×
20.02.2019
219.016.bca1

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНЫХ ВРЕМЕННЫХ ХАРАКТЕРИСТИК ТЕРМОИНДИКАТОРНЫХ КРАСОК

Вид РИД

Изобретение

№ охранного документа
0002265196
Дата охранного документа
27.11.2005
Аннотация: Изобретение относится к области измерения температуры с помощью термоиндикаторных красок и может найти применение, в частности, при термометрировании узлов двигателя. Сущность: наносят термоиндикаторную краску на препарированный термопарами металлический образец симметричного сечения. Неравномерно нагревают данный образец электрическим током до выбранной температуры. Одновременно охлаждают токоподводы. Выдерживают образец заданное время. Снимают поле температуры образца. Определяют расстояния от условно выбранной точки на образце до точек препарирования термопар и линии перехода цвета индикаторной краски. Строят график распределения температуры по длине образца. Определяют по этому графику температуры цветового перехода. Технический результат: расширение возможностей, повышение оперативности. 1 ил.

Изобретение относится к области измерения температуры с помощью термоиндикаторных красок, которые дают возможность определить максимальную температуру поверхности детали, установить места перегрева и наибольших напряжений из-за градиента температуры, измерить температуру в труднодоступных местах, на вращающихся деталях без привлечения сложной аппаратуры. Термоиндикаторные краски могут быть использованы при термометрировании узлов двигателя: валов турбин, замков рабочих лопаток, сопловых и рабочих лопаток, лабиринтных уплотнений, корпусов турбин, дисков турбины, камер сгорания.

Известен способ исследования термоиндикаторной краски на трубчатой печи (см. Б.Г.Абрамович и др. Термоиндикаторы и их применение. М.: Энергия, 1972 г., с.50). Термоиндикаторную краску наносят на металлический образец достаточной длины для установки его до центра печи. Нагревают печь до необходимой температуры, выдерживают определенное время при этой температуре (время выдержки зависит от свойств термоиндикаторной краски) и выключают. После охлаждения образец вынимают из печи. На нем определяют местонахождение температурного перехода (расстояние до температурного перехода отсчитывают от торца образца, находящегося в середине печи) термоиндикаторной краски и для данной температуры по заранее измеренному температурному полю печи, определяют температуру цветового перехода термоиндикаторной краски методом графического построения. Процесс нагрева трубчатой градиентной печи до 1000°С составляет ˜ 90 минут.

Изучение зависимости температурных переходов термоиндикаторной краски от времени теплового воздействия (температурно-временная характеристика термоиндикаторных красок), т.е. tкр=f(τ) в интервале 1 мин≤τq≤300 мин показало, что при 1 мин≤τq≤90 мин для большинства термоиндикаторных красок критическая температура зависит от времени теплового воздействия, причем d tкр/d τq<0. Особенно сильно эта зависимость проявляется при малом времени теплового воздействия. При τq>90 мин для большинства термоиндикаторных красок критическая температура не зависит от времени нагревания, т.е. d tкр/d τq=0.

Однако область применения трубчатых градиентных печей для исследования термоиндикаторных красок весьма узко из-за большой инерционности процесса нагрева, а полное исследование температурно-временных характеристик термоиндикаторных красок практически невозможно из-за большой продолжительности процесса нагрева.

Наиболее близким по технической сущности к предлагаемому является способ измерения коэффициента теплопроводности термопокрытий (Б.Г.Абрамович и др. Цветовые термоиндикаторы температуры. М.: Энергия, 1978, с.55-56). Способ заключается в нагревании электрическим током образца заданного переменного сечения, на который наносится термокраска, с охлаждаемыми токоподводами, температура контролируется термопарами.

Так как в способе получают равномерное поле температуры по образцу, то определение временных характеристик красок становится невозможным из-за отсутствия градиента температуры.

Задачей данного изобретения является создание возможности определения температурных временных характеристик термоиндикаторных красок за счет измерения опытным путем распределения температуры по образцу в любой момент времени при заданной температуре.

Поставленная задача достигается тем, что в способе определения температурных временных характеристик термоиндикаторных красок, заключающемся в неравномерном нагревании электрическим током металлического образца заданного сечения, на который нанесена краска, и определении расстояний до мест изменения цвета краски с последующим определением по графику температур цветового перехода, образец изготавливают симметричного сечения, нагрев образца производят до выбранной температуры с одновременным охлаждением токоподводов, а перед определением расстояний до мест изменения цвета краски выдерживают образец заданное время и снимают поле температуры образца.

На фиг.1 схематично изображено устройство для определения температурных временных характеристик термоиндикаторных красок.

Предлагаемый способ определения температурных временных характеристик термоиндикаторных красок заключается в следующем:

1) Наносят термоиндикаторную краску на препарированный термопарами металлический образец заданного симметричного сечения.

2) Нагревают данный образец электрическим током до выбранной температуры (в зависимости от типа термоиндикаторной краски, на 20°С выше критической температуры, режим контролируется по термопаре, расположенной в середине образца). Одновременно охлаждают токоподводы, например, холодной водой.

3) Выдерживают образец заданное время.

4) Снимают распределение поля температуры по длине образца (опытным путем замеряют температуру в местах препарирования термопар по длине образца).

5) Определяют расстояние от условно выбранной точки "О" на образце до точек препарирования термопар и линии перехода цвета термоиндикаторной краски.

6) Строят график распределения температуры по длине образца и определяют по нему температуру цветового перехода.

Предлагаемое устройство для определения температурных временных характеристик термоиндикаторных красок состоит из нагревательной системы 1, измерительной системы 2, системы управления работой устройства 3 и системы водяного охлаждения токоподводов 4.

Нагревательная система 1 состоит из трансформатора и охлаждаемых токоподводов. Измерительная система 2 состоит из термопар, термопарного переключателя и цифрового вольтметра. Система управления 3 состоит из двух автотрансформаторов и амперметра. Система охлаждения 4 состоит из резервуара с водой, насоса, системы контроля давления и водоохлаждаемых токоподводов.

Принцип действия устройства заключается в обеспечении плавного нагрева образца с нанесенной на его поверхность термоиндикаторной краской в диапазоне температур (38...1350)°С, выдержкой необходимого времени при заданной температуре.

Рассмотрим пример определения временных температурных характеристик термоиндикаторной краски ТИ-905.

1) Наносят краску на металлический образец заданного сечения, например 96×24×1, препарированный семью термопарами.

2) Закрепляют образец на токоподводах.

3) Подключают термопары к измерительной системе 2.

4) Подают через систему 4 охлаждающую воду.

5) Подают на металлический образец электрический ток. Процесс нагрева контролируется по центральной термопаре (расположенной в центре образца) и останавливается при достижении температуры, необходимой для образования цветового перехода краски, выраженной в мВ.

6) Выдерживают необходимое время (время стабилизации краски). Для данной краски это время составляет 15 мин.

7) Снимают показания термопар.

№ термопары1234567
Показания, мВ25,4032,3236,6037,3236,532,0325,01

8) Отключают нагрев пластины.

9) После охлаждения образца производят измерение расстояний от точки "0" до места приварки термопар и расстояний до мест изменения цвета термокраски.

№ термопары1234567
Расстояние, мм061626364652

Положение цветового перехода - 14 и 37,5 мм.

10) Строят график распределения температуры по длине образца

Показания термопар:
Координата061626364652
Т (мВ)25,432,3236,637,3236,532,0325,01

Температуры переходов:
Координата1437,5
Т(мВ)36,2336,21
Т Гград.)905905

Данный способ позволяет исследовать как уже известные термоиндикаторные краски на применимость их на различных металлах, так и проводить исследование новых разрабатываемых красок с возможной последующей метрологической аттестацией как средства измерения полей температуры с точностью ±6°С на изотерме в диапазоне (38...1350)°С.

Способопределениятемпературныхвременныххарактеристиктермоиндикаторныхкрасок,заключающийсявнеравномерномнагреванииэлектрическимтокомметаллическогообразцасимметричногосечения,препарированноготермопарами,накоторыйнанесенатермоиндикаторнаякраска,нагревобразцапроизводятдовыбраннойтемпературысодновременнымохлаждениемтокопроводов,отличающийсятем,чтовыдерживаютобразецпризаданнойтемпературедозаданноговремени,снимаютполетемпературыобразца,определяютрасстоянияотусловновыбраннойточкинаобразцедоточекпрепарированиятермопарилиниипереходацветатермоиндикаторнойкраски,строятграфикраспределениятемпературыподлинеобразца,покоторомуопределяюттемпературыцветовогоперехода.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 204.
10.02.2013
№216.012.23f8

Система регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины

Изобретение относится к системе регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины и позволяет уменьшить воздействие осевой силы на радиально-упорный подшипник передней части составного ротора турбомашины путем перераспределения по заданному закону избыточной силы на...
Тип: Изобретение
Номер охранного документа: 0002474710
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2458

Способ мультиантенной электростатической диагностики газотурбинных двигателей на установившихся и неустановившихся режимах работы

Изобретение относится к области диагностики технического состояния газотурбинных двигателей. Технический результат - повышение эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002474806
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2baa

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель и способ функционирования двигателя

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002476705
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c7c

Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области авиационной техники. По замерам полетной информации определяют величину R идеальной тяги двигателя как R=R- GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе...
Тип: Изобретение
Номер охранного документа: 0002476915
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.33c5

Способ изготовления интегрального блиска с охлаждаемыми рабочими лопатками, интегральный блиск и охлаждаемая лопатка для газотурбинного двигателя

Отдельные охлаждаемые лопатки из монокристаллического сплава соединяют с дисковой частью из гранулируемого сплава в единую деталь горячим изостатическим прессованием (ГИП) в зоне, где длительные прочности этих сплавов одинаковы при одной и той же температуре в длительном рабочем режиме...
Тип: Изобретение
Номер охранного документа: 0002478796
Дата охранного документа: 10.04.2013
10.05.2013
№216.012.3e2d

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, а также устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания....
Тип: Изобретение
Номер охранного документа: 0002481484
Дата охранного документа: 10.05.2013
20.06.2013
№216.012.4d6c

Газодинамический воспламенитель

Изобретение может быть использовано в авиационных и ракетных двигателях и стендовых газоструйных устройствах. Газодинамический воспламенитель содержит полый корпус, стержневой газоструйный излучатель со сверхзвуковым кольцевым соплом, резонатор с цилиндрической полостью, соединительную камеру с...
Тип: Изобретение
Номер охранного документа: 0002485402
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5497

Газогенератор гтд

Газогенератор газотурбинного двигателя содержит двухступенчатый центробежный компрессор, камеру сгорания и, по меньшей мере, одну осевую ступень турбины, связанную с компрессором по оси в единый ротор, установленный в статоре на подшипниках качения. Рабочие колеса ступеней компрессора и турбины...
Тип: Изобретение
Номер охранного документа: 0002487258
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d9f

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания и способ управления ее работой

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания содержит осевой компрессор, турбину, теплообменник-рекуператор, каталитическую камеру сгорания, соединяющий их газовоздушный канал, топливную систему с форсункой, систему автоматического...
Тип: Изобретение
Номер охранного документа: 0002489588
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6526

Способ определения коэффициента сухого трения фрикционных пар при быстро осциллирующих перемещениях

Изобретение относится к области исследований и физических измерений. Сущность: одну неподвижную деталь фрикционной пары, выполняющую функцию демпфера, прижимают с варьируемым регулируемым усилием к другой подвижной детали этой пары, совершающей на резонансной частоте быстро осцилирующее...
Тип: Изобретение
Номер охранного документа: 0002491531
Дата охранного документа: 27.08.2013
+ добавить свой РИД