×
20.04.2015
216.013.42b2

Результат интеллектуальной деятельности: КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ОДНОСТАДИЙНОГО ПОЛУЧЕНИЯ КОМПОНЕНТОВ РЕАКТИВНЫХ И ДИЗЕЛЬНЫХ ТОПЛИВ С УЛУЧШЕННЫМИ НИЗКОТЕМПЕРАТУРНЫМИ СВОЙСТВАМИ ИЗ МАСЛОЖИРОВОГО СЫРЬЯ

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области получения биотоплив, а именно к катализаторам и процессам получения компонентов реактивных и дизельных топлив из масложирового сырья, в том числе с улучшенными низкотемпературными свойствами. Описан катализатор для одностадийного получения компонентов реактивных и дизельных топлив из масложирового сырья, содержащий платину или палладий, закрепленные на поверхности пористого носителя, в качестве которого используют боратсодержащий оксид алюминия, при следующем соотношении компонентов, мас.%: Pt или Pd 0,10-0,50; BO 5-25; AlO - остальное. Катализатор может быть приготовлен путем гранулирования смеси гидрата оксида алюминия псевдобемитной структуры с ортоборной кислотой с последующей сушкой гранул при 120°C и прокаливанием при 550-700°C в течение 16 ч. Гранулы пропитывают растворами гексахлорплатиновой кислоты или хлорида палладия, подвергают сушке при 120°C и прокаливанию при 500°C. Способ одностадийного получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами из масложирового сырья в присутствии предлагаемого катализатора включает в себя пропускание смеси водорода и масложирового сырья через неподвижный слой катализатора при температуре 380°C, давлении 4.0 МПа, массовой скорости подачи сырья 1 ч и при объемном отношении водород:сырье, равном 1300. Технический результат - повышение эффективности одностадийного получения компонентов реактивных и дизельных топлив с улучшеными низкотемпературными свойствами из масложирового сырья за счет упрощения состава катализатора, способа его приготовления и снижения стоимости катализатора. 3 н.п. ф-лы, 4 табл., 4 пр.

Группа изобретений относится к области получения биотоплив, а именно к катализаторам и процессам получения компонентов реактивных и дизельных топлив из масложирового сырья, в том числе с улучшенными низкотемпературными свойствами.

Непрерывный рост потребления углеводородных топлив при росте цен на нефть приводит к необходимости поиска альтернативных моторных топлив. Среди топлив, альтернативных нефтяным, на мировом уровне сегодня в центре внимания так называемые «биотоплива», которые помимо своей высокой экологичности, отличаются таким важным преимуществом, как использование при их производстве возобновляемых, в основном растительных, источников сырья. Об актуальности биотоплив свидетельствует огромный поток как патентных, так и научных публикаций, см. например, обзоры [G.W. Huber, S. Iborra, A. Corma / Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering // Chem. Rev. 2006. V.106. P.4044-4098; С.Д. Варфоломеев, E.H. Ефременко, Л.П. Крылова / Биотоплива // Успехи химии. 2010. Т.79. №6. С.544-564; В.А. Яковлев, С.А. Хромова, В.И. Бухтияров / Гетерогенные катализаторы процессов превращения триглицеридов жирных кислот и их производных в углеводороды топливного назначения // Успехи химии. 2011. Т.80. №10. С.955-970; T.V. Choudhary, СВ. Phillips / Renewable fuels via catalytic hydrodeoxygenation // Appl. Catal. A: General. 2011. V.397. P.1-12].

В промышленном масштабе вырабатывают два главных типа биотоплива первого поколения [R. Cascone / Биотоплива: что еще кроме этанола и биодизеля // Нефтегазовые технологии. 2008. №1. С.84-92]: биоэтанол, который используется как компонент бензина и вырабатывается из сельскохозяйственной продукции, содержащей крахмал или сахар; метиловые эфиры жирных кислот («биодизель»), который производят из растительных масел путем переэтерификации с метанолом.

Во многих странах в последние годы интенсивно разрабатываются технологии переработки масложирового сырья (растительные масла, животные жиры) с получением углеводородных биотоплив, состав которых близок к составу традиционного нефтяного. Наиболее эффективной технологией производства возобновляемого реактивного и дизельного топлива считается каталитическая гидропереработка растительных масел [J.K. Satyarthi, T. Chiranjeevi, D.T. Gokak, P.S. Viswanathan / An overview of catalytic conversion of vegetable oils/fats into middle distillates // Catal. Sci. Technol. 2013. V.3. P.70-80]. В общем случае каталитические превращения масложирового сырья в присутствии водорода включают [G.W. Huber, Р. O′Connor, A. Corma / Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures // Appl. Catal. A: General. 2007. V.329. P.120-129]: гидрирование триглицеридов, их гидрокрекинг с образованием пропана и свободных жирных кислот, а также переход последних в н-алканы C15-C18 за счет реакций декарбоксилирования, декарбонилирования и «восстановления» (гидрирование/дегидратация). «Восстановление» карбоновых кислот представляется как многостадийный процесс, включающий образование на первой стадии спиртов, затем их дегидратацию и насыщение промежуточных алкенов до алканов. Кислород в условиях гидропереработки масложирового сырья удаляется в виде моно- и диоксида углерода, а также в виде воды. Такой вариант гидропереработки масложирового сырья называется гидродеоксигенацией и позволяет с выходом 70-80 мас.% получать, например, из растительных масел, высокоцетановые (более 80 п.) дизельные топлива малой плотности, отличающиеся низким содержанием ароматических углеводородов и практическим отсутствием сернистых соединений.

Для улучшения низкотемпературных свойств компонентов дизельного топлива (снижение температур помутнения и застывания), получающихся при гидродеоксигенации масложирового сырья, дополнительно проводят стадию гидроизомеризации, в результате которой н-алканы переходят в изоалканы. Лидерами в разработке и коммерциализации способов получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами из масложирового сырья на основе последовательного проведения технологических стадий гидродеоксигенации и гидроизомеризации являются компании Neste Oil (Финляндия) и UOP (США).

Компанией Neste Oil разработан процесс NExBTL [М. Сноре, П. Мяки-Арвела, И.Л. Симакова, Ю. Мюллюойа, Д.Ю. Мурзин / Обзор каталитических методов производства биодизельного топлива из натуральных масел и жиров // Сверхкритические флюиды: теория и практика. 2009. Т.4. №1. С.3-17], в котором используются Co, Ni, Mo - сульфидные катализаторы компании Albemarle, а в качестве сырья - различные растительные масла, а также животный жир. Образующиеся на стадии гидродеоксигенации в процессе NExBTL н-алканы могут быть подвергнуты гидроизомеризации с использованием в качестве катализаторов систем Pt/SAPO-11/Al2O3, Pt/ZSM-22/Al2O3, Pt/ZSM-23/Al2O3 или Pt/SAPO-11/SiO2. Получаемое дизельное топливо характеризуется цетановым числом 85-99 п.

Компанией UOP в сотрудничестве с итальянской фирмой Eni S.p.A. разработана технология Ecofining, предназначенная для двухстадийной (гидродеоксигенация-гидроизомеризация) гидропереработки растительных масел в высокоцетановое дизельное топливо, обогащенное изоалканами [P. Nair, A. Bozzano, Т. Kaines / Производство возобновляемого дизельного и реактивного топлива на основе биологического сырья // Нефтегазовые технологии. 2011. №8. С.72-75]. Аналогичные технологии разработаны компаниями Nippon Oil Corp. и Toyota Motor Corp.[H. Ono, H. Iki, A. Koyama, Y. Iguchi / Production of BHD (Bio Hydro fined Diesel) with Improved Cold Flow Properties // 19th Annual Saudi-Japan Symposium, Dhahran, Saudi Arabia, November 8-9, 2009] и компанией Syntroleum [US 7846323, 2010].

Принципиальным недостатком описанных выше способов получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами из масложирового сырья является их двухстадийность, что требует последовательного применения двух катализаторов различной природы, имеющих разные условия эксплуатации. Кроме того, катализаторы на основе цеолитов ZSM или силикоалюмофосфатов типа SAPO, применяемые на стадии гидроизомеризации, дороги и сложны при промышленном производстве, а также вызывают снижение выхода жидких углеводородных продуктов за счет побочных реакций гидрокрекинга и образования легких газов C1-C4.

Более привлекательными являются процессы гидропереработки растительных масел, позволяющие в одну стадию получать топливные компоненты реактивных и дизельных топлив необходимого фракционного состава и с заданными температурами помутнения и застывания. Для организации одностадийного получения низкозастывающих компонентов реактивных и дизельных топлив из масложирового сырья очевидно необходим полифункциональный катализатор, который наряду с активацией молекулярного водорода и атомов кислорода, входящих в состав триглицеридов и производных от них продуктов, должен иметь кислотные свойства, необходимые для протекания реакций изомеризации.

В качестве катализаторов одностадийного превращения растительных масел также были рассмотрены системы на основе цеолитов ZSM или силикоалюмофосфатов типа SAPO, модифицированные благородными металлами (Pt или Pd). При этом металлы, находящиеся в составе таких катализаторов в высокодисперсном состоянии, обеспечивают активацию молекулярного водорода и кислородсодержащих соединений, а цеолитные и силикоалюмофосфатные компоненты определяют протекание реакций изомеризации.

Однако ненасыщенность растительных масел даже при высоких давлениях водорода приводит к быстрому осмолению и к потере активности катализаторов типа Pt/ZSM-22 и Pt/SAPO-11 [С. Wang, Z. Tian, L. Wang, R. Xu, Q. Liu, W. Qu, H. Ma, B. Wang / One-Step Hydrotreatment of Vegetable Oil to Produce High Quality Diesel-Range Alkanes // ChemSusChem. 2012. V.5. P.1974-1983].

Возможность одностадийной гидропереработки подсолнечного масла с получением высокоцетанового дизельного топлива, обогащенного изоалканами, на катализаторе типа Pd/SAPO-31 была показана авторами [Пат. РФ 2376062, 2008], но данные о стабильности работы катализатора были ограничены периодом в 4 ч. Главным недостатком данного изобретения является очень сложный, многостадийный и дорогостоящий способ приготовления исходного силикоалюмофосфата типа SAPO-31. Согласно данным этого патента кристаллический силикоалюмофосфат с цеолитоподобной структурой типа SAPO-31 получают путем приготовления водной реакционной смеси, содержащей источник алюминия, фосфорную кислоту, источник кремния, а также органическое структурообразующее соединение. В качестве источника алюминия можно использовать различные гидратированные оксиды алюминия, алкоголяты алюминия. В качестве источника кремния можно использовать различные формы аморфного диоксида кремния или органические соли кремния. В роли органического структурообразующего соединения могут выступать ди-н-бутиламин или смесь ди-н-бутиламина с ди-н-пропиламином. Для ускорения кристаллизации в реакционную смесь могут вводить затравочный материал в виде предварительно полученных кристаллов SAPO-31. Приготовленную реакционную смесь помещают в автоклав и нагревают в гидротермальных условиях. После окончания кристаллизации твердый продукт отфильтровывают, промывают водой, высушивают и прокаливают. Далее материал SAPO-31 формуют с псевдобемитом, а полученные гранулы вновь сушат и прокаливают.

Наиболее близким по техническому результату к предлагаемому является изобретение «Катализатор, способ его приготовления и способ получения дизельного топлива из сырья природного происхождения» [Пат. РФ 2429909, 2010, прототип]. В данном изобретении тоже описан катализатор на основе кристаллического силикоалюмофосфата с цеолитоподобной структурой типа SAPO-31, модифицированный металлом VIII группы Периодической системы. Предварительное получение кристаллического силикоалюмофосфата с цеолитоподобной структурой типа SAPO-31 и его композиции с оксидом алюминия проводят по способу, описанному в изобретении [Пат. РФ 2376062, 2008]. Для получения катализатора композицию силикоалюмофосфата типа SAPO-31 с оксидом алюминия пропитывают раствором соединения платины и/или палладия из расчета не более 10,0 мас.% металла в составе конечного продукта с последующим высушиванием и окислительной обработкой при температуре не выше 500°C при скорости подъема температуры не выше 20°C/мин. Процесс превращения подсолнечного масла с использованием данного катализатора осуществляют в проточных условиях при температуре 340°C, давлении 4.0 МПа, массовой скорости подачи сырья 1.2 ч-1 и при объемном отношении водород:сырье, равном 1200. В результате показано, что катализатор отличается стабильностью соотношения изоалканы/н-алканы в образующихся жидких продуктах в пределах 15-27% отклонения при продолжительности работы до 84-102 ч. Основными недостатками прототипа являются очень сложный, многостадийный и дорогостоящий способ приготовления исходного силикоалюмофосфата типа SAPO-31 и высокое содержание (не менее 1 мас.%) также дорогостоящих драгоценных металлов (Pt и/или Pd). Кроме того, для способа получения дизельного топлива, предлагаемого в прототипе, не указаны необходимые для практической реализации способа показатели: выход жидких углеводородных продуктов, их групповой и компонентный состав, выход воды.

Изобретение решает задачу разработки катализатора для одностадийного получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами из масложирового сырья, отличающегося более простым компонентным составом, простотой и технологичностью получения, низкой стоимостью, в том числе за счет снижения содержания благородных металлов (Pt, Pd) в 2-4 раза, при сохранении изомеризующих свойств катализатора на стабильном уровне в течение не менее 100 ч.

В качестве решения, обеспечивающего достижение поставленной задачи, предлагается катализатор для одностадийного получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами из масложирового сырья, содержащий платину или палладий, закрепленные на поверхности пористого носителя, отличающийся тем, что в качестве носителя используют боратсодержащий оксид алюминия, при следующем соотношении компонентов в катализаторе, мас.%: Pt или Pd 0,10-0,50; B2O3 5-25; Al2O3 - остальное.

Катализатор отличается от прототипа более простым компонентным составом и содержанием благородного металла (Pt или Pd) не более 0,5 мас.% против минимального содержания 1 мас.%, характерного для прототипа.

Необходимая для одностадийного получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами из масложирового сырья полифункциональность предлагаемого катализатора обеспечивается: нанесенными дисперсными частицами металлической платины или палладия, обеспечивающими активацию молекулярного водорода и кислородсодержащих соединений, а также кислотными свойствами боратсодержащего оксида алюминия, которые определяют образование алканов изостроения.

Предлагаемый способ приготовления нового катализатора для одностадийного получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами из масложирового сырья отличается простотой и технологичностью получения по сравнению с прототипом и, как следствие, более низкой стоимостью. Способ включает в себя предварительное получение боратсодержащего оксида алюминия путем смешения гидрата оксида алюминия псевдобемитной структуры с ортоборной кислотой, гранулирование смеси с последующей сушкой гранул при 120°C и прокаливание в токе воздуха при 550-700°C в течение 16 ч. Далее проводят пропитку боратсодержащего оксида алюминия водным раствором гексахлорплатиновой кислоты или хлорида палладия с дальнейшей сушкой при 120°C, прокаливанием при 500°C в течение 16 ч и обеспечением следующего соотношения компонентов в катализаторе, мас.%: Pt или Pd 0,10-0,50; B2O3 5-25; Al2O3 - остальное. Кроме того, более низкая стоимость предлагаемого катализатора по сравнению с прототипом обеспечивается за счет снижения содержания благородных металлов (Pt, Pd) в 2-4 раза.

С применением предлагаемого катализатора может быть реализован способ одностадийного получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами, включающий пропускание смеси водорода и масложирового сырья через неподвижный слой катализатора при температуре 380°C, давлении 4.0 МПа, массовой скорости подачи сырья 1 ч-1, объемном отношении водород:сырье, равном 1300, при сохранении изомеризующих свойств катализатора на стабильном уровне в течение не менее 100 часов.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Для приготовления катализатора предварительно получают боратсодержащий оксид алюминия путем смешения гидрата оксида алюминия псевдобемитной структуры и ортоборной кислоты из расчета на массовое соотношение B2O3:Al2O3, равное 0,25. Полученную смесь гранулируют известными способами, гранулы сушат при 120°C, а затем прокаливают при 550°C в токе воздуха в течение 16 ч. Полученный в гранулированном виде боратсодержащий оксид алюминия пропитывают водным раствором гексахлорплатиновый кислоты из расчета достижения содержаний Pt в готовом сухом катализаторе на уровне 0,10, 0,25 и 0,50 мас.%. Пропитанный боратсодержащий оксид алюминия сушат при 120°C и прокаливают при 500°C в токе воздуха в течение 16 ч. Образцы готового катализатора имеют состав, мас.%: Pt - 0,10, 0,25, 0,50; B2O3 - 20; Al2O3 - остальное.

Процесс одностадийного получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами проводят на проточной установке с неподвижным слоем катализатора при температуре 380°C и давлении 4.0 МПа. В качестве сырья используют подсолнечное масло, которое подают с массовой скоростью 1 ч-1 в смеси с водородом при объемном отношении водород:сырье, равном 1300. Показатели процесса определяют 1 раз в 4 ч при общей продолжительности 20 ч. В число основных определяемых показателей входят: общий выход жидких углеводородных продуктов (C5+), выход воды, выход углеводородов C10-C20 - целевые продукты, предназначенные для использования в качестве компонентов реактивных и дизельных топлив. Кроме того, по данным газохроматографического анализа оценивается групповой состав жидких углеводородных продуктов, а для целевой фракции углеводородов C10-C20 определяют содержание н- и изоалканов.

Результаты испытаний образцов готового катализатора, имеющих состав (мас.%): Pt - 0,10, 0,25, 0,50; B2O3 - 20; Al2O3 - остальное, представлены в таблице 1. Все образцы обеспечивают полную гидродеоксигенацию подсолнечного масла, что подтверждается отсутствием кислородсодержащих соединений в составе жидких углеводородных продуктов по данным элементного и хромато-масс-спектрометрического анализов. Общий выход жидких углеводородных продуктов (C5+) для всех образцов не ниже 78 мас.%. Максимальное значение выхода - 86,3 мас.%. Наибольшие значения выхода целевых продуктов C10-C20 наблюдаются для образцов катализатора, содержащих 0,10 и 0,25 мас.% Pt - 73,4-74,4 мас.%. Наиболее высокое содержание изоалканов для фракции целевых продуктов C10-C20 достигается на образце катализатора, содержащего 0,50 мас.% Pt, и составляет 83,0 мас.%. Соотношение изоалканы/н-алканы в течение 20 ч испытаний снижается на 42%.

Пример 2.

Аналогичен примеру 1, но полученный в гранулированном виде боратсодержащий оксид алюминия пропитывают водным раствором хлорида палладия из расчета достижения содержаний Pd в готовом сухом катализаторе на уровне 0.10, 0.25 и 0.50 мас.%. Образцы готового катализатора имеют состав, мас.%: Pd - 0.10, 0.25, 0.50; B2O3 - 20; Al2O3 - остальное.

Результаты испытаний образцов готового катализатора, имеющих состав (мас.%): Pd - 0,10, 0,25, 0,50; B2O3 - 20; Al2O3 - остальное, представлены в таблице 2. Все образцы обеспечивают полную гидродеоксигенацию подсолнечного масла, что подтверждается отсутствием кислородсодержащих соединений в составе жидких углеводородных продуктов по данным элементного и хромато-масс-спектрометрического анализов. Общий выход жидких углеводородных продуктов (С5+) для всех образцов не ниже 88 мас.%. Максимальное значение выхода - 97,6 мас.%. Наибольшие значения выхода целевых продуктов C10-C20 наблюдаются для образца катализатора, содержащего 0,25 мас.% Pd - 73,9-77,6 мас.%. На этом же образце достигается наиболее высокое содержание изоалканов для фракции целевых продуктов C10-C20, которое составляет 83,2 мас.%. Соотношение изоалканы/н-алканы в течение 20 ч испытаний снижается на 50%.

Пример 3.

Аналогичен примеру 2, но получение боратсодержащего оксида алюминия путем смешения гидрата оксида алюминия псевдобемитной структуры и ортоборной кислоты ведут из расчета на значения массового соотношение B2O3:Al2O3, равного: 0,00, 0,06, 0,13, 0,19, 0,25, 0,31. Полученный в гранулированном виде боратсодержащий оксид алюминия пропитывают водным раствором хлорида палладия из расчета достижения содержания Pd в готовом сухом катализаторе на уровне 0,50 мас.%. Образцы готового катализатора имеют состав, мас.%: Pd - 0,50; B2O3 - 0, 5, 10, 15, 20, 25; Al2O3 - остальное.

Результаты испытаний образцов готового катализатора, имеющих состав (мас.%): Pd - 0,50; В2О3 - 0, 5, 10, 15, 20, 25; Al2O3 - остальное, представлены в таблице 3. Все образцы обеспечивают полную гидродеоксигенацию подсолнечного масла, что подтверждается отсутствием кислородсодержащих соединений в составе жидких углеводородных продуктов по данным элементного и хромато-масс-спектрометрического анализов. Общий выход жидких углеводородных продуктов (C5+) для всех образцов не ниже 77,1 мас.%. Максимальное значение выхода - 97,6 мас.%. Наибольшее значение выхода целевых продуктов C10-C20 наблюдается для образца катализатора, содержащего 5 мас.% B2O3 - 82,8 мас.%. Наиболее высокое содержание изоалканов для фракции целевых продуктов C10-C20 достигается на образце катализатора, содержащего 25 мас.% B2O3, и составляет 87,7 мас.%. Соотношение изоалканы/н-алканы в течение 20 часов испытаний снижается на 70%.

Пример 4.

Аналогичен примеру 2, но после сушки гранул боратсодержащего оксида алюминия их прокаливают при 550, 600, 650, 700°C в токе воздуха в течение 16 ч. Полученный в гранулированном виде боратсодержащий оксид алюминия пропитывают водным раствором хлорида палладия из расчета достижения содержания Pd в готовом сухом катализаторе на уровне 0.50 мас.%. Образцы готового катализатора имеют состав, мас.%: Pd - 0,50; B2O3 - 20; Al2O3 - остальное.

Для образца катализатора, полученного на основе боратсодержащего оксида алюминия с температурой прокаливания 700°C, процесс одностадийного получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами проводят в течение 100 ч. Определение показателей процесса дополнительно проводят для 52, 76 и 100 ч работы катализатора.

Результаты испытаний образцов готового катализатора, имеющих состав (мас.%): Pd - 050; B2O3 - 20; Al2O3 - остальное, и полученных при различных температурах прокаливания боратсодержащего оксида алюминия, представлены в таблице 4. Все образцы обеспечивают полную гидродеоксигенацию подсолнечного масла, что подтверждается отсутствием кислородсодержащих соединений в составе жидких углеводородных продуктов по данным элементного и хромато-масс-спектрометрического анализов. Общий выход жидких углеводородных продуктов (C5+) для всех образцов не ниже 76,8 мас.%. Максимальное значение выхода - 97,6 мас.%. Наибольшее значение выхода целевых продуктов C10-C20 наблюдается для образца катализатора, носитель которого был прокален при 550°C - 77,6 мас.%. Наиболее высокое содержание изоалканов для фракции целевых продуктов C10-C20 достигается на образцах катализатора, носители которых были прокалены при 650 и 700°C, соответственно, и составляет 87,8-87,9 мас.%. Для образца катализатора, носитель которого был прокален при 700°C, соотношение изоалканы/н-алканы после 20 ч испытаний снижается на 3%, после 52 ч на 3.3%, после 76 ч на 4%, а после 100 ч на 4.2%.

Таким образом, предлагаемый катализатор для одностадийного получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами из масложирового сырья, содержащий платину или палладий, закрепленные на боратсодержащего оксида алюминия, при следующем соотношении компонентов, мас.%: Pt или Pd 0.10-0.50; B2O3 5-25; Al2O3 - остальное, отличается простотой компонентного состава, простотой и технологичностью получения, низкой стоимостью, в том числе за счет снижения содержания благородных металлов (Pt, Pd) в 2-4 раза по сравнению с прототипом, и может так же, как и катализатор по способу-прототипу, в течение не менее 100 ч сохранять свои изомеризующие функции, необходимые для получения высококачественных топливных компонентов.

Наиболее предпочтительным является катализатор следующего состава, мас.%: Pd - 0,50; B2O3 - 20; Al2O3 - остальное, полученный при температуре прокаливания носителя - боратсодержащего оксида алюминия - 700°C.

Технический результат от использования предлагаемого изобретения может состоять в повышении эффективности одностадийного получения компонентов реактивных и дизельных топлив с улучшенными низкотемпературными свойствами из масложирового сырья за счет упрощения композиции катализатора, способа его приготовления и снижения его стоимости, в том числе за счет снижения содержания благородных металлов (Pt, Pd) в 2-4 раза.

Таблица 1
Результаты испытаний образцов катализатора по примеру 1
Содержание Pt, мас.% Время, ч Выход жидких продуктов, мас.% Групповой состав жидких продуктов, мас.% Изомерный состав фракции C10-C20
C5+ H2O C10-C20 C5-C10 C10-C20 C21+ н-алканы изоалканы
0.10 4 81.7 8.5 61.2 16.1 81.7 2.2 50.9 49.1
8 84.6 6.8 74.4 4.1 93.3 2.6 65.9 34.1
12 82.3 6.4 74.0 3.8 93.7 2.5 68.6 31.4
16 82.5 9.8 73.6 3.0 93.2 3.8 69.6 30.4
20 83.0 11.3 72.6 3.7 91.6 4.7 69.6 30.4
0.25 4 83.4 6.2 64.3 14.5 85.2 0.3 33.9 66.1
8 85.5 6.0 67.2 13.8 85.6 0.6 42.8 57.2
12 84.1 6.1 68.2 12.5 87.1 0.4 45.7 54.3
16 84.8 5.8 73.4 7.8 91.5 0.7 49.4 50.6
20 82.1 9.1 72.1 7.7 91.1 1.2 52.3 47.7
0.50 4 78.0 8.0 34.8 41.0 58.8 0.2 17.0 83.0
8 86.3 6.4 56.2 19.3 80.7 0.0 18.1 81.9
12 85.7 8.7 58.7 17.8 82.1 0.1 20.5 79.5
16 84.5 9.1 61.3 15.5 84.3 0.2 23.6 76.4
20 82.7 9.8 63.6 14.4 85.4 0.2 26.1 73.9

Таблица 2
Результаты испытаний образцов катализатора по примеру 2
Содержание Pd, мас.% Время, ч Выход жидких продуктов, мас.% Групповой состав жидких продуктов, мас.% Изомерный состав фракции C10-C20
C5+ H2O C10-C20 C5-C10 C10-C20 C21+ н-алканы изоалканы
0.10 4 72.9 8.1 51.1 20.6 78.5 0.9 38.1 61.9
8 80.6 7.6 68.2 5.7 89.3 5.0 75.0 25.0
12 88.5 7.5 77.3 2.6 91.5 5.9 87.0 13.0
0.25 4 92.1 6.5 51.6 26.3 73.5 0.2 16.6 83.4
8 96.9 7.3 71.2 8.0 91.3 0.7 27.0 73.0
12 93.4 8.0 76.9 3.7 94.6 1.7 53.5 46.5
16 89.0 7.8 74.5 1.6 93.2 5.2 78.5 21.5
20 89.3 8.6 69.8 1.8 89.5 8.7 88.8 11.2
0.50 4 93.5 5.0 69.9 10.0 89.8 0.2 16.8 83.2
8 93.2 4.8 73.9 7.3 92.6 0.1 19.9 80.1
12 97.6 5.8 77.6 5.4 94.5 0.1 22.9 77.1
16 94.3 5.8 77.4 3.9 95.7 0.4 25.7 74.3
20 92.1 9.2 75.3 4.4 95.2 0.4 28.7 71.3

Таблица 3
Результаты испытаний образцов катализатора по примеру 3
Содержание B2O3, мас.% Время, ч Выход жидких продуктов, мас.% Групповой состав жидких продуктов, мас.% Изомерный состав фракции С1020
C5+ H2O C10-C20 C5-C10 C10-C20 C21+ н-алканы изоалканы
0.0 4 87.4 6.8 80.5 0.4 96.8 2.8 96.0 4.0
8 85.4 6.4 77.5 0.3 96.3 3.4 97.4 2.6
12 87.7 11.3 78.5 0.3 95.3 4.4 96.9 3.1
16 86.5 12.7 75.9 0.3 94.9 4.8 96.6 3.4
20 88.9 11.4 78.7 0.3 95.9 3.8 97.6 2.4
5.0 4 91.4 6.7 82.8 0.2 96.4 3.4 96.1 3.9
8 90.2 6.7 80.8 0.2 96.7 3.1 97.5 2.5
12 82.8 9.0 74.2 0.3 95.9 3.8 97.2 2.8
16 88.4 12.1 75.6 0.3 95.1 4.6 96.8 3.2
10.0 4 88.1 6.9 76.9 0.6 95.8 3.6 74.2 25.8
8 88.0 7.7 76.5 0.5 94.9 4.6 84.4 15.6
12 87.4 7.4 75.2 0.5 94.4 5.1 89.9 10.1
16 87.6 7.7 74.9 0.5 94.1 5.4 91.9 8.1
20 84.8 8.2 74.3 0.5 93.4 6.1 92.0 8.0
15.0 4 92.7 11.4 74.0 4.1 95.4 0.5 20.5 79.5
8 94.3 6.4 78.6 2.2 97.1 0.7 27.2 72.8
12 93.4 6.0 79.9 1.5 97.6 0.9 34.9 65.1
16 90.0 10.5 78.6 1.0 97.2 1.8 47.9 52.1
20 89.1 8.2 77.9 0.7 96.5 2.8 62.9 37.1
20.0 4 93.5 5.0 69.9 10.0 92.6 0.2 16.8 83.2
8 93.2 4.8 73.9 7.3 89.8 0.1 19.9 80.1
12 97.6 5.8 77.6 5.4 94.5 0.1 22.9 77.1
16 94.3 5.8 77.4 3.9 95.7 0.4 25.7 74.3
20 92.1 9.2 75.3 4.4 95.2 0.4 28.7 71.3
25.0 4 77.1 8.4 47.5 22.5 77.4 0.1 12.3 87.7
8 84.7 7.8 59.9 14.9 85.1 0.0 12.2 87.8
12 85.8 8.2 62.6 14.0 85.9 0.1 13.9 86.1
16 80.7 8.8 67.7 8.2 91.3 0.5 18.9 81.1
20 81.9 11.1 76.1 3.5 95.7 0.8 31.7 68.3

Таблица 4
Результаты испытаний образцов катализатора по примеру 4
Температура прокаливания, °C Время, ч Выход жидких продуктов, мас.% Групповой состав жидких продуктов, мас.% Изомерный состав фракции С1020
C5+ H2O C10-C20 C510 С1020 С21+ н-алканы изоалканы
550 4 93.5 5.0 69.9 10.0 89.8 0.2 16.8 83.2
8 93.2 4.8 73.9 7.3 92.6 0.1 19.9 80.1
12 97.6 5.8 77.6 5.4 94.5 0.1 22.9 77.1
16 94.3 5.8 77.4 3.9 95.7 0.4 25.7 74.3
20 92.1 9.2 75.3 4.4 95.2 0.4 28.7 71.3
600 4 81.0 6.6 56.2 18.2 81.8 0.0 12.5 87.5
8 85.0 8.2 62.2 18.1 81.9 0.0 13.7 86.3
12 83.9 7.5 65.2 15.3 84.7 0.0 14.6 85.4
16 83.5 11.2 67.4 11.6 88.3 0.1 15.1 84.9
20 81.9 10.4 69.8 8.2 91.6 0.2 18.2 81.8
650 4 79.0 8.5 46.6 25.8 74.2 0.0 12.1 87.9
8 84.5 8.5 57.4 18.0 81.9 0.1 12.1 87.9
12 81.5 6.1 64.0 13.1 86.9 0.0 13.4 86.6
16 80.8 11.9 70.8 7.5 92.2 0.3 19.7 80.3
20 82.9 11.2 76.0 3.2 96.0 0.8 35.9 64.1
700 4 81.3 8.9 48.4 26.5 73.4 0.1 12.3 87.7
8 76.8 7.4 57.1 13.1 86.9 0.0 12.2 87.8
12 81.8 6.8 61.6 14.6 85.3 0.1 12.6 87.4
16 81.2 10.2 63.1 11.8 88.1 0.1 13.3 86.7
20 80.8 9.9 65.2 10.4 89.5 0.1 15.0 85.0
52 79.6 9.3 67.3 8.3 91.6 0.1 15.2 84.8
76 82.3 7.8 69.5 7.1 92.8 0.1 15.8 84.2
100 81.1 8.9 72.7 7.6 92.3 0.1 16.0 84.0

Источник поступления информации: Роспатент

Показаны записи 31-40 из 40.
19.01.2018
№218.016.0030

Способ получения малосернистого дизельного топлива

Изобретение относится способам получения малосернистых дизельных топлив. Описан способ проведения гидроочистки смесевых и прямогонных дизельных фракций с высоким содержанием серы при температуре 340-380°C, давлении 3,5-8,0 МПа, массовом расходе сырья 1,0-2,5 ч, объемном отношении водород/сырье...
Тип: Изобретение
Номер охранного документа: 0002629355
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.0037

Катализатор гидроочистки сырья гидрокрекинга

Изобретение относится к катализаторам предварительной гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы, которое далее перерабатывается в процессе гидрокрекинга. Катализатор гидроочистки сырья гидрокрекинга включает в свой...
Тип: Изобретение
Номер охранного документа: 0002629358
Дата охранного документа: 29.08.2017
20.01.2018
№218.016.1162

Способ приготовления катализатора гидрокрекинга углеводородного сырья

Изобретение относится к способу приготовления катализатора гидрокрекинга углеводородного сырья, ориентированного на получение низкосернистых среднедистиллятных фракций. Способ получения катализатора включает приготовление гранулированного носителя, содержащего оксид алюминия и 50-70 мас. %...
Тип: Изобретение
Номер охранного документа: 0002633965
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.126b

Способ получения углеродных нановолокон

Изобретение относится к нанотехнологии. Сначала смешивают полимер с катализатором и растворителем до получения однородного раствора. Используют карбоцепные полимеры с боковыми функциональными группами, а катализатор выбирают из группы, состоящей из органических или неорганических соединений...
Тип: Изобретение
Номер охранного документа: 0002634126
Дата охранного документа: 24.10.2017
13.02.2018
№218.016.215b

Способ получения наноуглерода

Изобретение относится к нанотехнологиям и может быть использовано для получения наноуглерода. Способ включает подачу в реакционную камеру, выполненную в виде ствола, периодически закрываемого с одного и открытого с другого конца, со стороны закрываемого конца через систему быстродействующих...
Тип: Изобретение
Номер охранного документа: 0002641829
Дата охранного документа: 22.01.2018
11.03.2019
№219.016.de04

Способ производства подсолнечного масла для детского и диетического питания

Изобретение относится к масложировой промышленности и касается переработки подсолнечных семян. Способ производства подсолнечного масла включает сепарацию семян от примесей, кондиционирование, измельчение семян и ядер, влаготепловую обработку мятки, очистку, прессование и рафинацию. Измельчение...
Тип: Изобретение
Номер охранного документа: 02168541
Дата охранного документа: 10.06.2001
18.05.2019
№219.017.5545

Майонез "провансаль-сливочный"

Изобретение относится к масложировой промышленности. Майонез содержит, мас.%: масло подсолнечное рафинированное дезодорированное с ароматом сливочного масла 65,0-69,0; яичный порошок 1,0 - 5,0; молоко сухое 2,2-2,3; горчичный порошок 0,1 - 0,5; сахар 1,3-1,7; соль 0,8-1,2; сода 0,03-0,07;...
Тип: Изобретение
Номер охранного документа: 02234841
Дата охранного документа: 27.08.2004
18.05.2019
№219.017.5557

Масло "золотая семечка-специальное"

Изобретение относится к пищевой промышленности, а именно к способам получения растительного масла. Растительное масло, содержащее ароматизатор сливочного масла, представляет собой масло подсолнечное рафинированное дезодорированное со следующим жирно-кислотным составом, % к сумме жирных кислот:...
Тип: Изобретение
Номер охранного документа: 02233094
Дата охранного документа: 27.07.2004
18.05.2019
№219.017.5bd1

Безалкогольный напиток

Изобретение относится к безалкогольной промышленности, а именно к напиткам, имеющим вкусовые характеристики крепких спиртных напитков, но не содержащих алкоголя. Безалкогольный напиток содержит следующие ингредиенты, мас.%: 0,01 - 0,8 вкусоароматической добавки на основе семян красного перца,...
Тип: Изобретение
Номер охранного документа: 02160548
Дата охранного документа: 20.12.2000
18.05.2019
№219.017.5bd3

Способ производства растительного масла из маслосодержащего материала

Изобретение относится к масложировой промышленности и касается переработки подсолнечных семян. В способе производства растительного масла из маслосодержащего материала, включающем сепарацию семян от примесей, кондиционирование, измельчение семян и ядер, влаготепловую обработку мятки и...
Тип: Изобретение
Номер охранного документа: 02160768
Дата охранного документа: 20.12.2000
Показаны записи 51-60 из 65.
19.06.2019
№219.017.87bb

Способ каталитического риформинга бензиновых фракций

Изобретение относится к области нефте- и газопереработки, нефтехимии, в частности к технологиям производства моторных топлив, и может быть использовано в процессе каталитического риформинга бензиновых фракций для получения высокооктанового компонента с пониженным содержанием ароматических...
Тип: Изобретение
Номер охранного документа: 0002337127
Дата охранного документа: 27.10.2008
19.06.2019
№219.017.88a7

Способ получения компонентов моторных топлив (экоформинг)

Изобретение относится к производству экологических высокооктановых компонентов моторных топлив из бензиновых фракций или бензиновых фракций и С-С-углеводородных газов. Изобретение касается способа получения компонентов моторных топлив путем гидрооблагораживания жидких продуктов процессов...
Тип: Изобретение
Номер охранного документа: 0002417251
Дата охранного документа: 27.04.2011
19.06.2019
№219.017.89b9

Способ модифицирования углеродного гемосорбента и углеродный гемосорбент с иммобилизованным белком

Изобретение относится к области медицины и касается способа модифицирования углеродного гемосорбента, включающего обработку водным раствором оксикислоты с концентрацией 5-20% при соотношении гемосорбент : раствор оксикислоты 1:10-1:20 при температуре 25°С в течение 2-4 ч с последующим...
Тип: Изобретение
Номер охранного документа: 0002452499
Дата охранного документа: 10.06.2012
19.06.2019
№219.017.8a4d

Способ получения ацетилена из метана

Изобретение относится к способу получения ацетилена окислительным пиролизом метана в присутствии кислорода и катализатора, характеризующемуся тем, что катализатор нагревают пропусканием через него электрического тока до температур 700-1200°С, в качестве катализатора используют термообработанный...
Тип: Изобретение
Номер охранного документа: 0002409542
Дата охранного документа: 20.01.2011
19.06.2019
№219.017.8b53

Способ модифицирования углеродного гемосорбента

Изобретение относится к способу модифицирования углеродного гемосорбента. Способ включает обработку пористого углеродного материала воздушно-водяной смесью в кипящем слое с последующим высушиванием продукта. При этом дополнительно проводят пропитку гранул углеродного гемосорбента водным...
Тип: Изобретение
Номер охранного документа: 0002440844
Дата охранного документа: 27.01.2012
22.06.2019
№219.017.8ea0

Катализатор защитного слоя для процесса гидроочистки кремнийсодержащего углеводородного сырья

Изобретение относится к катализаторам защитного слоя, располагаемым перед основным катализатором гидроочистки углеводородного сырья для предотвращения его отравления соединениями кремния, содержащимися в сырье гидроочистки. Описан катализатор, содержащий молибден и никель в форме...
Тип: Изобретение
Номер охранного документа: 0002692082
Дата охранного документа: 21.06.2019
29.06.2019
№219.017.9ac9

Способ разделения и осушки продуктов пиролиза

Изобретение относится к области осушки углеводородов и может быть использовано в газоперерабатывающей и нефтехимической отраслях промышленности для разделения и осушки продуктов пиролиза углеводородного сырья. Способ включает многоступенчатое компримирование пирогаза, сепарацию воды и жидких...
Тип: Изобретение
Номер охранного документа: 0002290255
Дата охранного документа: 27.12.2006
04.07.2019
№219.017.a4c5

Способ очистки дизельного топлива от соединений кремния

Изобретение относится к способам очистки дизельного топлива от соединений кремния. Описан способ, заключающийся в превращении дизельных фракций, выкипающих до 360°С, содержащих до 200 ppm кремния, до 1,0% серы, до 200 ppm азота, имеющих плотность до 0,87 г/см при объемной скорости подачи сырья...
Тип: Изобретение
Номер охранного документа: 0002693380
Дата охранного документа: 02.07.2019
04.07.2019
№219.017.a531

Способ приготовления катализатора защитного слоя для процесса гидроочистки кремнийсодержащего углеводородного сырья

Изобретение относится к способам приготовления катализаторов защитного слоя, располагаемых перед основным катализатором гидроочистки углеводородного сырья для предотвращения его отравления соединениями кремния, содержащимися в сырье гидроочистки. Описан способ приготовления катализатора,...
Тип: Изобретение
Номер охранного документа: 0002693379
Дата охранного документа: 02.07.2019
16.08.2019
№219.017.c041

Способ получения углеродного изделия

Изобретение относится к получению углеродных изделий. Техническим результатом является повышение качества за счет исключения дефектов ячеистых углеродных изделий. Технический результат достигается способом получения углеродного изделия, который включает смешивание углеродного материала с...
Тип: Изобретение
Номер охранного документа: 0002697324
Дата охранного документа: 13.08.2019
+ добавить свой РИД