×
20.07.2015
216.013.62a6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам установления возможности термического совмещения различных конструкционных сталей в плакированных изделиях и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях при проектировании и изготовлении энергетического оборудования. Для обеспечения совместимости конструкционных сталей плакированного изделия способ включает подготовку эталонов из каждой стали, проведение их термоциклирования, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования. Определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона и предел прочности σ для каждой рассматриваемой стали. Сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σ при этой же температуре. По результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов должен быть меньше наименьшего из значений пределов прочности σ. 2 ил., 4 табл., 3 пр.
Основные результаты: Способ определения термической совместимости различных конструкционных сталей в плакированном изделии энергетического оборудования, включающий подготовку эталонов из каждой стали, проведение их термоциклирования, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования, определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона, предел прочности σ для каждой рассматриваемой стали, сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σ при этой же температуре и по результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов меньше наименьшего из значений пределов прочности σ.

Изобретение относится к способам установления возможности термического совмещения различных конструкционных сталей в плакированных изделиях и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях при проектировании и изготовлении энергетического оборудования.

Область техники: одной из особенностей энергетического машиностроения является совмещение разнородных конструкционных материалов, что позволяет для отдельных частей узла применять различные марки сталей, наиболее пригодные для тех температурных, коррозийных, прочностных и других условий, в которых работает данная часть узла энергетического оборудования. Стоит отметить и выполнение различного рода наплавок, позволяющих значительно повысить стойкость поверхности детали или улучшить их сопряжение.

В настоящее время установление термической совместимости конструкционных сталей энергетического оборудования осуществляют посредством оценки возможности свариваемости этих сталей между собой. При этом учитывают наличие концентраторов напряжения, которые снижают прочность и пластичность при высоких температурах. Чувствительность материала к концентрации напряжений выявляется при растяжении цилиндрических образцов со спиральным надрезом и оценивается на основе следующих коэффициентов:

где σд.п.н - длительная прочность надрезанного образца;

δн - пластичность надрезанного образца;

σд.п.г - длительная прочность гладкого образца;

δг - пластичность гладкого образца.

Значения Кσ находятся в пределах (0,5÷1), а Кδ может меняться в большем диапазоне от 0,8 до 0,04; особенно низкие значения Кδ у высокопрочных аустенитных сталей и сплавов на никелевой основе.

В производственной практике термическую совместимость конструкционных сталей устанавливают посредством возможности свариваемости, которую для углеродистых и низколегированных сталей оценивают по качественным показателям: хорошо, удовлетворительно, ограниченно и плохо сваривающиеся стали. Свариваемость оценивается по полному эквиваленту углерода (С), %:

где (С)х - химический эквивалент углерода, %;

(С)р - размерный эквивалент углерода, которым учитывается влияние толщины стенки на закаливаемость материала (стали) вследствие изменения теплоотвода и скорости охлаждения при сварке;

S - толщина стенки, мм.

Как показывает практика, приведенные оценки даже при соблюдении всех технологических мер не всегда обеспечивают требуемые эксплуатационные свойства сварных соединений.

Свариваемость высокохромистых сталей мартенситного (мартенситно-ферритного) класса, аустенитных хромоникелиевых сталей представляет собой значительно более сложную техническую задачу. Установление термической совместимости разнородных материалов в этом случае усложняется в еще большей степени.

Факторами, учитываемыми при расчетах сварных соединений на прочность, являются:

1) при температуре ниже 250°C (для углеродистых сталей и стали 12Х1МФ) - временное сопротивление σв;

2) при температуре ниже 260-420°C (для углеродистых сталей) и ниже 550°C (для стали 12Х18Н10Т) - предел текучести σт;

3) при температуре выше 420°C (для углеродистых сталей), выше 470°C (для стали 12Х1МФ), выше 550°C (для сталей 12Х18Н10Т и 12Х18Н12Т) - предел длительной прочности σд.п.

Кроме этих факторов, могут быть учтены химический состав разнородных материалов, толщина стенки свариваемых труб, температура эксплуатации и другие.

Перечисленные подходы далеко не всегда обеспечивают необходимую работоспособность двух разнородных материалов при температуре эксплуатации и имеют следующие недостатки.

В частности, за критерий длительной прочности σд.п обычно принимают напряжение, при котором происходит разрушение в течение заданного срока службы. Следовательно, для деталей котло- и реакторостроения необходимо устанавливать напряжение разрушения за весь период эксплуатации, составляющий 100-300 тысяч часов и более. В этом заключается трудность применения критериев длительной прочности, так как приходится прибегать к ненадежным дальним экстраполяциям. Построение же точной математической зависимости между напряжением и временем не представляется возможным, так как разрушение металла является сложным и многофакторным процессом, определяется не только температурой и давлением, но и химическим и фазовым составом, структурой, технологией изготовления, условиями термической обработки и т.д., учесть которые в условиях изменяющихся высокоинтенсивных тепловых потоков и знакопеременных нагрузок - задача исключительной трудности.

В процессе эксплуатации теплоэнергетического оборудования при наличии градиентов температур, давлений среды, изгибающих и растягивающих нагрузок в стали происходит фазовая перекристаллизация, изменение атомно-дислокационной структуры, распад твердых растворов и перераспределение легирующих элементов с ростом концентрационной неоднородности, диспергирование и рост зерен, изменение и формирование новых фазовых и межзеренных границ и многие другие процессы, которые проявляются возникновением внутренних структурных напряжений I и II рода. Структурные напряжения II рода определяют внутризеренный характер разрушения. Наиболее опасны внутренние структурные напряжения I рода - зональные, доминантно влияющие на разрушение материала по границам зерен. Таким образом, внутренние микронапряжения отражают структурное состояние, определяют реальную прочность и могут сравниваться с механическими характеристиками прочности для данного металла.

Влияние микроструктурных характеристик в виде напряжений I и II рода на прочностные свойства и критерии длительной прочности (жаропрочности) обычно не учитывается. Применительно к критерию прочности σв - временному сопротивлению разрушению, который является мерой кратковременной прочности и макроскопической характеристикой, это означает, что σв определяется при полном разрушении, тогда как в образце, когда он еще не разрушен, уже существуют микроповреждения I и II рода.

Таким образом, недостатком известных способов является то, что они не содержат параметры микроструктуры, следовательно, приведенные выражения (1-3) не позволяют предположить, каким образом внутренние микронапряжения при работе металла в условиях ползучести при наличии механических и термических знакопеременных нагрузок повлияют на макроскопические свойства сопряженных разнородных элементов и их ресурсные характеристики. В этой связи недоучет внутренних напряжений ограничивает возможности создания высоконадежных теплообменных устройств, работающих в условиях высоких термомеханических нагрузок.

Задача заявляемого изобретения - установление возможности термического совмещения различных конструкционных сталей в плакированном изделии при изготовлении энергетического оборудования.

Поставленная задача достигается тем, что в заявленном способе подготавливают эталон из каждой стали, проводят их термоциклирование, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования. Определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона и предел прочности σв для каждой рассматриваемой стали. Сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σв при этой же температуре. По результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов должен быть меньше наименьшего из значений пределов прочности σв.

Остаточные напряжения первого рода (зональные) эталона, вызывающие коробление, удлинение, формоизменение, растрескивание с полной потерей прочности конструкционного материала, определяют по формуле:

где ai - параметр кристаллической решетки при температуре термоциклирования ti;

ai-1 - параметр кристаллической решетки для холодного состояния эталона предыдущего термоцикла;

ti - температура термоциклирования;

Е - модуль упругости.

Под термоциклированием подразумевают нагревание до определенной температуры, определение методом рентгеновской дифракции параметра элементарной кристаллической решетки в нагретом состоянии агор, охлаждение до комнатной температуры, определение методом рентгеновской дифракции параметра элементарной кристаллической решетки в охлажденном состоянии aхол, а затем повторение этой последовательности действий с повышением температуры в каждом цикле нагрева.

Для пояснения способа установления термической совместимости различных конструкционных сталей в плакированном изделии энергетического оборудования приведены следующие данные экспериментов.

В таблице 1 приведены результаты определения параметра элементарной кристаллической решетки при термоциклировании эталона из стали 12Х1МФ.

В таблице 2 приведены результаты вычисления остаточных напряжений первого рода для эталона из стали 12Х1МФ.

В таблице 3 приведены результаты определения параметра элементарной кристаллической решетки при термоциклировании эталона из стали 08Х18Н10Т.

В таблице 4 приведены результаты вычисления остаточных напряжений первого рода для эталона из стали 08Х18Н10Т.

На фиг. 1 показана зависимость остаточных напряжений первого рода для эталона из стали 12Х1МФ от температуры термоциклирования ti.

На фиг. 2 показана зависимость остаточных напряжений первого рода эталона из стали 08Х18Н10Т от температуры термоциклирования ti.

Изобретение поясняется следующим примером.

Подготавливают эталон из стали 12Х1МФ, подвергают его термоциклированию (нагревают до температуры 225°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахор; нагревают до температуры 323°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 420°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 517°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 590°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 635°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахор), по результатам которого (таблица 1) вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования (таблица 2). Определяют зависимость остаточных напряжений первого рода для эталона из стали 12Х1МФ от температуры термоциклирования ti (фиг. 1).

Подготавливают эталон из стали 08Х18Н10Т, подвергают его термоциклированию (нагревают до температуры 100°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 200°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 300°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 400°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 500°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 600°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 700°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол), по результатам которого (таблица 3) вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования (таблица 4). Определяют зависимость остаточных напряжений первого рода для эталона из стали 08Х18Н10Т от температуры термоциклирования ti, (фиг. 2).

Определяют предел прочности σв для каждой рассматриваемой стали. Сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σв при этой же температуре и по результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии:

Пример 1. Рабочая температура изделия - оболочки из перлитной стали 12Х1МФ с плакировкой из аустенитной нержавеющей стали 08Х18Н10Т - составляет 450°C. Остаточные напряжения первого рода при соответствующей температуре для стали 12Х1МФ (фиг. 1, точка m11) равны , а остаточные напряжения первого рода при соответствующей температуре для стали 08Х18Н10Т (фиг. 2, точка m12) - .

Определяют предел прочности ав для каждой рассматриваемой стали при температуре 450°C:

- (Масленков С.Б. Стали и сплавы для высоких температур: справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 88, таблица 5.25);

- (Масленков С.Б. Стали и сплавы для высоких температур: справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 228, таблица 8.6).

Сравнивают модуль разности остаточных напряжений первого рода при соответствующей температуре термоциклирования эталонов с наименьшим из значений предела прочности σв:

Модуль разности остаточных напряжений первого рода при температуре 450°C меньше, чем наименьшее из значений предела прочности σв для исследуемых сталей. Следовательно, термическое совмещение конструкционных сталей 12Х1МФ и 08Х18Н10Т при изготовлении плакированных изделий энергетического оборудования, работающего при температуре 450°C, возможно.

Пример 2. Рабочая температура изделия - оболочки из перлитной стали 12Х1МФ с плакировкой из аустенитной нержавеющей стали 08Х18Н10Т - составляет 500°C. Остаточные напряжения первого рода при соответствующей температуре для стали 12Х1МФ (фиг. 1, точка m21) равны , а остаточные напряжения первого рода при соответствующей температуре для стали 08Х18Н10Т (фиг. 2, точка m22) - .

Определяют предел прочности σв для каждой рассматриваемой стали при температуре 500°C:

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 88, таблица 5.25);

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. -М.: Металлургия, 1991. - 383 с, страница 228, таблица 8.6).

Сравнивают модуль разности остаточных напряжений первого рода при соответствующей температуре термоциклирования эталонов с наименьшим из значений предела прочности σв:

Модуль разности остаточных напряжений первого рода при температуре 500°C меньше, чем наименьшее из значений предела прочности σв для исследуемых сталей. Следовательно, термическое совмещение конструкционных сталей 12Х1МФ и 08Х18Н10Т при изготовлении плакированных изделий энергетического оборудования, работающего при температуре 500°C, возможно.

Пример 3. Рабочая температура изделия - оболочки из перлитной стали 12Х1МФ с плакировкой из аустенитной нержавеющей стали 08Х18Н10Т - составляет 550°C. Остаточные напряжения первого рода при соответствующей температуре для стали 12Х1МФ (фиг. 1, точка m31) равны , а остаточные напряжения первого рода при соответствующей температуре для стали 08Х18Н10Т (фиг. 2, точка m32) - .

Определяют предел прочности σв для каждой рассматриваемой стали при температуре 550°C:

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с, страница 88, таблица 5.25);

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 228, таблица 8.6).

Сравнивают модуль разности остаточных напряжений первого рода при соответствующей температуре термоциклирования эталонов с наименьшим из значений предела прочности σв:

Модуль разности остаточных напряжений первого рода при температуре 550°C больше, чем наименьшее из значений предела прочности σв для исследуемых сталей. Следовательно, термическое совмещение конструкционных сталей 12Х1МФ и 08Х18Н10Т при изготовлении плакированных изделий энергетического оборудования, работающего при температуре 550°C, невозможно.

Способ определения термической совместимости различных конструкционных сталей в плакированном изделии энергетического оборудования, включающий подготовку эталонов из каждой стали, проведение их термоциклирования, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования, определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона, предел прочности σ для каждой рассматриваемой стали, сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σ при этой же температуре и по результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов меньше наименьшего из значений пределов прочности σ.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 152.
10.09.2015
№216.013.7943

Торфосодержащая магнезиальная композиция

Изобретение относится к области производства строительных материалов и может быть использовано при изготовлении изделий, применяемых для малоэтажного строительства, а также для тепло- и звукоизоляции жилых, административных и промышленных зданий. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002562632
Дата охранного документа: 10.09.2015
10.10.2015
№216.013.81f7

Способ разрушения горных пород

Способ предназначен для дробления и измельчения электрическими импульсными разрядами горных пород, в том числе содержащих ограночное сырье. Горную породу размещают в жидкости. Жидкость заполняет корпус (3) с электродами (4, 7). На высоковольтный электрод (4) подают импульс высокого напряжения....
Тип: Изобретение
Номер охранного документа: 0002564868
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.89bc

Устройство для сжигания жидкого и газообразного топлива

Изобретение относится к теплоэнергетике, а именно к области энергетического машиностроения, и позволяет обеспечить эффективность и экологичность сжигания жидкого и газообразного топлива. Устройство содержит корпус, канал рециркуляции, регулирующую заслонку и выхлопную трубу. В корпусе...
Тип: Изобретение
Номер охранного документа: 0002566863
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8a58

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытания на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002567019
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8aa5

Способ определения рения (vii) в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из интерметаллического соединения recu

Изобретение относится к аналитической химии и может быть использовано для анализа вод различного происхождения: питьевые воды, геотермальные источники, смывы хвостов обогащения, а также технологические сливы. Способ определения рения (VII) в водных растворах методом инверсионной...
Тип: Изобретение
Номер охранного документа: 0002567096
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8d18

Способ определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии на модифицированном электроде

Изобретение относится к фармацевтической промышленности, в частности к способу определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии на модифицированном фталоцианином кобальта Co(II) платиновом электроде. Способ определения суммарной антиоксидантной...
Тип: Изобретение
Номер охранного документа: 0002567727
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.94b2

Способ получения влагостойкого композитного топлива из торфа

Изобретение относится к способу получения твердого композитного топлива из торфа, который включает термическую обработку торфа при температуре 200-500°C без доступа воздуха, смешивание связующего с измельченным углеродистым остатком, формирование из полученной смеси брикета и его сушку, при...
Тип: Изобретение
Номер охранного документа: 0002569685
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9504

Способ определения скорости гравитационного оседания частиц летучей золы выбросов промышленных предприятий в приземном слое атмосферы

Изобретение относится к области исследования или анализа материалов с помощью нейтронно-активационного анализа мхов-биомониторов. Способ заключается в том, что в заданном направлении от промышленного предприятия на разных расстояниях от 1 до 5 км отбирают не менее 5 образцов эпифитного мха...
Тип: Изобретение
Номер охранного документа: 0002569767
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.956f

Способ ручной электродуговой сварки плавящимся электродом модулированным током

Изобретение относится к способу ручной электродуговой сварки плавящимся электродом модулированным током. На ток паузы налагают дополнительные импульсы сварочного тока, следующие с частотой не менее 50 Гц. Амплитуду и длительность дополнительных импульсов устанавливают равной номинальному...
Тип: Изобретение
Номер охранного документа: 0002569874
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9570

Способ получения материала, содержащего гексаборид лантана и диборид титана

Изобретение относится к порошковой металлургии, а именно к получению материалов с использованием самораспространяющегося высокотемпературного синтеза. Прессуют цилиндрическую заготовку из механически активированной смеси порошков оксида титана TiO, оксида лантана LaO и бора, полученную...
Тип: Изобретение
Номер охранного документа: 0002569875
Дата охранного документа: 27.11.2015
Показаны записи 131-140 из 244.
20.08.2014
№216.012.e994

Способ измерения угловой скорости вращения трехфазного асинхронного электродвигателя

Изобретение относится к измерительной технике и может быть использовано в электроприводах для измерения угловой скорости вращения в установившихся и переходных режимах. Способ заключается в измерении мгновенных значений фазных токов i, i и напряжений u, u на фазах А и В, подводимых к статору,...
Тип: Изобретение
Номер охранного документа: 0002525604
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ea88

Система зажигания

Изобретение относится к области транспорта и может быть использовано для выработки импульсов высокого напряжения, образующих искру между электродами свечей зажигания и распределения высоковольтных импульсов по цилиндрам двигателя в необходимой последовательности. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002525848
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ed3d

Способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров

Изобретение может быть использовано в химической промышленности. Наноразмерные оксиды металлов получают химической реакцией окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в качестве которого используют импульсный электронный пучок энергией...
Тип: Изобретение
Номер охранного документа: 0002526552
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee4a

Способ количественного определения молочной кислоты методом вольтамперометрии на стеклоуглеродном электроде

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения молочной кислоты, используемой во многих областях пищевой промышленности, ветеринарии, косметологии и играющей огромную роль в физиологическом процессе человека. Задачей заявляемого...
Тип: Изобретение
Номер охранного документа: 0002526821
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.eec8

Способ разрушения многокомпонентных изделий

Изобретение относится к области переработки и утилизации вторичного сырья. Способ разрушения многокомпонентных изделий, состоящих из металлических элементов с прикрепленными к ним изоляционными элементами, включающий создание в них поля механических напряжений, превышающих предел их...
Тип: Изобретение
Номер охранного документа: 0002526947
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f1fc

Способ диагностики острого токсического повреждения печени

Изобретение относится к медицине и касается диагностики острого токсического повреждения печени крыс. Способ заключается в выделении липидов, а именно в том, что добавляют 25 мкг 10% раствора тезита при одновременном перемешивании смеси с помощью шейкера при 20°C и частоте колебаний 120 в...
Тип: Изобретение
Номер охранного документа: 0002527770
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f51f

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модицифированном коллоидными частицами золота

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе модельных водных растворов методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой. Способ определения глутатиона заключается в определении...
Тип: Изобретение
Номер охранного документа: 0002528584
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f523

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство содержит источник импульсного тока, в котором к первому выводу вторичной...
Тип: Изобретение
Номер охранного документа: 0002528588
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fcb9

Устройство для защиты двух параллельных линий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты двух параллельных линий. Технический результат заключается в повышении надежности устройства. Для этого заявленное устройство содержит с первого по третье реле тока, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002530543
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcbc

Способ улавливания и локализации летучих форм радиоактивного йода из газообразных выбросов

Изобретение относится к атомной энергетике и экологии и может быть использовано при авариях на АЭУ, сопровождающихся нарушением целостности защитной оболочки и самого реактора, когда в окружающее воздушное пространство происходит выброс радионуклидов, продуктов деления ядерного топлива, когда...
Тип: Изобретение
Номер охранного документа: 0002530546
Дата охранного документа: 10.10.2014
+ добавить свой РИД