ подготовки под пайку поверхности детали из высокопрочной стали, легированной ванадием, молибденом и вольфрамом

Изобретение может быть использовано при пайке сборочных единиц, состоящих из тонкостенных деталей из высокопрочных сталей, в частности, в авиационной и космической технике. Деталь нагревают при температуре от 900°С до 1000°С в течение от 3 до 8 минут. Проводят последующее разрыхление...
Тип: Изобретение
Номер охранного документа: 0002355527
Дата охранного документа: 20.05.2009
19.06.2019
№219.017.868e

Шумоглушащее сопло воздушно-реактивного двигателя (варианты)

Изобретение относится к области авиации, в частности к соплам летательных аппаратов с устройствами для снижения шума струи воздушно-реактивного двигателя. Предложено три варианта шумоглушащего сопла. В первом варианте канал сужающегося плоского сопла воздушно-реактивного двигателя с вырезами на...
Тип: Изобретение
Номер охранного документа: 0002313680
Дата охранного документа: 27.12.2007
19.06.2019
№219.017.896d

Пилон - автовоспламенитель топлива

Изобретение относится к прямоточным воздушно-реактивным двигателям. Пилон содержит переднее и заднее тела аэродинамического профиля. Тела пилона выполнены трубчатыми. Пилон содержит, по меньшей мере, две трубки, расположенные одна за другой с закругленной передней кромкой. Трубки одним концом...
Тип: Изобретение
Номер охранного документа: 0002428576
Дата охранного документа: 10.09.2011
10.07.2019
№219.017.aead

Способ изготовления сварно-паяной конструкции крупногабаритного сопла камеры жидкостного ракетного двигателя

Изобретение относится к ракетной технике, к способу изготовления сопла камеры сгорания жидкостного ракетного двигателя. Способ изготовления сварно-паяной конструкции крупногабаритного сопла камеры жидкостного ракетного двигателя, состоящего из соединенных между собой стальных внутренней и...
Тип: Изобретение
Номер охранного документа: 0002323363
Дата охранного документа: 27.04.2008
15.05.2023
№223.018.57b1

Установка для газодинамических испытаний

Изобретение относится к испытаниям авиационной и ракетной техники. Установка для газодинамических испытаний содержит испытательную камеру (1) и генератор (7) газового потока. В генераторе (7) газового потока установлен эжектор (25), имеющий канал (26) активной среды первой ступени со...
Тип: Изобретение
Номер охранного документа: 0002767554
Дата охранного документа: 17.03.2022
16.06.2023
№223.018.7c5d

Способ коррекции математической модели жидкостного ракетного двигателя

Изобретение относится к ракетно-космической области, в частности к жидкостным ракетным двигателям (ЖРД), и предназначено для построения математической модели конкретного экземпляра двигателя, применяемой при повторных огневых испытаниях. Способ основан на использовании текущих измеренных в...
Тип: Изобретение
Номер охранного документа: 0002749497
Дата охранного документа: 11.06.2021
+ добавить свой РИД