×
10.09.2015
216.013.7a53

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ КОСМИЧЕСКОГО АППАРАТА С НЕПОДВИЖНЫМИ ПАНЕЛЯМИ СОЛНЕЧНЫХ БАТАРЕЙ ПРИ ВЫПОЛНЕНИИ ЭКСПЕРИМЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к космической технике. Способ управления ориентацией космического аппарата (КА) с неподвижными панелями солнечных батарей (СБ) при выполнении экспериментов включает гравитационную ориентацию КА продольной осью вдоль местной вертикали и закрутку вокруг продольной оси, соответствующей минимальному моменту инерции. Дополнительно определяют угол между направлением на Солнце и плоскостью орбиты. Определяют высоту орбиты. КА закручивают вокруг продольной оси с угловой скоростью, направленной в центр Земли или от центра Земли. Выбор направления закрутки зависит от величины угла между направлением на Солнце и плоскостью орбиты. Техническим результатом изобретения является максимизация суммарной освещенности СБ за виток. 3 ил.
Основные результаты: Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов, включающий гравитационную ориентацию космического аппарата продольной осью вдоль местной вертикали и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, отличающийся тем, что определяют угол между направлением на Солнце и плоскостью орбиты с положительным направлением отсчета угла по вектору угловой скорости орбитального движения космического аппарата, определяют высоту орбиты, по которой определяют фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β, при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (0, β) или менее - β космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ω, направленной от центра Земли, где ω - угловая скорость орбитального движения космического аппарата, причем в момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет минимальный угол с вектором угловой скорости орбитального движения космического аппарата, а при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (-β, 0) или более β космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ω, направленной в центр Земли, причем на момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет максимальный угол с вектором угловой скорости орбитального движения космического аппарата, при этом фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β определяют как минимальное превышающее ноль значение угла между направлением на Солнце и плоскостью орбиты, при котором освещенность активной поверхности солнечных батарей за виток при закрутке космического аппарата с одними вышеописанными параметрами закрутки равна освещенности активной поверхности солнечных батарей за виток при закрутке космического аппарата с другими вышеописанными параметрами закрутки.

Изобретение относится к области космической техники и может быть использовано при управлении ориентацией космических аппаратов (КА) при выполнении экспериментов и исследований.

Известен способ управления ориентацией КА, включающий выставку осей КА и поддержание углового положения с помощью двигателей ориентации (Алексеев К.Б., Бебенин Г.Г. Управление космическими летательными аппаратами. - М.: Машиностроение, 1974).

Однако для использования данного способа необходимо расходовать рабочее тело, что вызывает, кроме того, непрогнозируемые микроускорения на борту КА.

Известен способ ориентации КА, включающий выставку оси КА, соответствующей минимальному моменту инерции, на центр Земли и орбитальное смещение КА (Беляев М.Ю. Научные эксперименты на космических кораблях и орбитальных станциях. - М.: Машиностроение, 1984). Данный способ используется для КА, имеющих вытянутую форму, т.е. когда момент инерции относительно продольной оси значительно (в разы) меньше момента инерции относительно поперечных осей.

Данный способ позволяет поддерживать одноосную гравитационную ориентацию без дополнительного расхода рабочего тела на ее поддержание и тем самым, например, снизить уровень микроперегрузок, действующих на КА, но не обеспечивает учета освещенности солнечных батарей (СБ) для обеспечения требуемого для экспериментов прихода электроэнергии.

Известен способ управления ориентацией КА с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка (Патент РФ №2457158, приоритет от 22.09.2010, МПК (2006.01) B64G 1/24, 1/44 - прототип), включающий гравитационную ориентацию КА и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, при нахождении Солнца в плоскости орбиты совмещают плоскость СБ с плоскостью орбиты к моменту прохождения утреннего терминатора, измеряют и отслеживают угол между перпендикуляром к активной поверхности СБ и направлением на Солнце, а закрутку КА вокруг продольной оси в направлении, соответствующем уменьшению измеряемого и отслеживаемого угла между перпендикуляром к активной поверхности СБ и направлением на Солнце, осуществляют в момент прохождения утреннего терминатора с угловой скоростью из диапазона значений ω=360°/T÷720°/T, где T - период обращения КА по орбите.

При управлении КА по способу-прототипу солнечное излучение поступает на СБ с направлений, отстоящих от нормали к рабочей поверхности СБ, вследствие чего генерируемый СБ ток отличается от максимального тока, который способны генерировать СБ. В то же время при выполнении ряда экспериментов, в которых используется энергоемкая аппаратура, желательно обеспечить максимально возможный съем электроэнергии с СБ. Кроме того, предложенный в способе-прототипе диапазон скоростей закрутки КА не охватывает некоторые возможные значения скорости закрутки КА, при которых обеспечивается устойчивость гравитационной ориентации ряда КА.

Задачей, на решение которой направлено настоящее изобретение, является повышение прихода электроэнергии от СБ КА при выполнении экспериментов и исследований в условиях вращательного движения КА.

Технический результат предлагаемого изобретения заключается в максимизации интегральной освещенности рабочей поверхности СБ за виток в режиме закрутки КА при поддержании одноосной гравитационной ориентации КА.

Технический результат достигается тем, что в способе управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов, включающем гравитационную ориентацию космического аппарата продольной осью вдоль местной вертикали и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, дополнительно определяют угол между направлением на Солнце и плоскостью орбиты с положительным направлением отсчета угла по вектору угловой скорости орбитального движения космического аппарата, определяют высоту орбиты, по которой определяют фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β*, при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (0, β*) или менее -β* космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ωо, направленной от центра Земли, где ωо - угловая скорость орбитального движения космического аппарата, причем в момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет минимальный угол с вектором угловой скорости орбитального движения космического аппарата, а при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (-β*, 0) или более β* космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ωо, направленной в центр Земли, причем на момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет максимальный угол с вектором угловой скорости орбитального движения космического аппарата, при этом фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β* определяют как минимальное превышающее ноль значение угла между направлением на Солнце и плоскостью орбиты, при котором освещенность активной поверхности солнечных батарей за виток при закрутке космического аппарата с одними вышеописанными параметрами закрутки равна освещенности активной поверхности солнечных батарей за виток при закрутке космического аппарата с другими вышеописанными параметрами закрутки.

Суть предлагаемого изобретения поясняется на фиг.1÷3.

На фиг.1 и 2 представлены схемы ориентации СБ КА при поддержании гравитационной ориентации КА продольной осью вдоль местной вертикали с закруткой КА вокруг продольной оси с предлагаемыми параметрами закрутки.

На фиг.3 представлены графики, иллюстрирующие определение фиксируемого значения угла между направлением на Солнце и плоскостью орбиты β*.

На фиг.1 и 2 введены обозначения:

1 - орбита КА;

2 - противосолнечная точка витка орбиты;

3, 4 - точки утреннего и вечернего терминаторов соответственно;

5 - активная поверхность СБ,

V - вектор скорости КА,

N - нормаль к активной поверхности СБ;

W - вектор угловой скорости закрутки КА вокруг продольной оси,

P - проекция солнечного направления на плоскость орбиты;

Поясним предложенные в способе действия.

Определяют угол β между направлением на Солнце и плоскостью орбиты КА с положительным направлением отсчета угла по вектору угловой скорости орбитального движения КА. Направление вектора угловой скорости орбитального движения КА совпадает с направлением нормали к плоскости орбиты.

Определяют высоту орбиты, по которой определяют фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β*.

При значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (0, β*) или менее -β* выполняют гравитационную ориентацию КА продольной осью вдоль местной вертикали с закруткой КА вокруг продольной оси с угловой скоростью 3·ωо, направленной от центра Земли, где ωо - модуль угловой скорости орбитального движения КА, при этом ориентацию КА в момент закрутки выбирают из условия, что в момент прохождения противосолнечной точки витка нормаль к активной поверхности СБ составляет минимальный угол с вектором угловой скорости орбитального движения КА. Схема ориентации СБ в данной закрутке для случая, когда нормаль к активной поверхности СБ перпендикулярна продольной оси КА, представлена на фиг.1. Данные параметры закрутки КА условно называем «первым» вариантом параметров закрутки.

При значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (-β*, 0) или более β* выполняют гравитационную ориентацию КА продольной осью вдоль местной вертикали с закруткой КА вокруг продольной оси с угловой скоростью 3·ωо, направленной в центр Земли, при этом ориентацию КА в момент закрутки выбирают из условия, что в момент прохождения противосолнечной точки витка нормаль к активной поверхности СБ составляет максимальный угол с вектором угловой скорости орбитального движения КА. Схема ориентации СБ в данной закрутке для случая, когда нормаль к активной поверхности СБ перпендикулярна продольной оси КА, представлена на фиг.2. Данные параметры закрутки КА условно называем «вторым» вариантом параметров закрутки.

Гравитационную ориентации КА продольной осью вдоль местной вертикали и закрутку КА вокруг продольной оси с описанными параметрами закрутки выполняют, например, следующим образом.

Выполняют построение гравитационной ориентации КА продольной осью вдоль местной вертикали, для чего ориентируют КА продольной осью вдоль местной вертикали и придают КА вращение вокруг оси, направленной по нормали к плоскости орбиты КА с угловой скоростью, равной угловой скорости орбитального движения КА.

На фоне данной гравитационной ориентации КА при β≤-β* или 0≤β≤β* разворачивают КА вокруг его продольной оси до достижения к моменту закрутки (к моменту выдачи импульса закрутки) углом между проекцией нормали к активной поверхности СБ на плоскость местного горизонта и вектором угловой скорости орбитального движения КА значения

и углом между проекцией нормали к активной поверхности СБ на плоскость местного горизонта и вектором скорости КА значения

где Δt - интервал времени от момента прохождения противосолнечной точки витка орбиты до момента закрутки,

и в момент достижения вышеупомянутыми углами задаваемых значений выполняют закрутку КА вокруг продольной оси с угловой скоростью 3·ωо, направленной от центра Земли.

При -β*≤β≤0 или β*≤β разворачивают КА вокруг его продольной оси до достижения к моменту закрутки углом между проекцией нормали к активной поверхности СБ на плоскость местного горизонта и вектором угловой скорости орбитального движения КА значения

и углом между проекцией нормали к активной поверхности СБ на плоскость местного горизонта и вектором скорости КА значения

и в момент достижения вышеупомянутыми углами задаваемых значений выполняют закрутку КА вокруг продольной оси с угловой скоростью 3·ωо, направленной в сторону центра Земли.

Таким образом, первый и второй вышеописанные варианты закрутки КА вокруг продольной оси реализуются путем построения на момент закрутки исходной ориентации КА, задаваемой соответствующими углами (1)-(2) и (3)-(4).

Предложенное значение угловой скорости закрутки КА 3·ωо удовлетворяет условию обеспечения необходимой степени устойчивости поддержания гравитационной ориентации такого типа КА как, например, транспортный грузовой корабль (ТГК) «Прогресс», у которого поперечные главные центральные моменты инерции примерно в 7 раз превышают минимальный главный центральный момент инерции. Необходимая степень устойчивости поддержания гравитационной ориентации КА соответствует такому процессу вращения КА, при котором отклонение продольной оси данного КА от местной вертикали, возникающее за счет компонент угловой скорости вокруг поперечных осей, в необходимой степени компенсируется за счет вращения КА вокруг продольной оси, и вместе с тем вращение КА вокруг продольной оси не приводит к гироскопической устойчивости данной оси КА в инерциальном пространстве.

Фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β* определяется как минимальное положительное ненулевое значение угла между направлением на Солнце и плоскостью орбиты, при котором освещенность активной поверхности СБ за виток при закрутке КА с одними вышеописанными параметрами закрутки равна освещенности активной поверхности СБ за виток при закрутке КА с другими вышеописанными параметрами закрутки.

Параметры выполняемой закрутки КА выбираются из двух вышеописанных вариантов в зависимости от текущего значения угла между направлением на Солнце и плоскостью орбиты β и от определяемого по высоте орбиты КА фиксируемого значения угла между направлением на Солнце и плоскостью орбиты β*.

Значение β* определяется следующим образом. Обозначим:

I1 - суммарная освещенность активной поверхности СБ за виток при закрутке КА вокруг его продольной оси с угловой скоростью 3·ωо, направленной от центра Земли, при которой в момент прохождения противосолнечной точки витка нормаль к активной поверхности СБ составляет минимальный угол с вектором угловой скорости орбитального движения КА («первый» вариант параметров закрутки),

I2 - суммарная освещенность активной поверхности СБ за виток при закрутке КА вокруг его продольной оси с угловой скоростью 3·ωо, направленной в центр Земли, причем на момент прохождения противосолнечной точки витка нормаль к активной поверхности СБ составляет максимальный угол с вектором угловой скорости орбитального движения КА («второй» вариант параметров закрутки).

Освещенность СБ характеризуется косинусом угла между направлением на Солнце и нормалью к активной поверхности СБ.

I1 и I2 являются функциями угла между направлением на Солнце и плоскостью орбиты β и от высоты орбиты КА H. Следовательно, значение β*, определяемое как минимальное положительное ненулевое значение угла между направлением на Солнце и плоскостью орбиты, при котором I1=I2, также зависит от высоты орбиты КА.

Для иллюстрации определения значения β* на фиг.3 представлены графики зависимостей I1(β,H), I2(β,H) от угла β (Ряды 1 и 2, соответственно) для КА, нормаль к активной поверхности СБ которого перпендикулярна продольной оси КА (например, транспортный грузовой корабль (ТГК) «Прогресс») для высоты околокруговой орбиты КА H=350 км. Графики I1(β,H) и I2(β,H) пересекаются в точках I1(β,H)=I2(β,H), достигаемых при β=±β*, β*≈41,5°. Значение β* зависит от высоты орбиты: например, для H=300 км β*≈46,5°, для H=400 км β*≈36,5°. Кроме этого равенство I1(β,H)=I2(β,H) выполняется при любой высоте орбиты КА при расположении Солнца в плоскости орбиты (при β=0) и на солнечных орбитах (при , где Re - радиус Земли).

Представленные графики иллюстрируют следующую зависимость, используемую при выборе параметров закрутки КА:

- при β≤-β* и при 0≤β≤β* I1≥I2, поэтому в этом случае выполняют закрутку КА с первым описанным вариантом параметров закрутки, чем обеспечивают максимальную освещенность СБ КА за виток при данных значениях β;

- при -β*≤β≤0 и при β*≤β I1≤I2, поэтому в этом случае выполняют закрутку КА со вторым описанным вариантом параметров закрутки, чем обеспечивают максимальную освещенность СБ КА за виток при данных значениях β.

За счет выполнения предлагаемых действий суммарно за виток будет обеспечиваться максимальная освещенность СБ и, следовательно, будет достигаться максимально возможный для данного конкретного КА приход электроэнергии за виток. При этом предложенное значение угловой скорости закрутки обеспечивает цикличное повторение ориентации СБ относительно потока солнечного излучения на последующих витках - таким образом достигается постоянство снабжения КА необходимой электроэнергией от СБ на всех последующих витках поддержания закрутки КА.

Для иллюстрации этого на фиг.3 также представлены графики суммарных освещенностей активной поверхности СБ за виток при параметрах закрутки, отличных от предложенных:

Ряд 3 - скорость закрутки направлена к центру Земли, в противосолнечной точке витка нормаль к активной поверхности СБ направлена по вектору угловой скорости орбитального движения КА;

Ряд 4 - скорость закрутки направлена от центра Земли, в противосолнечной точке витка нормаль к активной поверхности СБ направлена против вектора угловой скорости орбитального движения КА;

Ряд 5 - скорость закрутки направлена от центра Земли, в противосолнечной точке витка нормаль к активной поверхности СБ лежит в плоскости орбиты (параллельна вектору скорости КА);

Ряд 6 - скорость закрутки направлена к центру Земли, в противосолнечной точке витка нормаль к активной поверхности СБ лежит в плоскости орбиты (параллельна вектору скорости КА).

Представленные графики иллюстрируют, что предлагаемые действия обеспечивают максимизацию суммарной освещенности активной поверхности СБ за виток в зависимости от высоты орбиты и измеряемого угла между направлением на Солнце и плоскостью орбиты КА.

Опишем технический эффект предлагаемого изобретения.

Предлагаемое изобретение повышает приход электроэнергии от СБ КА при выполнении экспериментов и исследований в условиях вращательного движения КА путем обеспечения максимизации суммарной освещенности активной поверхности СБ за виток в режиме закрутки при одноосной гравитационной ориентации КА.

При этом предложенные параметры закрутки КА, удовлетворяя условию обеспечения необходимой степени устойчивости поддержания гравитационной ориентации КА, обеспечивают такое соотношение значений угловой скорости закрутки и орбитальной угловой скорости движения КА, при котором обеспечивается максимальная суммарная освещенность активной поверхности СБ за виток.

В настоящее время технически все готово для реализации предложенного способа в таком КА, как ТГК «Прогресс».

Для реализации определения угла между направлением на Солнце и плоскостью орбиты, разворотов, закрутки и вычислений могут использоваться штатные средства системы управления ТГК «Прогресс» - система управления движением и навигацией, включая систему автономной навигации, солнечные датчики, датчики угловой скорости, двигатели ориентации, бортовой вычислитель и т.д. Закрутка корабля может производиться на время, необходимое для проведения экспериментов, и достигать десятки витков.

Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов, включающий гравитационную ориентацию космического аппарата продольной осью вдоль местной вертикали и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, отличающийся тем, что определяют угол между направлением на Солнце и плоскостью орбиты с положительным направлением отсчета угла по вектору угловой скорости орбитального движения космического аппарата, определяют высоту орбиты, по которой определяют фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β, при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (0, β) или менее - β космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ω, направленной от центра Земли, где ω - угловая скорость орбитального движения космического аппарата, причем в момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет минимальный угол с вектором угловой скорости орбитального движения космического аппарата, а при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (-β, 0) или более β космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ω, направленной в центр Земли, причем на момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет максимальный угол с вектором угловой скорости орбитального движения космического аппарата, при этом фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β определяют как минимальное превышающее ноль значение угла между направлением на Солнце и плоскостью орбиты, при котором освещенность активной поверхности солнечных батарей за виток при закрутке космического аппарата с одними вышеописанными параметрами закрутки равна освещенности активной поверхности солнечных батарей за виток при закрутке космического аппарата с другими вышеописанными параметрами закрутки.
СПОСОБ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ КОСМИЧЕСКОГО АППАРАТА С НЕПОДВИЖНЫМИ ПАНЕЛЯМИ СОЛНЕЧНЫХ БАТАРЕЙ ПРИ ВЫПОЛНЕНИИ ЭКСПЕРИМЕНТОВ
СПОСОБ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ КОСМИЧЕСКОГО АППАРАТА С НЕПОДВИЖНЫМИ ПАНЕЛЯМИ СОЛНЕЧНЫХ БАТАРЕЙ ПРИ ВЫПОЛНЕНИИ ЭКСПЕРИМЕНТОВ
СПОСОБ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ КОСМИЧЕСКОГО АППАРАТА С НЕПОДВИЖНЫМИ ПАНЕЛЯМИ СОЛНЕЧНЫХ БАТАРЕЙ ПРИ ВЫПОЛНЕНИИ ЭКСПЕРИМЕНТОВ
Источник поступления информации: Роспатент

Показаны записи 301-310 из 381.
20.02.2019
№219.016.c038

Система наддува топливных баков

Изобретение относится к космической технике, а точнее к области проектирования и эксплуатации реактивных двигательных установок (РДУ) космических летательных аппаратов (КЛА). В системе наддува топливных баков в каждую пневмомагистраль после газовых редукторов введены два параллельно включенных...
Тип: Изобретение
Номер охранного документа: 0002339835
Дата охранного документа: 27.11.2008
20.02.2019
№219.016.c05f

Способ диагностики нерастворенных газовых включений в заправленных рабочими телами гидравлических системах космических аппаратов

Изобретение относится к космической технике и предназначено для использования, преимущественно, в гидравлических системах терморегулирования пилотируемых космических аппаратов в ходе орбитального полета. Предлагаемый способ включает предварительную разгрузку рабочего тела (РТ) системы от...
Тип: Изобретение
Номер охранного документа: 0002304072
Дата охранного документа: 10.08.2007
20.02.2019
№219.016.c0c1

Устройство подачи термостатирующей среды в отсек ракеты-носителя

Изобретение относится к устройствам воздушного термостатирования объектов, например приборов системы управления полезного груза и других объектов, размещаемых в отсеках ракетных блоков и блоках космической головной части ракеты-носителя, в период их предстартовой подготовки. Устройство согласно...
Тип: Изобретение
Номер охранного документа: 0002368548
Дата охранного документа: 27.09.2009
01.03.2019
№219.016.cf47

Релейный регулятор

Изобретение относится к автоматике и может быть использовано в системах управления различными инерционными объектами, например поворотными платформами, промышленными роботами, летательными аппаратами. Релейный регулятор содержит первое и второе сравнивающие устройства, первый и второй...
Тип: Изобретение
Номер охранного документа: 0002403607
Дата охранного документа: 10.11.2010
11.03.2019
№219.016.d840

Способ формирования меток времени и устройство для его реализации

Изобретение относится к вычислительной и импульсной технике и может быть использовано в системах, использующих программно-временные устройства. Техническим результатом изобретения является упрощение способа и устройства реализации за счет снижения объема преобразуемой информации. Технический...
Тип: Изобретение
Номер охранного документа: 0002391773
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d842

Привод

Изобретение может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Привод содержит корпус (1), размещенный в нем двигатель (2), связанный с выступающим из корпуса со стороны его первого торца (3) выходным валом (4), а также датчик (16) угла поворота. Вал...
Тип: Изобретение
Номер охранного документа: 0002391583
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d941

Радиальный вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники, а также в других областях техники. Технический результат заключается в повышении надежности радиального вентилятора за счет устранения возможности...
Тип: Изобретение
Номер охранного документа: 0002354850
Дата охранного документа: 10.05.2009
11.03.2019
№219.016.d96f

Космическая головная часть ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано при проектировании и создании космической головной части. Космическая головная часть ракеты-носителя содержит обтекатель, космический аппарат, состоящий из, по крайней мере одного отсека, на поверхности которого...
Тип: Изобретение
Номер охранного документа: 0002355607
Дата охранного документа: 20.05.2009
11.03.2019
№219.016.d9c7

Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции

Изобретение относится к области очистки или защиты окружающей среды внутри обитаемых орбитальных станций от разрушающего воздействия микроорганизмов. Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции включает периодическое облучение...
Тип: Изобретение
Номер охранного документа: 0002372942
Дата охранного документа: 20.11.2009
11.03.2019
№219.016.d9d4

Резервированный счетчик для формирования меток времени

Использование: в области вычислительной и импульсной техники при построении высоконадежных резервированных систем для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит...
Тип: Изобретение
Номер охранного документа: 0002379829
Дата охранного документа: 20.01.2010
Показаны записи 301-310 из 360.
18.05.2018
№218.016.50e7

Способ контроля готовности космонавта к выполнению полетных операций

Изобретение относится к методам обучения экипажей космических аппаратов. Способ включает воспроизведение заданий одному или нескольким космонавтам (К), регистрацию параметров, характеризующих выполнение К заданий, сравнение полученных данных с задаваемыми значениями и определение уровня...
Тип: Изобретение
Номер охранного документа: 0002653219
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.526f

Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает определение угла между нормалью к рабочей поверхности СБ и нормалью к плоскости орбиты КА при условии минимального затенения СБ конструкцией КА. Измеряют также угол между направлением на Солнце и...
Тип: Изобретение
Номер охранного документа: 0002653891
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.52b6

Способ определения производительности установленной на космическом аппарате солнечной батареи с положительной выходной мощностью тыльной поверхности

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает измерение вектора направления на Солнце в инерциальной системе координат, угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также изменения данного угла за виток. При некотором...
Тип: Изобретение
Номер охранного документа: 0002653890
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.57ca

Способ определения временной привязки производимых с космического аппарата снимков земной поверхности

Изобретение относится к космической технике и может быть использовано для определения временной привязки снимков земной поверхности с космического аппарата (КА). В способе определения временной привязки производимых с КА снимков земной поверхности осуществляют генерацию на борту значения...
Тип: Изобретение
Номер охранного документа: 0002654883
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.584e

Способ оценки состояния солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к системам электроснабжения космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает ориентацию СБ на Солнце, измерение на последовательных витках орбиты угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также тока СБ в моменты...
Тип: Изобретение
Номер охранного документа: 0002655089
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5b10

Способ контроля производительности солнечной батареи космического аппарата на бестеневых орбитах

Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает ориентацию нормали к рабочей поверхности СБ на Солнце (под углом α) и измерение тока СБ. На последовательных витках орбиты измеряют угол β между направлением на Солнце и плоскостью орбиты КА...
Тип: Изобретение
Номер охранного документа: 0002655561
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5bcd

Способ зондирования верхней атмосферы

Изобретение относится к космической технике и может быть использовано для зондирования верхней атмосферы. Сущность: измеряют и прогнозируют орбиту космического аппарата. Определяют момент времени начала зондирования верхней атмосферы. Выпускают с космического аппарата на тросе капсулу с научной...
Тип: Изобретение
Номер охранного документа: 0002655645
Дата охранного документа: 29.05.2018
26.07.2018
№218.016.7570

Способ определения плотности атмосферы на высоте полета космического аппарата

Изобретение относится к методам и средствам наблюдения свободно движущегося по орбите космического аппарата (КА), ориентацию которого поддерживают с помощью гиродинов. При этом измеряют параметры движения центра масс и параметры вращательного движения КА. По параметрам ориентации КА и положению...
Тип: Изобретение
Номер охранного документа: 0002662371
Дата охранного документа: 25.07.2018
26.07.2018
№218.016.75be

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Изобретение относится к системе энергопитания космического аппарата (КА) с солнечными батареями (СБ). Способ включает измерение тока и параметров углового положения СБ. При измерении тока СБ определяют расстояние от Земли до Солнца и поворачивают нормаль к рабочей поверхности СБ до угла Q+ƒ с...
Тип: Изобретение
Номер охранного документа: 0002662372
Дата охранного документа: 25.07.2018
29.08.2018
№218.016.8138

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Изобретение относится к космической технике. Способ контроля системы энергопитания снабженного солнечными батареями (СБ) космического аппарата (КА) включает измерение тока СБ и параметров углового положения СБ, определение параметров эффективности СБ и контроль системы энергопитания по...
Тип: Изобретение
Номер охранного документа: 0002665145
Дата охранного документа: 28.08.2018
+ добавить свой РИД