×
27.05.2015
216.013.4ece

Результат интеллектуальной деятельности: ОПОРА РОТОРНОЙ МАШИНЫ (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002551692
Дата охранного документа
27.05.2015
Аннотация: Группа изобретений относится к газотурбинному двигателестроению и может найти применение в конструкциях опор газотурбинных двигателей авиационного и наземного применения с керамическим подшипником. Опора роторной машины содержит керамический подшипник качения (1), наружное кольцо (2) которого установлено в металлическом корпусе (3), а внутреннее кольцо (4) на металлическом роторе (5). По первому варианту исполнения, наружная посадочная поверхность (6) кольца (2) и ответная посадочная поверхность (7) корпуса (3) выполнены коническими. Со стороны торца кольцо (2) дополнительно снабжено кольцевым элементом (8) с торцевым фланцем (9), выполненными с кольцом (2) за одно целое, а корпус (3) со стороны торца дополнительно снабжен кольцевым элементом (10) с торцевым фланцем (11), выполненными с корпусом (3) за одно целое, причем фланцы (9, 11) механически соединены друг с другом. По второму варианту исполнения, внутренняя посадочная поверхность (14) кольца (4) и ответная посадочная поверхность (15) ротора (5) выполнены коническими. Со стороны торца кольцо (4) дополнительно снабжено кольцевым элементом (16) с торцевым фланцем (17), выполненными с кольцом (4) за одно целое, а ротор (5) со стороны торца дополнительно снабжен кольцевым элементом (18) с торцевым фланцем (19), выполненными с ротором (5) за одно целое, причем фланцы (17, 19) механически соединены друг с другом. Следует отметить, что возможно выполнение обоих вариантов в одном устройстве. Технический результат: обеспечение работоспособности керамического подшипника в опоре за счет сохранения посадок наружного и внутреннего колец подшипника в корпусе и на валу в широком температурном диапазоне в процессе работы. 2 н. и 4 з.п. ф-лы, 1 ил.

Предлагаемая группа изобретений относится к газотурбинному двигателестроению и может найти применение в конструкциях опор газотурбинных двигателей авиационного и наземного применения с керамическим подшипником.

Известно техническое решение, представляющее собой опору роторной машины, содержащую керамический подшипник качения, наружное кольцо которого установлено в металлическом корпусе, а внутреннее кольцо на металлическом роторе (US 2008/0101735 А1, дата публикации 01.05.2008).

Данное техническое решение принято в качестве прототипа.

Вышеприведенному техническому решению присущи следующие недостатки:

Для сохранения центрирующей посадки наружного керамического кольца подшипника в корпусе металлического статора создается искусственный натяг в холодном состоянии, уменьшение которого происходит в процессе повышения температуры опоры при работе из-за разности коэффициентов термического расширения керамических и металлических материалов. Поэтому монтаж наружного кольца подшипника возможен только при разогретом корпусе статора. Это затрудняет демонтаж подшипника, что негативно сказывается на эксплуатации опоры при переборках и дефектации. Внутреннее кольцо обжимается двумя распорками, которые свинчиваются по резьбе. При этом усилие затяжки должно обеспечивать наличие упругой деформации торцов распорок при обжатии керамического внутреннего кольца подшипника. Это необходимо для удержания внутреннего кольца при повышении температуры, что негативно влияет на резьбовое соединение. Однако такая фиксация внутреннего кольца подшипника не обеспечивает стабильной посадки на валу.

Задачей предлагаемых изобретений является создание опоры роторной машины, в которой устранены вышеизложенные недостатки.

Техническим результатом, достигаемым заявленными изобретениями, является обеспечение работоспособности керамического подшипника в опоре за счет сохранения посадок наружного и внутреннего колец подшипника в корпусе и на валу в широком температурном диапазоне в процессе работы.

Для решения поставленной задачи с достижением заявляемого технического результата в известной опоре роторной машины, содержащей керамический подшипник качения, наружное кольцо которого установлено в металлическом корпусе, а внутреннее кольцо на металлическом роторе, согласно первому варианту исполнения, наружная посадочная поверхность наружного кольца подшипника и ответная посадочная поверхность металлического корпуса выполнены коническими, причем со стороны торца наружное кольцо подшипника дополнительно снабжено кольцевым элементом с торцевым фланцем, выполненными с упомянутым наружным кольцом подшипника за одно целое, при этом со стороны торца металлический корпус дополнительно снабжен кольцевым элементом с торцевым фланцем, выполненными с металлическим корпусом за одно целое, причем торцевые фланцы наружного кольца подшипника и металлического корпуса механически соединены друг с другом.

Такое крепление наружного керамического кольца подшипника позволяет сохранить требуемую посадку в металлическом корпусе. При увеличении температуры будет образовываться зазор между металлическим корпусом и керамическим наружным кольцом в радиальном направлении, из-за того, что коэффициент термического расширения (КТР) металлического корпуса в несколько раз выше КТР керамического материала. Так как наружное кольцо подшипника торцем механически связано с торцом корпуса через кольцевые элементы, коническая посадочная поверхность наружного кольца подшипника будет смещаться в осевом направлении относительно конической посадочной поверхности корпуса, восстанавливая требуемую величину посадки, т.е. снижая зазор. Интенсивность этого смещения зависит как от радиальных размеров кольца, так и от размера кольцевого элемента.

Предпочтительно соединять торцевые фланцы наружного кольца подшипника и металлического корпуса друг с другом посредством болтового соединения.

Такое механическое соединение наиболее технологично по сборке.

Предпочтительно между фланцами наружного кольца подшипника и металлического корпуса установить регулировочное кольцо.

Регулировочное кольцо необходимо для задания требуемой величины посадки по коническим поверхностям.

Для решения поставленной задачи с достижением заявляемого технического результата в известной опоре роторной машины, содержащей керамический подшипник качения, наружное кольцо которого установлено в металлическом корпусе, а внутреннее кольцо на металлическом роторе, согласно второму варианту исполнения, внутренняя посадочная поверхность внутреннего кольца подшипника и ответная посадочная поверхность металлического ротора выполнены коническими, причем со стороны торца внутреннее кольцо подшипника дополнительно снабжено кольцевым элементом с торцевым фланцем, выполненными с внутренним кольцом подшипника за одно целое, при этом со стороны торца металлический ротор дополнительно снабжен кольцевым элементом с торцевым фланцем, выполненными с металлическим ротором за одно целое, причем фланцы внутреннего кольца подшипника и металлического корпуса механически соединены друг с другом.

Такое крепление внутреннего керамического кольца подшипника позволяет сохранить требуемую посадку на металлическом роторе. При увеличении температуры будет образовываться натяг между металлическим ротором и керамическим внутренним кольцом в радиальном направлении, из-за того, что коэффициент термического расширения (КТР) металлического ротора в несколько раз выше КТР керамического материала. Так как внутреннее кольцо подшипника торцом механически связано с торцом ротора через кольцевые элементы, коническая посадочная поверхность внутреннего кольца подшипника будет смещаться в осевом направлении относительно конической посадочной поверхности ротора, восстанавливая требуемую величину посадки, т.е. снижая натяг. Интенсивность этого смещения зависит как от радиальных размеров кольца, так и от размера кольцевого элемента.

Предпочтительно соединять торцевые фланцы внутреннего кольца подшипника и металлического ротора друг с другом посредством болтового соединения.

Такое механическое соединение наиболее технологично по сборке.

Предпочтительно между фланцами наружного кольца подшипника и металлического ротора установить регулировочное кольцо.

Регулировочное кольцо необходимо для задания требуемой величины посадки по коническим поверхностям.

Следует отметить, что возможно выполнение предложенной опоры роторной машины, совмещающей оба вышеприведенных варианта.

Предложенное техническое решение поясняется графически, где на фигуре 1 представлена опора роторной машины, в которой реализованы оба варианта исполнения.

Опора роторной машины содержит керамический подшипник качения 1, наружное кольцо 2 которого установлено в металлическом корпусе 3, а внутреннее кольцо 4 - на металлическом роторе 5. Наружная посадочная поверхность 6 наружного кольца подшипника и ответная посадочная поверхность 7 металлического корпуса выполнены коническими, причем со стороны торца наружное кольцо подшипника дополнительно снабжено кольцевым элементом 8 с торцевым фланцем 9, выполненными с упомянутым наружным кольцом подшипника за одно целое. При этом со стороны торца металлический корпус дополнительно снабжен кольцевым элементом 10 с торцевым фланцем 11, выполненными с металлическим корпусом за одно целое. Причем торцевые фланцы наружного кольца подшипника и металлического корпуса механически соединены друг с другом посредством болтового соединения 12. Также между фланцами наружного кольца и металлического корпуса установлено регулировочное кольцо 13.

Также внутренняя посадочная поверхность 14 внутреннего кольца подшипника и ответная посадочная поверхность 15 металлического ротора выполнены коническими, причем со стороны торца внутреннее кольцо подшипника дополнительно снабжено кольцевым элементом 16 с торцевым фланцем 17, выполненными с внутренним кольцом подшипника за одно целое. При этом со стороны торца металлический ротор дополнительно снабжен кольцевым элементом 18 с торцевым фланцем 19, выполненными с металлическим ротором за одно целое, причем фланцы внутреннего кольца подшипника и металлического корпуса механически соединены друг с другом посредством болтового соединения 20. Также между фланцами внутреннего кольца подшипника и металлического ротора установлено регулировочное кольцо 21.

При увеличении температуры образуется зазор между металлическим корпусом 3 и керамическим наружным кольцом 2 в радиальном направлении по коническим поверхностям 6 и 7, из-за того, что коэффициент термического расширения (КТР) металлического корпуса в несколько раз выше КТР керамического материала. Так как наружное кольцо подшипника торцом 9 механически связано с торцом 11 корпуса через кольцевые элементы 8 и 10, коническая посадочная поверхность наружного кольца подшипника будет смещаться в осевом направлении относительно конической посадочной поверхности корпуса, восстанавливая требуемую величину посадки, т.е. снижая зазор.

При увеличении температуры будет образовываться натяг между металлическим ротором 5 и керамическим внутренним кольцом 4 в радиальном направлении, из-за того, что коэффициент термического расширения (КТР) металлического ротора в несколько раз выше КТР керамического материала. Так как внутреннее кольцо подшипника торцом 17 механически связано с торцом 19 ротора через кольцевые элементы 16 и 18, коническая посадочная поверхность 14 внутреннего кольца подшипника будет смещаться в осевом направлении относительно конической посадочной поверхности 15 ротора, восстанавливая требуемую величину посадки, т.е. снижая натяг.

В связи с вышеизложенным, специалисту на основании уровня техники должно быть очевидно, что каждым из предложенных вариантов исполнения заявленного устройства достигается указанный технический результат, при этом, возможно выполнение обоих вариантов в одном устройстве.


ОПОРА РОТОРНОЙ МАШИНЫ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 251-256 из 256.
19.01.2018
№218.016.05b0

Рабочее колесо четвёртой ступени ротора компрессора высокого давления (квд) турбореактивного двигателя (варианты), диск рабочего колеса ротора квд, лопатка рабочего колеса ротора квд, лопаточный венец рабочего колеса ротора квд

Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения. Рабочее колесо четвертой ступени вала ротора КВД ТРД содержит диск и образующие лопаточный венец рабочие лопатки. Диск включает ступицу с центральным отверстием, полотно и обод. Лопатка содержит...
Тип: Изобретение
Номер охранного документа: 0002630919
Дата охранного документа: 14.09.2017
19.01.2018
№218.016.088e

Рабочее колесо осевого компрессора газотурбинного двигателя

Изобретение относится к области турбо-машиностроения, в частности к авиационному моторостроению, и может быть использовано в рабочих колесах осевых компрессоров газотурбинных двигателей (ГТД). В известном рабочем колесе осевого компрессора газотурбинного двигателя, включающем установленные на...
Тип: Изобретение
Номер охранного документа: 0002631850
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.1336

Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя

Изобретение относится к области турбомашиностроения, в частности может быть использовано в конструкции рабочих колес осевых компрессоров газотурбинных двигателей. Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя содержит диск, на наружной поверхности которого...
Тип: Изобретение
Номер охранного документа: 0002634507
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.134f

Торцевое контактное уплотнение ротора турбомашины

Изобретение относится к уплотнительной технике, а именно к уплотнениям турбомашин компрессоров авиационных газотурбинных двигателей, и предназначено для разделения масляной и воздушной сред. Торцевое контактное уплотнение ротора турбомашины содержит втулку, установленную на валу и...
Тип: Изобретение
Номер охранного документа: 0002634510
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1b72

Механизм передачи крутящего момента агрегатам турбореактивного двигателя (трд), центральная коническая передача (цкп) трд, главная коническая шестерённая пара цкп трд, корпус цкп трд, ведущее зубчатое коническое колесо цкп, ведомое зубчатое коническое колесо цкп, узел цкп трд

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам...
Тип: Изобретение
Номер охранного документа: 0002636626
Дата охранного документа: 24.11.2017
17.02.2018
№218.016.2a8e

Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя

Изобретение относится к области турбомашиностроения, в частности, может быть использовано в конструкции рабочих колес осевых компрессоров газотурбинных двигателей. Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя содержит диск с кольцевым пазом и лопатки. Между...
Тип: Изобретение
Номер охранного документа: 0002642976
Дата охранного документа: 29.01.2018
Показаны записи 261-270 из 274.
07.09.2018
№218.016.847d

Опора ротора турбомашины с консистентной смазкой

Изобретение относится к области двигателестроения, в частности, авиационного применения, а именно к устройствам для смазки подшипников роторной машины, работающих на консистентной смазке. Опора ротора турбомашины с консистентной смазкой содержит полый вал (1), корпус (2), подшипник (3) с...
Тип: Изобретение
Номер охранного документа: 0002666108
Дата охранного документа: 05.09.2018
17.03.2019
№219.016.e2be

Рабочее колесо ротора компрессора газотурбинного двигателя

Изобретение относится к области турбомашиностроения, в частности, может быть использовано в конструкциях рабочих колес осевых компрессоров (преимущественно осевых компрессоров низкого давления) газотурбинных двигателей (далее ГТД). Указанный технический эффект достигается тем, что рабочее...
Тип: Изобретение
Номер охранного документа: 0002682217
Дата охранного документа: 15.03.2019
20.03.2019
№219.016.e30e

Устройство для смазки подшипников роторной машины

Изобретение относится к области машиностроения и двигателестроения и может быть использовано в подшипниковых узлах с консистентной смазкой, например в опорах роторов турбомашин с консистентной смазкой. Устройство для смазки подшипников роторной машины включает подшипник, установленный...
Тип: Изобретение
Номер охранного документа: 0002682294
Дата охранного документа: 18.03.2019
21.03.2019
№219.016.eb68

Узел соединения валов ротора низкого давления газотурбинного двигателя

Изобретение относится к газотурбинным двигателям (ГТД) авиационного применения, а именно к конструкции узла соединения роторов компрессора и турбины. Техническим результатом, достигаемым при использовании настоящего изобретения, является: повышение безопасности двухмоторного летательного...
Тип: Изобретение
Номер охранного документа: 0002682462
Дата охранного документа: 19.03.2019
10.04.2019
№219.016.ff53

Способ исследования динамических свойств вращающегося ротора

Изобретение относится к области турбомашиностроения, а именно к способам снижения уровня вибраций турбомашин, и может быть использовано в авиационных газотурбинных двигателях, роторы которых оборудованы упругими опорами. Способ исследования динамических свойств вращающегося ротора осуществляют...
Тип: Изобретение
Номер охранного документа: 0002273836
Дата охранного документа: 10.04.2006
19.04.2019
№219.017.32a1

Узел соединения роторов компрессора и турбины газотурбинного двигателя

Узел соединения роторов компрессора и турбины газотурбинного двигателя относится к авиационному двигателестроению. Устройство содержит валы компрессора и турбины низкого давления, соединенные между собой в осевом направлении через промежуточный вал и установленный в нем регулировочный элемент...
Тип: Изобретение
Номер охранного документа: 0002406848
Дата охранного документа: 20.12.2010
20.04.2019
№219.017.3509

Литейный никелевый сплав с равноосной структурой

Изобретение относится к области металлургии, а именно к литейным сплавам на никелевой основе, и может быть использовано для изготовления деталей, применяемых в газотурбинном двигателестроении, например заготовок дисков и других деталей специального назначения. Литейный никелевый сплав с...
Тип: Изобретение
Номер охранного документа: 0002685455
Дата охранного документа: 18.04.2019
13.06.2019
№219.017.80d8

Регулируемый входной направляющий аппарат компрессора газотурбинного двигателя

Изобретение относится к области конструирования газотурбинного двигателя (далее ГТД), а именно узлов ГТД, служащих для регулирования и управления изменениями газового потока, расположенных в части статора. В известном регулируемом ВНА компрессора ГТД, содержащем направляющие лопатки, каждая из...
Тип: Изобретение
Номер охранного документа: 0002691276
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.8878

Узел соединения роторов компрессора и турбины газотурбинного двигателя

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, а именно к соединению валов компрессора и турбины. Узел соединения роторов компрессора и турбины газотурбинного двигателя содержит валы компрессора и турбины, соединенные между собой. В осевом направлении валы...
Тип: Изобретение
Номер охранного документа: 0002328610
Дата охранного документа: 10.07.2008
10.07.2019
№219.017.acaa

Передняя опора турбины низкого давления двухвального газотурбинного двигателя

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, а именно к размещению опор для вращающихся с большой частотой вращения роторов турбомашин, а также для смазки и охлаждения подшипников и самих опор, и может использоваться в наиболее напряженных опорах. Опора...
Тип: Изобретение
Номер охранного документа: 0002312997
Дата охранного документа: 20.12.2007
+ добавить свой РИД