×
27.01.2015
216.013.21be

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕЗ СВЯЗУЮЩЕГО ЦЕОЛИТА NaY

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения гранулированного без связующего цеолита NaY. Цеолит может быть использован в химической и нефтехимической промышленности для разделения смесей углеводородов на молекулярном уровне и в качестве активного компонента - полупродукта при производстве катализаторов, в том числе катализаторов алкилирования и трансалкилирования ароматических углеводородов. Способ предусматривает смешение каолина с порошкообразным цеолитом NaY, белой сажей и лигносульфонатом, увлажнение и перемешивание смеси до получения однородной массы, формование гранул, термоактивацию, гидротермальную кристаллизацию в растворе силиката натрия, отмывку и сушку гранул. Способ осуществляют при следующем содержании сырьевых компонентов в смеси, % масс.: порошкообразный цеолит NaY 55-65, белая сажа 5-7, лигносульфонат 1,0-1,5, каолин остальное. Гранулированный без связующего цеолит NaY обладает развитой мезопористой структурой, а также имеет высокие показатели фазовой чистоты, степени кристалличности, динамической адсорбционной емкости и механической прочности. 1 табл., 9 пр.
Основные результаты: Способ получения гранулированного без связующего цеолита NaY, включающий смешение каолина с порошкообразным цеолитом NaY и другими сырьевыми компонентами; увлажнение и перемешивание смеси до получения однородной массы; формование гранул; термоактивацию; гидротермальную кристаллизацию в растворе силиката натрия; отмывку и сушку гранул, отличающийся тем, что в качестве других сырьевых компонентов в смесь для формования гранул вводят белую сажу и лигносульфонат в таком количестве, чтобы общее содержание сырьевых компонентов в смеси составляло, % масс.:

Изобретение относится к способам получения гранулированного без связующего синтетического цеолита NaY. Цеолит может быть использован в химической и нефтехимической промышленности для разделения смесей углеводородов на молекулярном уровне и в качестве активного компонента - полупродукта при производстве катализаторов, в том числе катализаторов алкилирования и трансалкилирования ароматических углеводородов.

Известен способ получения гранулированного без связующего цеолита NaY (Л.М. Ищенко, Н.Ф. Мегедь, Я.В. Мирский, Л.П. Митяева. Синтез гранулированных цеолитов типов фожазита и морденита без связующих веществ - сорбентов и носителей катализаторов // Цеолитные катализаторы и адсорбенты. Сб. Тр. ГрозНИИ. - М.: ЦНИИТЭнефтехим. - 1978, - Вып.33. - С.37-45). Способ предусматривает смешение метакаолина (прокаленного каолина) с силикагелем и раствором гидроксида натрия. Полученную при этом густую пасту формуют в гранулы, которые затвердевают при комнатной температуре. Затвердевшие гранулы кристаллизуют в растворе гидроксида натрия из реакционных смесей следующих химических составов:

1,8Na2O·Al2O3·6SiO2·(40-70)H2O.

Кристаллизацию проводят сначала при комнатной температуре, а затем при 100°C в течении 48-72 ч.

К недостаткам известного способа относится:

- сложность технологии, связанная с предварительным прокаливанием порошкообразного каолина (для получения метакаолина), формованием щелочных масс и необходимостью их охлаждения;

- низкие: степень кристалличности и адсорбционная емкость цеолитных гранул;

- недостаточно развитая вторичная мезопористая структура цеолитных гранул.

Известен способ получения гранулированного цеолита NaY без связующего (Л.М. Ищенко, Н.Ф. Мегедь, Я.В. Мирский, Л.П. Митяева. Синтез гранулированных цеолитов типов фожазита и морденита без связующих веществ - сорбентов и носителей катализаторов // Цеолитные катализаторы и адсорбенты. Сб. Тр. ГрозНИИ. - М.: ЦНИИТЭнефтехим. - 1978, - Вып.33. - С.37-45). Согласно этому способу природный глинистый минерал каолин смешивают с силикагелем. Полученную смесь формуют в гранулы, которые прокаливают при 650°C в течение 6 ч. Прокаленные гранулы кристаллизуют в растворе гидроксида натрия из реакционных смесей следующих химических составов: (2,0-2,2)·Na2O·Al2O3·6SiO2·(40-70)·H2O. Кристаллизацию проводят сначала при комнатной температуре, а затем при 100°C в течение 48-72 ч. Откристаллизованные цеолитные гранулы отмывают от избытка гидроксида натрия и высушивают.

Известный способ имеет недостатки:

- проведение гидротермальной кристаллизации гранул в растворе гидроксида натрия приводит к получению цеолита NaY, обладающего низкими: степенью кристалличности, прочностными и динамическими адсорбционными свойствами;

- цеолитные гранулы не обладают развитой вторичной мезопористой структурой.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является «Способ получения гранулированного без связующего цеолита NaY высокой фазовой чистоты» (патент РФ №2412903 от 3/08/2009), который и выбран за прототип. Согласно прототипу природный глинистый материал - каолин смешивают с 60-70% масс. порошкообразного цеолита NaY и 2-3% масс. поливинилового спирта. Смесь увлажняют до образования однородной пластичной массы, которую формуют в гранулы. Полученные гранулы высушивают при 90-120°C в течение 3 ч и термоактивируют при 550-650°C. При этом гранулы приобретают необходимую проницаемость для эффективного массообмена в процессе гидротермальной кристаллизации. Состав исходных для кристаллизации гранул, % масс.:

порошкообразный цеолит NaY 60,0-70,0
поливиниловый спирт 2,0-3,0
каолин остальное

Прокаленные гранулы охлаждают и кристаллизуют в растворе силиката натрия из реакционных смесей состава (2,2-2,6)Na2O·Al2O3·(6,5-7,5)SiO2·(155-165)H2O. Температурный режим кристаллизации: 12-24 ч при 25-30°C, затем 48-60 ч при 98-100°C. Готовый цеолит промывают и высушивают при 100-200°C.

Недостатком известного способа является то, что цеолитные гранулы не обладают развитой вторичной мезопористой структурой.

Термины «мезопористость» и «макропористость» использованы в соответствии с классификацией М.М. Дубинина (S. Lowell. Introduction to Powder Surface Area. // A Wiley-Interscience Publication. - New York. - 1979, - P.X, p.80):

а) макропористость - поры с радиусом более 1000 Å (100 нм) или соответственно диаметром более 200 нм;

б) мезопористость - поры с радиусом от 1000 Å (100 нм) до 15 Å (1,5 нм) или соответственно диаметром от 200 нм до 3 нм.

Мезопоры являются основными транспортными порами, которые обеспечивают эффективную диффузию молекул в большие полости структуры цеолита NaY в процессах адсорбции и катализа.

Задача предлагаемого изобретения заключается в совершенствовании способа получения гранулированного без связующего цеолита NaY, обладающего не только высокими: степенью кристалличности, модулем, динамическими адсорбционными и прочностными характеристиками, но и развитой вторичной мезопористой структурой гранул.

Поставленная задача достигается за счет использования следующих новых технологических приемов.

Смешение каолина, порошкообразного цеолита NaY, белой сажи и лигносульфаната осуществляют в соотношении, % масс.:

порошкообразный цеолит NaY 55,0-65,0
белая сажа 5,0-7,0
лигносульфонат 1,0-1,5
каолин остальное

Кристаллизация сформованных из этой смеси гранул в растворе силиката натрия позволяет получать гранулированный без связующего цеолит NaY, обладающий развитой вторичной мезопористой структурой, а также высокими показателями фазовой чистоты, модуля, механической прочности и адсорбционной емкости.

Порошкообразный цеолит NaY, введенный в сырьевую смесь для формования гранул, при гидротермальной кристаллизации играет роль кристаллической затравки для образования поликристаллических цеолитных сростков. Использование такой затравки при синтезе порошкообразных и гранулированных цеолитов известно. Однако только новый технологический прием совместного введения в сырьевую смесь для формования гранул 55-65% масс. порошкообразного цеолита NaY, 5-7% масс. белой сажи, 1,0-1,5% масс. лигносульфоната и каолина (остальное) позволяет получать гранулированный без связующего цеолит с развитой мезопористой структурой. Белая сажа в составе гранул при кристаллизации в растворе силиката натрия (температура 98-100°C) постепенно растворяется и, взаимодействуя с частично растворенными компонентами метакаолина, переосаждается с образованием единого поликристаллического сростка - гранулированного без связующего цеолита NaY. Так как процесс растворения - переосаждения белой сажи продолжается вплоть до завершения кристаллизации, откристаллизованные цеолитные гранулы обладают развитой мезопористой структурой, а также высокими: фазовой чистотой, модулем, динамическими адсорбционными и прочностными характеристиками.

Введение в исходную для формования гранул смесь 1,0-1,5% масс. лигносульфоната придает высокую пластичность смеси при формовке гранул и после прокаливания обеспечивает, в начальный период кристаллизации при температурах 20-25°C, необходимую пористость гранул для эффективного массообмена между кристаллообразующими компонентами гранул и кристаллизационного раствора.

Указанные технологические приемы позволяют усовершенствовать способ получения и обеспечить высокое качество синтезированного цеолита, который обладает развитой вторичной мезопористой структурой гранул, высокими показателями степени кристалличности, модуля, динамической адсорбционной емкости и механической прочности.

Предлагаемый способ осуществляется следующим образом.

Природный глинистый минерал - каолин смешивают с 50-65% масс. порошкообразного цеолита NaY, 5-7% масс. белой сажи и 1,0-1,5% масс. лигносульфоната. Смесь увлажняют и перемешивают до образования однородной пластичной массы, которую формуют в гранулы. Полученные гранулы высушивают при 90-120°C в течение 3 ч и термоактивируют при 550-650°C. Состав исходных для кристаллизации гранул, % масс.:

порошкообразный цеолит NaY 55,0-65,0
белая сажа 5,0-7,0
лигносульфонат 1,0-1,5
каолин остальное

Прокаленные гранулы охлаждают и кристаллизуют в растворе силиката натрия из реакционных смесей состава (2,2-2,6)·Na2O·Al2O3·(6,5-7,5)SiO2·(155-165)H2O. Температурный режим кристаллизации: 12-24 ч при 25-30°C, затем 48-60 ч при 98-100°C. Готовый цеолит промывают и высушивают при 100-200°C.

Сущность способа иллюстрируется конкретными примерами его осуществления.

Пример 1. Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (5% масс.), лигносульфоната (1% масс.) и 60% масс. порошкообразного цеолита NaY.

В смеситель загружают 34 г каолина, 5 г белой сажи, 1 г лигносульфоната и 60 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 60,0
белая сажа 5,0
лигносульфонат 1,0
каолин 34,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 30°C, затем 48 ч при 98°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Цеолит анализируют. Вторичную пористую структуру гранул исследуют методом ртутной порометрии на ртутном поромере «Porosimeter-2000» по измерению кривых вдавливания ртути. Пенетрацию ртути в поры диаметром от 3 до 2000 нм осуществляют при давлении от 0,1 до 200МПа. Определяют: распределение размера транспортных мезо- и макропор по их диаметру. Тип цеолита и степень кристалличности определяют фазовым рентгеноструктурным анализом. Механическую прочность, динамическую адсорбционную емкость и модуль (мольное отношение SiO2/Al2O3) - общепринятыми методами.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Пример 2. Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (7% масс.), лигносульфоната (1,5% масс.) и 65% масс. порошкообразного цеолита NaY.

В смеситель загружают 26,5 г каолина, 7 г белой сажи, 1,5 г лигносульфоната и 65 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 65,0
белая сажа 7,0
лигносульфонат 1,5
каолин 26,5

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 30°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Пример 3. Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (6% масс.), лигносульфоната (1% масс.) и 55% масс. порошкообразного цеолита NaY.

В смеситель загружают 38 г каолина, 6 г белой сажи, 1 г лигносульфоната и 55 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 55,0
белая сажа 6,0
лигносульфонат 1,0
каолин 38,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,6Na2O·Al2O3·7,50SiO3·165H2O. Режим кристаллизации: 24 ч при 30°C, затем 60 ч при 98°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Пример 4 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (6% масс.), лигносульфоната (1% масс.) и 50% масс. порошкообразного цеолита NaY.

В смеситель загружают 43 г каолина, 6 г белой сажи, 1 г лигносульфоната и 50 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 50,0
белая сажа 6,0
лигносульфонат 1,0
каолин 43,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,58SiO2·155H2O. Режим кристаллизации: 24 ч при 30°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Снижение содержания порошкообразного цеолита NaY в составе сырьевой смеси для формования гранул менее 55% масс. приводит к получению после кристаллизации гранулированного цеолита без связующего, не обладающего достаточно развитой мезопористой структурой и высокими: степенью кристалличности и адсорбционной емкости. Причина этого заключается в низком содержании кристаллической затравки (порошкообразного цеолита) в исходных для кристаллизации гранулах.

Пример 5 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (6% масс.), лигносульфоната (1% масс.) и 70% масс. порошкообразного цеолита NaY.

В смеситель загружают 23 г каолина, 6 г белой сажи, 1 г лигносульфоната и 70 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 70,0
белая сажа 6,0
лигносульфонат 1,0
каолин 23,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 30°C, затем 48 ч при 98°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Увеличение содержания порошкообразного цеолита NaY в составе сырьевой смеси для формования гранул свыше 65% масс. приводит к частичному образованию крошки при грануляции и в процессе всех последующих операций получения цеолита без связующего. Оставшиеся после кристаллизации целые гранулы цеолита NaY без связующего обладают низкой механической прочностью. Причина этого заключается в недостаточном содержании каолина в составе смеси, из которой формуются исходные гранулы, т.к. каолин обладает связующими свойствами. Поэтому, гранулы имеют низкую механическую прочность на всех стадиях получения цеолита.

Пример 6 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (6% масс.), лигносульфоната (3% масс.) и 60% масс. порошкообразного цеолита NaY.

В смеситель загружают 31 г каолина, 6 г белой сажи, 3 г лигносульфоната и 60 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 60,0
белая сажа 6,0
лигносульфонат 3,0
каолин 31,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 25°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Увеличение содержания лигносульфоната в составе сырьевой смеси для формования гранул свыше 1,5% масс. приводит к снижению механической прочности гранулированного цеолита NaY без связующего. Выгорание лигносульфоната при прокаливании приводит к получению менее прочных, чем необходимо, цеолитных гранул.

Пример 7 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (6% масс.), лигносульфоната (0,5% масс.) и 60% масс. порошкообразного цеолита NaY.

В смеситель загружают 35,5 г каолина, 6 г белой сажи, 0,5 г лигносульфоната и 60 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 60,0
белая сажа 6,0
лигносульфонат 0,5
каолин 33,5

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 25°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Снижение содержания лигносульфоната в составе сырьевой смеси для формования гранул менее 1% масс. приводит к снижению количества мезопор, степени кристалличности и адсорбционной емкости цеолита NaY без связующего. Причиной этого является низкая пластичность формуемой смеси и, как следствие, недостаточно развитая вторичная пористая структура прокаленных гранул, не обеспечивающая эффективный массообмен при их кристаллизации.

Пример 8 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (8% масс.), лигносульфоната (1,0% масс.) и 60% масс. порошкообразного цеолита NaY.

В смеситель загружают 31 г каолина, 8 г белой сажи, 3 г лигносульфоната и 60 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 60,0
белая сажа 8,0
лигносульфонат 1,0
каолин 31,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 25°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Увеличение содержания белой сажи в составе сырьевой смеси для формования гранул свыше 7% масс. приводит к снижению механической прочности гранулированного цеолита NaY без связующего. Это объясняется тем, что при кристаллизации белая сажа растворяется (выщелачивается) и не полностью переосаждается в состав гранул. При этом образуются менее прочные, чем необходимо, цеолитные гранулы.

Пример 9 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (4% масс.), лигносульфоната (1% масс.) и 60% масс. порошкообразного цеолита NaY.

В смеситель загружают 35 г каолина, 4 г белой сажи, 1 г лигносульфоната и 60 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 60
белая сажа 4
лигносульфонат 1
каолин 35

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 25°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Снижение содержания белой сажи в составе сырьевой смеси для формования менее 5% масс. приводит к получению цеолитных гранул с недостаточно развитой мезопористой структурой.

Таблица
Физико-химические свойства гранулированного без связующего цеолита NaY
Показатели Прототип Примеры
1 2 3 4 5 6 7 8 9
Заявляемые Сравнительные
Тип цеолита Y Y Y Y Y Y Y Y Y Y
Степень кристалличности, % 100 100 100 100 82 100 100 92 100 98
Динамическая адсорбционная емкость по парам воды, мг/см3 196 194 198 193 162 200 195 181 194 190
Прочность на раздавливание, кг/мм2 2,2 2,4 2,2 2,6 2,6 крошка, прочность целых гранул 1,4 1,6 2,1 1,9 2,4
Модуль цеолита SiO2/Al2O3, моль/моль 5,2 5,3 5,2 5,3 5,0 5,2 5,2 5,0 5,2 5,2
Распределение транспортных пор, (%), по диаметру:
3-200 нм (мезопоры) 46,2 58,6 64,335 56,2 44,4 68,4 57,9 52,1 65,2 54,2
более 200 нм (макропоры) 53,8 41,4 35,7 43,8 55,6 31,6 42,1 47,9 34,8 45,8

Способ получения гранулированного без связующего цеолита NaY, включающий смешение каолина с порошкообразным цеолитом NaY и другими сырьевыми компонентами; увлажнение и перемешивание смеси до получения однородной массы; формование гранул; термоактивацию; гидротермальную кристаллизацию в растворе силиката натрия; отмывку и сушку гранул, отличающийся тем, что в качестве других сырьевых компонентов в смесь для формования гранул вводят белую сажу и лигносульфонат в таком количестве, чтобы общее содержание сырьевых компонентов в смеси составляло, % масс.:
Источник поступления информации: Роспатент

Показаны записи 11-20 из 116.
27.06.2014
№216.012.d59b

Реактор для жидкофазной очистки стирольной фракции от примеси фенилацетилена методом каталитического селективного гидрирования стирольной фракции

Изобретение относится к конструкциям химических реакторов с механическими перемешивающими устройствами и может быть использовано в химических и смежных с ней промышленностях для проведения различных каталитических процессов, в частности для жидкофазной очистки стирольной фракции от примеси...
Тип: Изобретение
Номер охранного документа: 0002520461
Дата охранного документа: 27.06.2014
10.01.2015
№216.013.1c07

Способ получения 3-арил-1,5,3-дитиазоцинанов

Изобретение относится к способу получения 3-арил-1,5,3-дитиазоцинанов формулы (I). Сущность способа заключается во взаимодействии ароматических аминов (4-аминотиофенола, 4-аминобензойной кислоты, 4-аминофенола или 2-аминофенола, общей формулы R-CH-NH, где R=4-SH, 4-СOН, 4-ОН, 2-ОН) с...
Тип: Изобретение
Номер охранного документа: 0002538603
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.21c1

Способ получения 1-этил-3-[(оксифенил)метил]алюминациклопентанов

Изобретение относится к области металлорганического синтеза, конкретно к способу получения 3-(оксифенил)метилзамещенных алюминациклопентанов общей формулы (1a-e): Способ включает взаимодействие аллилбензолов с триэтилалюминием (AlEt) в присутствии катализатора CpZrCl. В качестве аллилбензола...
Тип: Изобретение
Номер охранного документа: 0002540089
Дата охранного документа: 27.01.2015
20.02.2015
№216.013.275e

Способ получения ди-{ 4-[(тетрагидро-4н-1,4-оксазин-4-ил)-метилсульфанил]-фенилового} эфира щавелевокислого - водорастворимого средства с фунгицидной активностью

Изобретение относится к способу получения ди-{4-[(тетрагидро-4H-1,4-оксазин-4-ил)-метилсульфанил]-фенилового} эфира щавелевокислого формулы (1) в качестве водорастворимого средства с фунгицидной активностью. Сущность способа заключается во взаимодействии...
Тип: Изобретение
Номер охранного документа: 0002541535
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.285e

Способ получения бис-(1,5,3-дитиазепинан-3-ил)этана и его применение в качестве средства с фунгицидной активностью

Изобретение относится к способу получения соединения бис-(1,5,3-дитиазепинан-3-ил)этана, обладающего фунгицидной активностью против Botrytis cinerea и Rhizoctonia solani. Сущность способа заключается во взаимодействии 1,2-этандиамина с N,N,N,N-тетраметил-2,5-дитиагексан-1,6-диамином в...
Тип: Изобретение
Номер охранного документа: 0002541791
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2860

Способ получения n, n'-бис-(2-гидроксиэтил)тетратиадиазациклоалканов, проявляющих фунгицидную активность

Изобретение относится к области органической химии, в частности, к способу получения N,N'-бис-(2-гидроксиэтил)тетратиадиазациклоалканов общей формулы (1). Сущность способа заключается во взаимодействии смеси формальдегида и α,ω-дитиола с 2-аминоэтанолом при мольном соотношении формальдегид :...
Тип: Изобретение
Номер охранного документа: 0002541793
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2863

Способ получения бис-(3-метоксибензамидил)-тетратиадиазациклоалканов

Изобретение относится к области органической химии, а именно к способу получения бис-(3-метоксибензамидил)-тетратиадиазациклоалканов формулы (1), где n= 1 или 2, отличающемуся тем, что мета-метоксибензгидразид подвергается взаимодействию с α,ω-дитиолом [HS(CH)(CH)SH, где n=1, 2], предварительно...
Тип: Изобретение
Номер охранного документа: 0002541796
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3cc6

Способ получения n-арилпирролидинов и n-арилпиперидинов

Изобретение относится к области органического синтеза, в частности к способу получения N-арилпирролидинов и N-арилпиперидинов. N-арилпирролидины и N-арилпиперидинов являются синтонами в производстве фармацевтических препаратов, агрохимикатов, гербицидов, фунгицидов, красителей и т.д. Сущность...
Тип: Изобретение
Номер охранного документа: 0002547046
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3da2

Способ получения 1,6-бис-(1,5,3-дитиазепан-3-ил)-2,5-дисульфанилгексана, обладающего фунгицидной активностью

Изобретение относится к способу получения 1,6-бис-(1,5,3 -дитиазепан-3-ил)-2,5-дисульфанилгексана формулы (1), обладающего фунгицидной активностью против Botrytis cinerea и Rhizoctonia solani. Сущность способа заключается во взаимодействии смеси 1,2-этандитиола и формальдегида с водным...
Тип: Изобретение
Номер охранного документа: 0002547266
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3da3

Способ получения 3,3'-(3,6-диоксаоктан-1,8-диил)бис-1,5,3-дитиазепинана и его применение в качестве средства с фунгицидной активностью

Изобретение относится к области синтеза соединений с биологической активностью, конкретно к способу получения соединения 3,3'-(3,6-диоксаоктан-1,8-диил)бис-1,5,3-дитиазепинана. Сущность способа заключается во взаимодействии 3,6-диоксаоктан-1,8-диамина с...
Тип: Изобретение
Номер охранного документа: 0002547267
Дата охранного документа: 10.04.2015
Показаны записи 11-20 из 145.
10.07.2014
№216.012.dd5b

Способ получения 5-алкил-1,3,5-триазинан-2-(ти)онов

Описывается новый способ селективного получения 5-алкил-1,3,5-триазинан-2(ти)онов, общей формулы
Тип: Изобретение
Номер охранного документа: 0002522445
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dd5c

Способ получения 5-алкил-1,3,5-триазинан-2-(ти)онов

Описывается новый способ селективного получения 5-алкил-1,3,5-триазинан-2(ти)онов общей формулы заключающийся в том, что первичный алифатический амин RNH, где R имеет указанные выше значения, подвергают взаимодействию с бис(N,N-диметиламино)метаном и (тио)мочевиной в присутствии катализатора...
Тип: Изобретение
Номер охранного документа: 0002522446
Дата охранного документа: 10.07.2014
27.09.2014
№216.012.f8b5

Способ селективного получения 3,3'-[бис-(1,4-фенилен)]бис-1,5,3-дитиазепинанов

Изобретение относится к органической химии, а именно к способу селективного получения 3,3'-[бис-(1,4-фенилен)]бис-1,5,3-дитиазепинанов формулы (1) , где R = 4-CH-CH-CH-4', 4-CH-O-CH-4', 4-HCOCH-CHOCH-4', который заключается в том, что дифенилендиамины (диаминодифенилметан, диаминодифенилоксид,...
Тип: Изобретение
Номер охранного документа: 0002529506
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f8b8

Способ селективного получения 3,3'-[бис(1,4-фенилен)]бис-1,3,5-дитиазинанов

Изобретение относится к органической химии, а именно к способу получения 3,3'-[бис(1,4-фенилен)]бис-1,3,5-дитиазинанов формулы (1): который заключается в том, что дифенилендиамин (диаминодифенилметан, диаминодифенилоксид) подвергают взаимодействию с N-mpem-бутил-1,3,5-дитиазинаном в...
Тип: Изобретение
Номер охранного документа: 0002529509
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f8bb

Способ получения 1,8-{ бис[(пент-2,4-дион-3-ил)метилсульфанил]} -3,6-диоксаоктана и 4,4`-{ бис[(пент-2,4-дион-3-ил)метилсульфанил]} -дифенилоксида

Изобретение относится к области органической химии, в частности к способу получения 1,8-{бис[(пент-2,4-дион-3-ил)метилсульфанил]}-3,6-диоксаоктана (1а) и 4,4′-{бис[(пент-2,4-дион-3-ил)метилсульфанил]}-дифенилоксида (1б) общей формулы (1): где ; отличающемуся тем, что формальдегид (37%)...
Тип: Изобретение
Номер охранного документа: 0002529512
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f8bf

Способ получения 4-(1,5,3-дитиазепинан-3-ил)-бензойной и 5-(1,5,3-дитиазепинан-3-ил)-2-гидроксибензойной кислот

Изобретение относится к области органической химии, в частности к способу получения 4-(1,5,3-дитиазепинан-3-ил)-бензойной и 5-(1,5,3-дитиазепинан-3-ил)-2-гидроксибензойной кислот общей формулы (1), заключающийся в том, что аминобензойную кислоту (4-аминобензойную или...
Тип: Изобретение
Номер охранного документа: 0002529516
Дата охранного документа: 27.09.2014
20.12.2014
№216.013.128b

Способ получения энантиомерно обогащенного 1-этил-(3s)-циклогексилалюминациклопентана

Изобретение относится к области металлорганического синтеза, конкретно к способу получения энантиомерно обогащенного 1-этил-(3S)-циклогексилалюминациклопентана (1) Способ включает взаимодействие α-олефина с триэтилалюминием (AlEt) в присутствии энантиомерно чистого катализатора...
Тип: Изобретение
Номер охранного документа: 0002536170
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.137b

Способ получения энантиомерно обогащенного 1-этил-(3r)-фенилалюминациклопентана

Изобретение относится к области металлорганического синтеза, конкретно к способу получения энантиомерно обогащенного 1-этил-(3R)-фенилалюминациклопентана (1) Cпособ включает взаимодействие стирола с триэтилалюминием (AlEt) в присутствии энантиомерно чистого катализатора...
Тип: Изобретение
Номер охранного документа: 0002536410
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.13c6

Способ получения бензилбутилового эфира

Изобретение относится к способу получения бензилбутилового эфира, который является ароматизатором пищевых продуктов. Способ заключается в межмолекулярной дегидратации бензилового спирта и н-бутанола в присутствии катализатора - бромида меди (II) CuBr при температуре 140-175°С в течение 2-10 ч...
Тип: Изобретение
Номер охранного документа: 0002536486
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.142f

Способ получения алкиловых эфиров 1- и 2-нафталинкарбоновых кислот

Изобретение относится к области органической химии, в частности к способу получения алкиловых эфиров 1- и 2-нафталинкарбоновых кислот, которые используются в синтезе гербицидов, гормонов роста растений, красителей, фотоматериалов и полимеров. Способ получения соединений формулы (1а-в) или...
Тип: Изобретение
Номер охранного документа: 0002536591
Дата охранного документа: 27.12.2014
+ добавить свой РИД